函数y=Asin(ωx ψ)的图像教案高一上学期数学人教版必修
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“三角函数图象变换”(第二课时)教学设计
教材分析:
“三角函数图象变换”是普通高中课程标准实验教科书人教A 版必修4第一章第五节,其主要内容是通过图象变换,揭示参数A ωϕ、、变化时对函数图象的形状和位置的影响,并讨论函数sin()y A x ωϕ=+的图象与正弦曲线的关系.由正弦曲线变换得到sin()y A x ωϕ=+的图象的思维过程并不表示实际画图方法,但充分体现了由简单到复杂、特殊到一般的化归的数学思想.
三角函数中许多化简、求值以及研究函数性质的问题都涉及到sin()A x ωϕ+的形式,所以本节在三角函数这一章中承载着重要的作用.研究它的图象能使学生将已有的知识形成体系,有助于培养学生利用数形结合的思想解决问题.同时,本节课在教学中力图向学生展示观察、归纳、类比、联想等数学思想方法. 学情分析:
对函数sin()y A x ωϕ=+图象的探究,涉及的参数有3个,在第一课时,学生已经完成了参数A ωϕ、、对函数图象影响的讨论,具有一定的基础,本节课主要解决将三个参数对图象的影响整合成完整解决步骤.在图象变换过程中,图象先平移后伸缩和先伸缩后平移是学生容易出错和难以理解的地方,主要是因为学生对平移变换和伸缩变换的理解不够透彻. 教学目标:
知识与技能:进一步理解A ωϕ、、对函数图象变化的影响.通过探究图象变换,会用图象变换法画出函数sin()y A x ωϕ=+的简图.
过程与方法:通过学生对问题的自主探究,渗透数形结合思想.培养学生的独立意识和独立思考能力. 培养学生“由简单到复杂、由特殊到一般”的化归思想.
情感态度与价值观:学会合作意识,培养学生理解动与静的辩证关系,善于从运动的观点观察问题,培养学生解决问题抓主要矛盾的思想.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观. 教学重点:
掌握函数sin y x =与sin()y A x ωϕ=+图象间的关系.
教学难点:
由函数sin y x =到sin()y A x ωϕ=+的图象的变换过程. 教学方法:
讨论法、演示法、发现法. 学法:
合作学习、观察归纳. 课时安排:
1课时 教学条件:
几何画板、PPT. 教学基本流程:
复习参数A ωϕ、、对函数sin y x =的影响
探讨函数sin y x =与sin()y A x ωϕ=+图象间的关系
总结正弦曲线sin y x =到sin()y A x ωϕ=+的图象的变换过程
函数sin()y A x ωϕ=+简图的作法
图象变换法 五点法
1. 在课本上完成57页A 组第一题.
2. 在作业本上完成课本58页第2题的(3)、(4)小题. 要求:用文字写出图象变换过程,用五点法作图.
3. 思考:如何由三角函数图象写出它的函数解析式. 即:如何通过图象确定参数A ωϕ、、.
板书设计:
以PPT 引导,板书主要展示解决问题的过程.
教学反思:
本节图象较多,学生活动量大,因此本节设计的主要指导思想是充分利用信
息技术工具,从整体上探究参数A ϕω、、对函数sin()y A x ωϕ=+图象整体变化的影响.对于函数sin y x =的图象与函数sin()y A x ωϕ=+的图象间的变换,由于“平移变换”与“伸缩变换”在“顺序”上的差别,直接会对图象平移量产生影响,这点也是学习三角函数图象变换的难点所在,设计意图旨在通过对比让学生领悟它们的异同.由于本节内容综合性强,所以本节教案设计的指导思想是:在教师的引导下,让学生积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.新课改要求教师在新的教学理念下,要勇于,更要善于把问题抛给学生,激发学生探求知识的强烈欲望和创新意识.教学的目的是以知识为平台,全面提升学生的综合能力.。