2017年高考新课标Ⅰ卷文数试题解析(精编版)(解析版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年普通高等学校招生全国统一考试
文科数学
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目
要求的.
1.已知集合A ={}|2x x <,B ={}|320x x ->,则
A .A I
B =3|2x x ⎧⎫<⎨⎬⎩⎭
B .A I B =∅
C .A U B 3|2x x ⎧⎫=<⎨⎬⎩
⎭ D .A U B=R 【答案】A
【解析】
试题分析:由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x =<<=<I I ,选A . 【考点】集合运算
【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理. 2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是
A .x 1,x 2,…,x n 的平均数
B .x 1,x 2,…,x n 的标准差
C .x 1,x 2,…,x n 的最大值
D .x 1,x 2,…,x n 的中位数
【答案】B
【解析】
试题分析:评估这种农作物亩产量稳定程度的指标是标准差或方差,故选B.
【考点】样本特征数
【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反映一组数据的多数水平;
中位数:一组数据中间的数(起到分水岭的作用),中位数反映一组数据的中间水平;
平均数:反映一组数据的平均水平;
方差:反映一组数据偏离平均数的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
标准差是方差的算术平方根,意义在于反映一组数据的离散程度.
3.下列各式的运算结果为纯虚数的是
A .i(1+i)2
B .i 2(1−i)
C .(1+i)2
D .i(1+i)
【答案】C
【解析】
试题分析:由2(1i)2i +=为纯虚数知选C .
【考点】复数运算,复数基本概念
【名师点睛】本题重点考查复数的基本运算和复数的概念,属于基础题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如(+i)(+i)()+a b c d =ac bd -(+)i(,,,)ad bc a b c d ∈R . 其次要熟悉复数相关基本概念,如复数+i(,)a b a b ∈R 的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为i a b -.
4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是
A .14
B .π8
C .12
D .π 4
【答案】B
【考点】几何概型
【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.
5.已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为
A .13
B .1 2
C .2 3
D .3 2
【答案】D
【考点】双曲线
【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得)0,2(F ,结合PF 与x 轴垂直,可得3||=PF ,最后由点A 的坐标是(1,3),计算△APF 的面积.
6.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是
A .
B .
C .
D .
【答案】A
【解析】
试题分析:对于B ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于C ,易知AB ∥MQ ,则直线AB ∥平面MNQ ;对于D ,易知AB ∥NQ ,则直线AB ∥平面MNQ .故排除B ,C ,D ,选A .
【考点】空间位置关系判断
【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.
7.设x,y满足约束条件
33,
1,
0,
x y
x y
y
+≤
⎧
⎪
-≥
⎨
⎪≥
⎩
则z=x+y的最大值为
A.0 B.1 C.2 D.3
【答案】
D
【考点】简单的线性规划
【名师点睛】学/科网本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.
8.函数
sin2
1cos
x
y
x
=
-
的部分图像大致为
A .
B .
C .
D .
【答案】C
【解析】 试题分析:由题意知,函数sin 21cos x y x =
-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2
y =>-,故排除A .故选C . 【考点】函数图像
【名师点睛】函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.
9.已知函数()ln ln(2)f x x x =+-,则
A .()f x 在(0,2)单调递增
B .()f x 在(0,2)单调递减
C .y =()f x 的图像关于直线x =1对称
D .y =()f x 的图像关于点(1,0)对称 【答案】C
【考点】函数性质
【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图像有
对称轴2a b x +=
;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图像有对称中心(,0)2a b +. 10.下面程序框图是为了求出满足321000n n ->的最小偶数n 分别填入
A .A >1000和n =n +1
B .A >1000和n =n +2
C .A ≤1000和n =n +1
D .A ≤1000和n =n +2
【答案】D
【解析】 试题分析:由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.
【考点】程序框图
【名师点睛】解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.
11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,
则C =
A .π12
B .π6
C .π4
D .π3
【答案】B
【解析】
试题分析:由题意sin()sin (sin cos )0A C A C C ++-=得
sin cos cos sin sin sin sin cos 0A C A C A C A C ++-=, 即πsin (sin cos )2sin sin()04C A A C A +=+=,所以3π4
A =. 由正弦定理sin sin a c A C =得223πsin sin 4
C =,即1sin 2
C =, 因为c <a ,所以C<A ,
所以π6
C =,故选B . 【考点】解三角形
【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.
