正东乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正东乡实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)下列说法中错误的是()
A.中的可以是正数、负数或零
B.中的不可能是负数
C.数的平方根有两个
D.数的立方根有一个
【答案】C
【考点】平方根,立方根及开立方
【解析】【解答】A选项中表示a的立方根,正数,负数和零都有立方根,所以正确;
B选项中表示a的算术平方根,正数和零都有算术平方根,而负数没有算术平方根,所以正确;
C选项中正数的平方根有两个,零的平方根是零,负数没有平方根,所以数a是非负数时才有两个平方根,所以错误;
D选项中任何数都有立方根,所以正确。

故答案为:C
【分析】正数有两个平方根,零的平方根是零,负数没有平方根,任何一个数都有一个立方根,A选项中被开方数a可以是正数,负数或零,B选项中的被开方数只能是非负数,不能是负数,C选项中只有非负数才有平方根,而a有可能是负数,D选项中任何一个数都有一个立方根。

2、(2分)如果a>b,c≠0,那么下列不等式成立的是()
A. a-c>b-c
B. c-a>c-b
C. ac>bc
D.
【答案】A
【考点】不等式及其性质
【解析】【解答】解:A、不等式的两边都加(或减)同一个数(或整式),故A符合题意;
B、不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,故B不符合题意;
C、c<0时,不等号的方向改变,故C不符合题意;
D、c<0时,不等号的方向改变,故D不符合题意;
故答案为:A
【分析】根据不等式的性质:不等式的两边都加(或减)同一个数(或整式),不等号方向不变;不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,根据性质一一判断即可。

3、(2分)-64的立方根是()
A. ±8
B. 4
C. -4
D. 16
【答案】C
【考点】立方根及开立方
【解析】【解答】∵(-4)3=-64,∴-64的立方根是-4.故答案为:C.
【分析】立方根是指如果一个数的立方等于a 那么这个数叫作a的立方根。

根据立方根的意义可得-64的立方根是-4.
4、(2分)已知方程组,则6x+y的值为()
A. 15
B. 16
C. 17
D. 18
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:在方程组中,
①+②,得6x+y=17.故答案为:C.
【分析】x的系数都是3,y的系数是+2,-1,方程①+②,得6x+y=17.
5、(2分)已知两数之和是25,两数之差是3,则这两个数分别为()
A. 12,10
B. 12,9
C. 15,10
D. 14,11
【答案】D
【考点】解二元一次方程组,二元一次方程组的应用-数字问题
【解析】【解答】解:设两个数分别为x、y,根据题意得:

解得:,
故这两个数分别为14、11.
故答案为:D.
【分析】抓住题中关键的已知条件,将其转化为等量关系是:两数之和=25;两数之差=3,设未知数,建立方程组,利用加减消元法求出方程组的解即可。

6、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】无理数的认识
【解析】【解答】解:上述各数中,属于无理数的有:两个.
故答案为:B.
【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。

7、(2分)下列不等式中,是一元一次不等式的是()
A.x+1>2
B.x2>9
C.2x+y≤5
D.>3
【答案】A
【考点】一元一次不等式的定义
【解析】【解答】解:A.该不等式符合一元一次不等式的定义,符合题意;
B.未知数的次数是2,不是一元一次不等式,不符合题意;
C.该不等式中含有2个未知数,属于二元一次不等式,不符合题意;
D.该不等式属于分式不等式,不符合题意;
故答案为:A.
【分析】根据一元一次不等式的定义判定.含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.
8、(2分)x=3是下列哪个不等式的解()
A.x+2>4
B.x2-3>6
C.2x-1<3
D.3x+2<10
【答案】A
【考点】不等式的解及解集
【解析】【解答】解:根据不等式的解的定义求解
【分析】把x=3分别代入各选项即可作出判断。

9、(2分)估计的值应在()
A. 1和2之间
B. 2和3之间
C. 3和4之间
D. 4和5之间【答案】B
【考点】估算无理数的大小
【解析】【解答】解:∵

∴在2和3之间。

故答案为:B
【分析】由,可求出的取值范围。

10、(2分)若k< <k+l(k是整数),则k的值为()
A.6
B.7
C.8
D.9
【答案】C
【考点】估算无理数的大小
【解析】【解答】解:∵64<80<81,
∴8<<9,
又∵k<<k+1,
∴k=8.
故答案为:C.
【分析】由64<80<81,开根号可得8<<9,结合题意即可求得k值.
11、(2分)下列四幅图中,∠1和∠2是同位角的是()
A. (1)、(2)
B. (3)、(4)
C. (1)、(2)、(3)
D. (2)、(3)、(4)【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故答案为:A.【分析】根据同位角的定义,两条直线被第三条直线所截形成的角中,同位角是指两个角都在第三条直线的同旁,在被截的两条直线同侧的位置的角,呈“F”型,观察图形即可得出答案。

