六年级下册数学第五单元数学广角教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五单元数学广角——鸽巢问题
一、单元教材分析:
本教材专门安排“数学广角”这一单元,向学生渗透一些重要的数学思想方法。
和以往的义务教育教材相比,这部分内容是新增的内容。
本单元教材通过几个直观例子,借助实际操作,向学生介绍“鸽巢问题”,使学生在理解“鸽巢问题”这一数学方法的基础上,对一些简单的实际问题加以“模型化”,会用“鸽巢问题”加以解决。
在数学问题中,有一类与“存在性”有关的问题。
在这类问题中,只需要确定某个物体(或某个人)的存在就是可以了,并不需要指出是哪个物体(或人)。
这类问题依据的理论我们称之为“抽屉原理”。
“抽屉原理”最先是19世纪的德国数学家狄利克雷运用于解决数学问题的,所以又称“狄利克雷原理”,也称之为“鸽巢问题”。
“鸽巢问题”的理论本身并不复杂,甚至可以说是显而易见的。
但“鸽巢问题”的应用却是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结论。
因此,“鸽巢问题”在数论、集合论、组合论中都得到了广泛的应用。
二、单元三维目标导向:
1、知识与技能:
引导学生通过观察、猜测、实验、推理等活动,经历探究“鸽巢原理”的过程,初步了解“鸽巢原理”的含义,会用“鸽巢原理”解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感态度与价值观:
(1)体会数学与生活的紧密联系,体验学数学、用数学的乐趣。
(2)理解知识的产生过程,受到历史唯物注意的教育。
(3)感受数学在实际生活中的作用,培养刻苦钻研、探究新知的良好品质。
三、单元教学重难点
重点:应用“鸽巢原理”解决实际问题。
引导学会把具体问题转化成“鸽巢问题”。
难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。
四、单元学情分析
“鸽巢原理”的变式很多,在生活中运用广泛,学生在生活中常常遇到此类问题。
教学时,要引导学生先判断某个问题是否属于“鸽巢原理”可以解决的范畴。
能不能将这个问题同“鸽巢原理”结合起来,是本次教学能否成功的关键。
所以,在教学中,应有意识地让学生理解“鸽巢原理”的“一般化模型”。
六年级的学生理解能力、学习能力和生活经验已达到能够掌握本章内容的程度。
教材选取的是学生熟悉的,易于理解的生活实例,将具体实际与数学原理结合起来,有助于提高学生的逻辑思维能力和解决实际问题的能力。
课时计划
第周星期第节年月日课题鸽巢问题
教学目标1、知识与技能:了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教材分析重点
引导学生把具体问题转化成“鸽巢问题”。
难点
找出“鸽巢问题”解决的窍门进行反复推理。
教具多媒体课件
预
习
案
合作探究、课堂展示、当堂作业个性添加
教学过程
一、情境导入:
二、探究新知:
1.教学例1.(课件出示例题1情境图)
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)认识“鸽巢问题”
像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。
如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔
小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放2支铅笔。
(5)归纳总结:
鸽巢原理(一):如果把m个物体任意放进n个抽屉里(m>n,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。
2、教学例2(课件出示例题2情境图)
思考问题:
(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。
为什么呢?
(二)如果有8本书会怎样呢?10本书呢?
学生通过“探究证明→得出结论”的学习过程来解决问题(一)。
(1)探究证明。
方法一:用数的分解法证明。
把7分解成3个数的和。
把7本书放进3个抽屉里,共有如下8种情况:
由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。
方法二:用假设法证明。
把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。
如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。
(2)得出结论。
通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。
(1)用假设法分析。
8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。
10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。
(2)归纳总结:
综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本) (2)
(本),那么一定有1个抽屉里至少放进(b+1)本书。
鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。
三、巩固练习
1、完成教材第70页的“做一做”第1题。
学生独立思考解答问题,集体交流、纠正。
2、完成教材第71页练习十三的1-2题。
学生独立思考解答问题,集体交流、纠正。
四、课堂总结
板书设计作业布置
教
学后
记
课时计划
第周星期第节年月日课题“鸽巢问题”的具体应用
教学目标1、知识与技能:在了解简单的“鸽巢原理”的基础上,使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教材分析重点
引导学生把具体问题转化成“鸽巢问题”。
难点
找出“鸽巢问题”中的“鸽巢”是什么,“鸽巢”有几个,在利用“鸽巢原理”进行
反向推理。
教具
预
习
案
合作探究、课堂展示、当堂作业个性添加
教学过程
一、情景导入
二、探究新知
1、教学例3(课件出示例3的情境图).
出示思考的问题:盒子里有同样大小的红球和篮球各4个,要想摸出的球一定有2个同色的,少要摸出几个球?
学生通过“猜测验证→分析推理”的学习过程解决问题。
(1)猜测验证。
猜测1:只摸2个球就能保证这2个球验证如:这两个球正好是一红一蓝时就不能同色。
1:摸出3 至少有2个球是同猜测2:摸出5 肯定有2个球是同验证 5÷2=2...1,所以摸出5个球时,至少有3 色的。
5÷2=2...1,所以摸出3个球时,至少有3 色的。
2个是同色的。
综上所述,摸出3个球,至少有2个球是同色的。
(2)分析推理。
根据“鸽巢原理(一)”推断:要保证有一个抽屉至少有2个球,分的无图个数失少要比抽屉数多1。
现在把“颜色种数”看作“抽屉数”,结论就变成了“要保证摸出2个同色的球,摸出的球的个数至少要比颜色种数多1”。
因此,要从两种颜色的球中保证摸出2个同色的,至少要摸出3个球。
2、趁热打铁:箱子里有足够多的5种不同颜色的
球,最少取出多少个球才能保证其中一定有2个颜色一样的球?
学生独立思考解决问题,集体交流。
3、归纳总结:
运用“鸽巢原理”解决问题的思路和方法:
(1)分析题意;
(2)把实际问题转化成“鸽巢问题”,弄清“鸽巢”和分放的“鸽子”。
(3)根据“鸽巢原理”推理并解决问题。
三、巩固练习
1、完成教材第70页的“做一做”的第2题。
(学生独立解答,集体交流。
)
2、完成教材第71页的练习十三的第3-4题。
(学生独立解答,集体交流。
)
3、课外拓展延伸题:一个布袋里有红色、黑色、蓝色的袜子各8只。
每次从布袋里最少要拿出多少只可以保证其中有2双颜色不同的袜子?(袜子不分左右)
四、课堂总结
板书设计作业布置
教
学后
记。