12.设A ,B 是椭圆C :22
13x y m
+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是
A .(0,1][9,)+∞U
B .(0,3][9,)+∞U
C .(0,1][4,)+∞U
D .(0,3][4,)+∞U
【答案】A
【考点】椭圆
【名师点睛】本题设置的是一道以椭圆知识为背景的求参数范围的问题.解答问题的关键是利用条件
确定b a ,的关系,求解时充分借助题设条件ο120=∠AMB 转化为360tan =≥οb
a ,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量a =(–1,2),b =(m ,1).若向量a +b 与a 垂直,则m =________.
【答案】7
【解析】
试题分析:由题得(1,3)m +=-a b ,因为()0+⋅=a b a ,所以(1)230m --+⨯=,解得7m =.
【考点】平面向量的坐标运算,垂直向量
【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ⊥b 的充要条件是x 1x 2+y 1y 2=0.
14.曲线21y x x
=+在点(1,2)处的切线方程为______________. 【答案】1y x =+
【解析】
试题分析:设()y f x =,则21()2f x x x '=-
,所以(1)211f '=-=, 所以曲线21y x x
=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+. 【考点】导数几何意义
【名师点睛】求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设),(00y x P 是曲线)(x f y =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线)(x f y =在点))(,(00x f x P 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.
15.已知π(0)2α∈,,tan α=2,则πcos ()4
α-=__________. 310 【解析】
试题分析:由tan 2α=得sin 2cos αα=,
又22sin cos 1αα+=, 所以21cos 5
α=,
因为
π
(0,)
2
α∈,
所以
525 cos,sin
55
αα
==,
因为
πππcos()cos cos sin sin
444ααα
-=+,
所以
π52252310 cos()
4
α-=⨯+⨯=.
【考点】三角函数求值
【名师点睛】三角函数求值的三种类型
(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.
(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.
①一般可以适当变换已知式,求得另外函数式的值,以备应用;
②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.
(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.
16.已知三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,则球O的表面积为________.
【答案】36π
【考点】三棱锥的外接球
【名师点睛】本题考查了球与几何体的问题,是高考中的重点问题,要有一定的空间想象能力,这样才能找准关系,得到结果,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的各顶点的距离相等,然后用同样的方法找到另一
个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生
都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.
(1)求{}n a 的通项公式;
(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.
【答案】(1)(2)n
n a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】
试题分析:(1)由等比数列通项公式解得2q =-,12a =-即可求解;(2)利用等差中项证明S n +1,S n ,S n +2成等差数列.
【考点】等比数列
【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.
18.(12分)
如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .
(1)证明:平面PAB ⊥平面PAD ;
(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P −ABCD 的体积为8
3
,求该四棱锥的侧面积. 【答案】(1)证明见解析;(2)326+. 【解析】
试题分析:(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积311
33
P ABCD V AB AD PE x -=
⋅⋅=,解得2x =,可得所求侧面积. 试题解析:(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .
(2)在平面PAD 内作PE AD ⊥,垂足为E .
由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =
,2
PE x =
. 故四棱锥P ABCD -的体积311
33
P ABCD V AB AD PE x -=⋅⋅=. 由题设得
318
33
x =,故2x =. 从而2PA PD ==,22AD BC ==22PB PC ==. 可得四棱锥P ABCD -的侧面积为
21111
sin 606232222
PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+
【考点】空间位置关系证明,空间几何体体积、侧(表)面积计算
【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出. 19.(12分)
为了监控某种零件的一条生产线的生产过程,检验员每隔30 min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm ).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序 1 2 3 4 5 6 7 8 零件尺寸 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序
9
10 11 12 13 14 15 16 零件尺寸 10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
经计算得16119.9716i i x x ===∑,16162
2211
11()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,16
2
1
(8.5)
18.439i i =-≈∑,16
1
()(8.5) 2.78i i x x i =--=-∑,其中i x 为抽取的第i 个零件的尺寸,
1,2,,16i =⋅⋅⋅.
(1)求(,)i x i (1,2,,16)i =⋅⋅⋅的相关系数r ,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若||0.25r <,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(3,3)x s x s -+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(3,3)x s x s -+之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(,)i i x y (1,2,,)i n =⋅⋅⋅的相关系数1
2
2
1
1
()()
()()
n
i
i
i n n
i
i
i i x x y y r x x y y ===--=
--∑∑∑0.0080.09≈.
【答案】(1)18.0-≈r ,可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小;(2)(ⅰ)需对当天的生产过程进行检查;(ⅱ)均值与标准差的估计值分别为10.02,0.09. 【解析】
(2)(i )由于9.97,0.212x s =≈,由样本数据可以看出抽取的第13个零件的尺寸在(3,3)x s x s -+以外,因此需对当天的生产过程进行检查.
