二阶导数微分表达式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二阶导数微分表达式
二阶导数的微分表达式的意义:对于一元函数来说,如果在该方程中出现因变量的二阶导数,我们就称为二阶(常)微分方程,其一般形式为F(x,y,y',y'')=0。

在有些情况下,可以通过适当的变量代换,把二阶微分方程化成一阶微分方程来求解。

微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

二阶导数,是原函数导数的导数,将原函数进行二次求导。

一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f‘(x)的导数叫做函数y=f (x)的二阶导数。

在图形上,它主要表现函数的凹凸性。

相关文档
最新文档