12、(2分)已知方程组,则(x﹣y)﹣2=()
A. 2
B.
C. 4
D.
【答案】D
【考点】代数式求值,解二元一次方程组
【解析】【解答】解:,
①﹣②得:x﹣y=2,
则原式=2﹣2= .故答案为:D
【分析】观察方程组中同一未知数的系数特点及所求代数式的底数,由①﹣②得出x-y的值,再整体代入求值即可。

二、填空题
13、(1分)定义新运算:对于任意实数a,b都有a△b=ab-a-b+1,例如:2△4=2´4-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x的值大于5而小于9,那么x的取值范围是________.
【答案】<x<
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】解:由题意得: .
故答案:<x<.
【分析】先根据题意列出关于x的不等式组,求出x的取值范围即可.确定解集的法则:同大取大;同小取小;大小小大中间找;大大小小找不到.
14、(1分)一个正数的平方根为2﹣m与3m﹣8,则m的值为________.
【答案】3
【考点】平方根
【解析】【解答】一个正数的平方根为2﹣m与3m﹣8,
(2﹣m)+(3m﹣8)=0
m=3,
故答案为:3.
【分析】由平方根的意义可知一个数的平方根互为相反数,所以可根据互为相反数的两个数的和为0可得关于m的方程(2﹣m)+(3m﹣8)=0,解方程即可求解。

15、(1分)已知那么|x-3|+|x-1|=________
【答案】2
【考点】绝对值及有理数的绝对值,代数式求值,解一元一次不等式组
【解析】【解答】解:解不等式①得:x>1
解不等式②得:2x-2<x+1
解之:x<3
∴不等式组的解集为:1<x<3
即x-3<0,x-1>0
原式=3-x+x-1=2
故答案为:2
【分析】先求出不等式组的解集是1<x<3,然后利用绝对值的性质化简可得结果是2
16、(1分)把命题“同位角相等”改写成“如果……那么……”的形式是________
【答案】如果两个角是同位角,那么这两个角相等。

【考点】命题与定理
【解析】【解答】解:如果两个角是同位角,那么这两个角相等。

【分析】任意一个命题都有可以写成如果……那么……的形式,如果后面是题设,那么的后面是结论。

17、(6分)看图填空:
(1)∠1和∠4是________角;
(2)∠1和∠3是________角;
(3)∠2和∠D是________角;
(4)∠3和∠D是________角;
(5)∠4和∠D是________角;
(6)∠4和∠B是________角.
【答案】(1)邻补
(2)对顶
(3)内错
(4)同旁内
(5)同位
(6)同位
【考点】同位角、内错角、同旁内角
【解析】【解答】解:(1)∠1和∠4是邻补角,
(2 )∠1和∠3是对顶角,
(3 )∠2和∠D是内错角,
(4 )∠3和∠D是同旁内角,
(5 )∠4和∠D是同位角,
(6 )∠4和∠B是同位角,
【分析】同位角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的同旁;内错角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的两旁,在第三条直线的内部;同旁内角是由两条直线被第三条直线所截形成的两个角,它们在前两条直线的同旁,在第三条直线的内部,
18、(1分)如图,直线L1∥L2,且分别与△ABC的两边AB、AC相交,若∠A=40°,∠1=45°,则∠2的度数为________.
【答案】95°
【考点】对顶角、邻补角,平行线的性质,三角形内角和定理
【解析】【解答】解:如图,
∵直线l1∥l2,且∠1=45°,
∴∠3=∠1=45°,
∵在△AEF中,∠A=40°,
∴∠4=180°﹣∠3﹣∠A=95°,
∴∠2=∠4=95°,
故答案为:95°.
【分析】根据平行线的性质得出∠3=∠1=45°,利用三角形内角和定理求出∠4=180°﹣∠3﹣∠A=95°,根据对顶角相等求出∠2=∠4=95°。

三、解答题
19、(5分)如图,已知∠1+∠3=180°,请说明a∥b.
【答案】解:∵∠1+∠2=180,∠1+∠3=180°,
∴∠2=∠3,
∴a∥b
【考点】余角、补角及其性质,平行线的判定
【解析】【分析】根据同角的补角相等,可证得∠2=∠3,再根据平行线的判定,即可证得结论。