(ii )剔除离群值,即第13个数据,剩下数据的平均数为1
(169.979.22)10.0215
⨯-=,这条生产线当天生产的零件尺寸的均值的估计值为10.02.
16
2221
160.212169.971591.134i
i x
==⨯+⨯≈∑,
剔除第13个数据,剩下数据的样本方差为
221
(1591.1349.221510.02)0.00815
--⨯≈, 0.0080.09≈. 【考点】相关系数,方差、均值的计算
【名师点睛】解答新颖的数学题时,一是通过转化,化“新”为“旧”;二是通过深入分析,多方联想,以“旧”攻“新”;三是创造性地运用数学思想方法,以“新”制“新”,应特别关注创新题型的切入点和生长点. 20.(12分)
设A ,B 为曲线C :y =24
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.
【答案】(1)1;(2)7y x =+.
(2)由24x y =,得2
x y'=.
设M (x 3,y 3),由题设知312
x
=,解得32x =,于是M (2,1).
设直线AB 的方程为y x m =+,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|.
将y x m =+代入2
4
x y =得2440x x m --=.
当16(1)0m ∆=+>,即1m >-时,1,2221x m =±+ 从而12||=2|42(1)AB x x m -=+.
由题设知||2||AB MN =,即2(1)2(1)m m ++,解得7m =. 所以直线AB 的方程为7y x =+. 【考点】直线与圆锥曲线的位置关系
【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用. 21.(12分)
已知函数()f x =e x (e x −a )−a 2x . (1)讨论()f x 的单调性;
(2)若()0f x ≥,求a 的取值范围.
【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在
(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2
a
-+∞单调递增;
(2)
3
4
[2e ,1]-.
【解析】
试题分析:(1)分0a =,0a >,0a <分别讨论函数)(x f 的单调性;(2)分0a =,0a >,0a <分别解0)(≥x f ,从而确定a 的取值范围.
试题解析:(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )x
x x x f x a a a a '=--=+-,
①若0a =,则2()e x
f x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.
当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在
(ln ,)a +∞单调递增.
③若0a <,则由()0f x '=得ln()2
a x =-.
当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2
a -∞-单
调递减,在(ln(),)2
a
-+∞单调递增.
【考点】导数应用
【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4−4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为3cos ,
sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为
4,
1,x a t t y t =+⎧⎨
=-⎩
(为参数). (1)若1-=a ,求C 与l 的交点坐标;
(2)若C 上的点到l 17a . 【答案】(1)(3,0),2124
(,)2525
-;
(2)8a =或16a =-. 【解析】
试题分析:(1)直线与椭圆的参数方程化为直角坐标方程,联立解交点坐标;(2)利用椭圆参数方程,设点(3cos ,sin )θθ,由点到直线距离公式求参数.
试题解析:(1)曲线C 的普通方程为2
219
x y +=. 当1a =-时,直线l 的普通方程为430x y +-=.
由22
430,1
9x y x y +-=⎧⎪⎨+=⎪⎩解得3,0x y =⎧⎨=⎩或21,25
24.25x y ⎧=-⎪⎪⎨⎪=⎪⎩
从而C 与l 的交点坐标为(3,0),2124
(,)2525
-
. (2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为
17
d =
当4a ≥-时,d 171717=8a =; 当4a <-时,d 171717
=16a =-. 综上,8a =或16a =-.
【考点】参数方程
【名师点睛】本题为选修内容,先把直线与椭圆的参数方程化为直角坐标方程,联立方程,可得交点坐标,利用椭圆的参数方程,求椭圆上一点到一条直线的距离的最大值,直接利用点到直线的距离公式,表示出椭圆上的点到直线的距离,利用三角有界性确认最值,进而求得参数a 的值. 23.[选修4−5:不等式选讲](10分)
已知函数4)(2
++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥学+科网的解集;
(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.
【答案】(1)117
{|1}x x -+-≤≤;(2)[1,1]-. 【解析】
试题分析:(1)分1x <-,11x -≤≤,1x >三种情况解不等式)()(x g x f ≥;(2)()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥,所以(1)2f -≥且(1)2f ≥,从而可得11a -≤≤.
(2)当[1,1]x ∈-时,()2g x =.
所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.
又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤. 所以a 的取值范围为[1,1]-. 【考点】不等式选讲
【名师点睛】形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:
(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集. (2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解.。