安徽合肥包河区八年级上期末数学考试卷(解析版)(初二)期末考试.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽合肥包河区八年级上期末数学考试卷(解析版)(初二)期末考试
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题简答题xx 题xx题xx题总分
得分
一、xx题
评卷人得分
(每空xx 分,共xx分)
【题文】下列图形中,不是轴对称图形的是()
A. B. C. D.
【答案】A
【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行解答.
解:A、不是轴对称图形,故此选项正确;
B、是轴对称图形,故此选项错误;
C、是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项错误;
故选:A.
点评:此题主要考查了轴对称图形,关键是掌握轴对称的定义.
【题文】点(﹣2,3)在平面直角坐标系中所在的象限是()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】B
【解析】
试题分析:根据各象限内点的坐标特征解答即可.
解:点(﹣2,3)所在的象限是第二象限,
故选B.
点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
【题文】函数y=的自变量x的取值范围是()
A.x≠﹣2 B.x≥﹣2 C.x>﹣2 D.x<﹣2
【答案】B
【解析】
试题分析:根据被开方数大于等于0列式计算即可得解.
解:由题意得:x+2≥0,
解得x≥﹣2.
故选:B.
点评:本题考查的知识点为:二次根式的被开方数是非负数,熟记二次根式的被开方数是非负数是解决本题的关键.
【题文】若一个三角形三个内角度数的比为2:3:4,那么这个三角形是()
A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
【答案】B
【解析】
试题分析:根据三角形的内角和定理和三个内角的度数比,即可求得三个内角的度数,再根据三个内角的度数进一步判断三角形的形状.
解:∵三角形三个内角度数的比为2:3:4,
∴三个内角分别是180°×=40°,180°×=60°,180°×=80°.
所以该三角形是锐角三角形.
故选B.
点评:三角形按边分类:不等边三角形和等腰三角形(等边三角形);
三角形按角分类:锐角三角形,钝角三角形,直角三角形.
【题文】下列四个图形中,线段BE是△ABC的高的是()
A. B. C. D.
【答案】D
【解析】
试题分析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.
解:线段BE是△ABC的高的图是选项D.
故选D.
点评:本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.熟记定义是解题的关键.
【题文】下列各图中,能表示y是x的函数的是()
A. B. C. D.
【答案】B
【解析】
试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.
解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B正确.
故选:B.
点评:本题主要考查了函数的定义,函数的意义反映在图象上简单的判断方法是:x的取值范围内做垂直x 轴的直线与函数图象只会有一个交点.
【题文】下列命题中真命题是()
A.三角形按边可分为不等边三角形,等腰三角形和等边三角形
B.等腰三角形任一个内角都有可能是钝角或直角
C.三角形的一个外角大于任何一个内角
D.三角形三条内角平分线相交于一点,这点到三角形三边的距离相等
【答案】D
【解析】
试题分析:利用三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质分别判断后即可确定正确的选项.
解:A、三角形按边可分为不等边三角形,等腰三角形,故错误,是假命题;
B、等腰三角形任一个内角都有可能是钝角或直角,错误,是假命题;
C、三角形的一个外角大于任何一个不相邻的内角,故错误,是假命题;
D、三角形三条内角平分线相交于一点,这点到三角形三边的距离相等,正确,是真命题,
故选D.
点评:本题考查了命题与定理的知识,解题的关键是了解三角形的分类、等腰三角形的性质、三角形的外角的性质及三角形的内心的性质,难度不大.
【题文】若一次函数y=(m﹣1)x+m2﹣1的图象通过原点,则m的值为()
A.m=﹣1 B.m=1 C.m=±1 D.m≠1
【答案】A
【解析】
试题分析:根据一次函数的定义及函数图象经过原点的特点列出关于m的不等式组,求出m的值即可.解:∵一次函数y=(m﹣1)x+m2﹣1的图象经过原点,
∴0=0+m2﹣1,m﹣1≠0,即m2=1,m≠1
解得,m=﹣1.
故选A.
点评:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b(k≠0)中,当b=0时函数图象经过原点..
【题文】设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()
A.3<a<6 B.﹣5<a<﹣2 C.﹣2<a<5 D.a<﹣5或a>2
【答案】B
【解析】
试题分析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.解:由题意得:8﹣3<1﹣2a<8+3,
解得:﹣5<a<﹣2,
故选:B.
点评:此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
【题文】如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()
A.6 B.12 C.32 D.64
【答案】C
【解析】
试题分析:根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出
A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°﹣120°﹣30°=30°,
又∵∠3=60°,
∴∠5=180°﹣60°﹣30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:A6B6=32B1A2=32.
故选:C.
点评:此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
【题文】如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数
为.
【答案】30°
【解析】
试题分析:根据线段垂直平分线的性质得到DA=DB,得到∠B=∠DAB,根据角平分线的定义得到∠DAB=∠DAC ,根据三角形内角和定理计算即可.
解:∵DE是△ABC的AB边的垂直平分线,
∴AD=BD,
∴∠B=∠DAB,
∵AD平分∠BA C,
∴∠DAB=∠DAC,
∴∠B=∠DAB=∠DAC,又∠C=90°,
∴∠B=30°,
故答案为:30°
点评:本题考查了线段垂直平分线性质的应用,能求出∠B=∠DAB=∠DAC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.
【题文】将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式
为.
【答案】y=﹣2x+2.
【解析】
试题分析:注意平移时k的值不变,只有b发生变化.向上平移3个单位,b加上3即可.
解:原直线的k=﹣2,b=﹣1;向上平移3个单位长度得到了新直线,那么新直线的k=﹣2,b=﹣1+3=2.因此新直线的解析式为y=﹣2x+2.
故答案为:y=﹣2x+2.
点评:本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.
【题文】如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,
则∠A′DB为.
【答案】10°
【解析】
试题分析:根据轴对称的性质可知∠CA′D=∠A=50°,然后根据外角定理可得出∠A′DB.
解:由题意得:∠CA′D=∠A=50°,∠B=40°,
由外角定理可得:∠CA′D=∠B+∠A′DB,
∴可得:∠A′DB=10°.
故答案为:10°.
点评:本题考查轴对称的性质,属于基础题,注意外角定理的运用是解决本题的关键.
【题文】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.
【答案】4.
【解析】
试题分析:由AB=AC,D是BC的中点,易得AD是BC的垂直平分线,则可证得△ACD≌△ABD,△OCD≌△OBD ,△AOC≌△AOB,又由EF是AC的垂直平分线,证得△OCE≌△OAE.
解:∵AB=AC,D是BC的中点,
∴∠CAD=∠BAD,AD⊥BC,
∴OC=OB,
在△ACD和△ABD中,
,
∴△ACD≌△ABD(SAS);
同理:△COD≌△BOD,
在△AOC和△AOB中,
,
∴△OAC≌△OAB(SSS);
∵EF是AC的垂直平分线,
∴OA=OC,∠OEA=∠OEC=90°,
在Rt△OAE和Rt△OCE中,
,
∴Rt△OAE≌Rt△OCE(HL).
故答案为:4.
点评:此题考查了线段垂直平分线的性质、等腰三角形的性质以及全等三角形的判定与性质.注意垂直平分线上任意一点,到线段两端点的距离相等.
【题文】为了推动校园足球发展,某市教体局准备向全市中小学免费赠送一批足球,这批足球的生产任务由甲、乙两家足球制造企业平均承担,甲企业库存0.2万个,乙企业库存0.4万个,两企业同时开始生产,且每天生产速度不变,甲、乙两家企业生产的足球数量y万个与生产时间x天之间的函数关系如图所示,则每家企业供应的足球数量a等于万个.
【答案】1
【解析】
试题分析:结合函数图象,设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,根据企业供应的足球数=库存+每日产量×生产天数,得出关于x、a的二元一次方程组,解方程组即可得出结论.
解:∵(6﹣2)÷(4﹣2)=2,
∴设乙企业每天生产足球x万个,则甲企业每天生产足球2x万个,
根据题意可得:,
解得:.
∴每家企业供应的足球数量a=1万个.
故答案为:1.
点评:本题考查了二元一次方程组的应用,解题的关键是得出关于x、a的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.
【题文】夏令营组织学员到某一景区游玩,老师交给同学一张画有A、B、C、D四个景点位置的地图,景点A、C和景点B、D之间有公路连接,老师指出:今天我们游玩的景点E是新开发的,地图上还没来得及标注,但已知这个景点E满足:①与公路AC和公路BD所在的两条直线等距离;②到B、C两景点等距离.请你用尺规作图画出景点E的位置(先用铅笔画图,然后用钢笔描清楚作图痕迹)
【答案】
【解析】
试题分析:延长DB、CA交于点O,作∠DOC或∠DOC的外角的平分线,再作线段BC的垂直平分线,两线的交点就是所求的点.
解:如图所示,点E或E′就是所求的点.
点评:本题考查作图应用设计、角平分线的作法、线段的垂直平分线的作法等知识,解题的关键是熟练掌握这些知识的应用,属于中考常考题型.
【题文】在边长为1的小正方形网格中,△AOB的顶点均在格点上.
(1)B点关于y轴的对称点坐标为;
(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;
(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为.【答案】(1)(﹣3,2)(2)见解析(3)(a﹣3,b+2)
【解析】
试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;
(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;
(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.
解:(1)B点关于y轴的对称点坐标为(﹣3,2),
故答案为:(﹣3,2);
(2)如图所示:
(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).
故答案为:(a﹣3,b+2).
点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.
【题文】如图,点F、C在BE上,BF=CE,∠A=∠D,∠B=∠E.
求证:AB=DE.
【答案】见解析
【解析】
试题分析:欲证明AB=DE,只要证明△ABC≌△DEF即可.
证明:∵BF=CE,
∴BF+CF=CE+CF即BC=EF,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(AAS),
∴AB=DE.
点评:本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键,记住一般三角形全等的四种判定方法,属于中考常考题型.
【题文】小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:
(1)弟弟步行的速度是 m/分,点B的坐标是;
(2)线段AB所表示的y与x的函数关系式是;
(3)试在图中补全点B以后的图象.
【答案】(1)60,120;(2)y=kx+b,(3)
【解析】
试题分析:(1)由图象可知,当x=0时,y=60,即可得到弟弟1分钟走了60m;分别求出x=9时,哥哥走的路程,弟弟走的路程,即可得到兄弟两人之间的距离,即可解答;
(2)利用待定系数法求出解析式,即可解答;
(3)根据点B的坐标为(9,120),此时小明到达终点,弟弟离小明的距离为120米,弟弟到终点的时间为:120÷60=2(分),画出图形即可.
解:(1)由图象可知,当x=0时,y=60,
∵弟弟走得慢,先走1分钟后,小明才出发,
∴弟弟1分钟走了60m,
∴弟弟步行的速度是60米/分,
当x=9时,哥哥走的路程为:80×9=720(米),弟弟走的路程为:60+60×9=600(米),
兄弟两人之间的距离为:720﹣600=120(米),
∴点B的坐标为:(9,120),
故答案为:60,120;
(2)设线段AB所表示的y与x的函数关系式是:y=kx+b,
把A(3,0),B(9,120)代入y=kx+b得:
解得:
∴y=20x﹣60,
故答案为:y=20x﹣60.
(3)如图所示;
点评:本题考查了一次函数的应用,解决本题的关键是看懂函数图象,利用待定系数法求一次函数的解析式.
【题文】如图,直线l1:y1=x和直线l2:y2=﹣2x+6相交于点A,直线l2与x轴交于点B,动点P沿路线O→A→B运动.
(1)求点A的坐标,并回答当x取何值时y1>y2?
(2)求△AOB的面积;
(3)当△POB的面积是△AOB的面积的一半时,求出这时点P的坐标.
【答案】(1)当x>2时,y1>y2;(2)3;(3)P(1,1)或(,1).
【解析】
试题分析:(1)当函数图象相交时,y1=y2,即﹣2x+6=x,再解即可得到x的值,再求出y的值,进而可得点A的坐标;当y1>y2时,图象在直线AB的右侧,进而可得答案;
(2)由直线l2:y2=﹣2x+6求得B的坐标,然后根据三角形面积即可求得;
(3)根据题意求得P的纵坐标,代入两直线解析式求得横坐标,即为符合题意的P点的坐标.
解:(1)∵直线l1与直线l2相交于点A,
∴y1=y2,即﹣2x+6=x,解得x=2,
∴y1=y2=2,
∴点A的坐标为(2,2);
观察图象可得,当x>2时,y1>y2;
(2)由直线l2:y2=﹣2x+6可知,当y=0时,x=3,
∴B(3,0),
∴S△AOB=×3×2=3;
(3)∵△POB的面积是△AOB的面积的一半,
∴P的纵坐标为1,
∵点P沿路线O→A→B运动,
∴P(1,1)或(,1).
点评:此题主要考查了两直线相交,一次函数与不等式的关系以及三角形面积等,关键是掌握凡是函数图象经过的点必能满足解析式.
【题文】如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.
(1)如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
【答案】见解析
【解析】试题分析:(1)①根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.
②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;
(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个腰长.
解:(1)①∵t=1s,
∴BP=CQ=3×1=3cm,
∵AB=10cm,点D为AB的中点,
∴BD=5cm.
又∵PC=BC﹣BP,BC=8cm,
∴PC=8﹣3=5cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
∴△BPD≌△CQP(SAS).
②∵vP≠vQ,
∴BP≠CQ,
若△BPD≌△CPQ,∠B=∠C,
则BP=PC=4cm,CQ=BD=5cm,
∴点P,点Q运动的时间s,
∴cm/s;
(2)设经过x秒后点P与点Q第一次相遇,
由题意,得x=3x+2×10,
解得.
∴点P共运动了×3=80cm.
△ABC周长为:10+10+8=28cm,
若是运动了三圈即为:28×3=84cm,
∵84﹣80=4cm<AB的长度,
∴点P、点Q在AB边上相遇,
∴经过s点P与点Q第一次在边AB上相遇.
点评:此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。