20、(10分)如图是某乡镇养殖场2014年饲养家禽情况的统计图,其中养鸭1960只
(1)养鸡的只数比养鸭的只数多多少?
(2)养鹅的只数比养鸡的只数少百分之几?
【答案】(1)解:1960÷35%×(40%﹣35%)
=5600×5%
=280(只)
答:养鸡的只数比养鸭的只数多280只
(2)解:(40%﹣25%)÷40% =15%÷40%
=37.5%
答:养鹅的只数比养鸡的只数少37.5%
【考点】扇形统计图
【解析】【分析】(1)根据百分数除法的意义,用养鸭的只数除以养鸭所占的百分率就是三种家禽的总只数,再根据百分数乘法的意义,用三种家禽的总只数乘养鸡比养鸭多的百分率就是养鸡比养鸭多的只数.(2)就是养鹅比养鸡的只数少的百分率占养鸡百分率的百分之几,用养鹅比养鸡的只数少的百分率除以养鸡百分率的百分率.
21、(5分)已知:AD⊥BC,垂足为D,EG⊥BC,垂足为点G, EG交AB于点F,且AD平分∠BAC,
试说明∠E=∠AFE的理由.
【答案】证明:∵ AD⊥BC,EG⊥BC(已知)∴∠ADC=∠EGD=90°(垂直的意义)
∴EG// AD(同位角相等,两直线平行)
∴∠E=∠CAD(两直线平行,同位角相等)
∠AFE=∠BAD(两直线平行,内错角相等)
∵ AD平分∠BAC(已知)
∴∠BAD=∠CAD(角平分线的意义)
∴∠E=∠AFE(等量代换)
【考点】平行线的判定与性质
【解析】【分析】根据垂直的意义可得∠ADC=∠EGD=90°,由同位角相等,两直线平行可得EG// AD,于是
由两直线平行,同位角相等可得∠E=∠CAD,两直线平行,内错角相等可得∠AFE=∠BAD,由已知条件根据角平分线的意义可得∠BAD=∠CAD,所以∠E=∠AFE。

22、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。

(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。

【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。

(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。

23、(10分)如图,已知直线AB与CD相交于点0,OE⊥AB,OF⊥CD,OM是∠BOF的角平分线
(1)若∠AOC=25°,求∠BOD和∠COE的度数.
(2)若∠AOC=a,求∠EOM的度数(用含a的代数式表示)
【答案】(1)解:∵OE⊥AB,
∴∠AOE=90°,
又∵∠AOC=25°,
∴∠COE=∠AOE-∠AOC=90°-25°=65°,∠BOD=∠AOC=25°,
(2)解:∵∠AOC=α,
∴∠BOD=∠AOC=α,
∵OF⊥CD,
∴∠DOF=90°,
∴∠BOF=∠DOF-∠DOB=90°-α,
又∵OM平分∠BOF,
∴∠BOM=∠BOF=(90°-α)=45°-α,
∵OE⊥AB,
∴∠BOE=90°,
∴∠EOM=∠BOE-∠BOM,
=90°-(45°-α),
=45°+α.
【考点】角的平分线,角的运算,垂线
【解析】【分析】(1)根据垂直的定义可知∠AOE=90°,根据对顶角相等可得∠BOD度数,由∠COE=∠AOE-∠AOC计算即可得出答案.
(2)根据对顶角相等可得∠BOD=∠AOC=α,由垂直的定义和角的运算可得∠BOF=90°-α,根据角平分线的定义得∠BOM=45°-α,再由垂直定义即可求得答案.
24、(10分)定义新运算:对于任意实数,都有,等式右边是通常的加法、
减法及乘法运算,比如:
(1)求的值;
(2)若的值小于13,求x的取值范围.
【答案】(1)解:=(-2)=11
(2)解:∵3⊕x<13,
∴3(3-x)+1<13,
9-3x+1<13,
解得:x>-1.
【考点】代数式求值,解一元一次不等式
【解析】【分析】(1)先根据定义新运算列出代数式,再进行计算求出结果即可。

(2)先根据定义新运算列出不等式,再解不等式即可得出答案。

25、(10分)请根据如图所示的对话内容回答下列问
题.
(1)求该魔方的棱长;
(2)求该长方体纸盒的长.
【答案】(1)解:设魔方的棱长为x cm,可得:x3=216,解得:x=6.答:该魔方的棱长6 cm.
(2)解:设该长方体纸盒的长为y cm,6y2=600,y2=100,y=10.答:该长方体纸盒的长为10 cm.
【考点】立方根及开立方
【解析】【分析】(1)根据正方体的体积=棱长的立方可得=216,由立方根的意义可求得x=6;
(2)根据长方体的体积=长宽高可列方程求解。

26、(5分)已知关于x、y的方程和都是方程的解.求a、b、c的值.
【答案】解:依题可得:

(1)-(2)得:
2b=2,,
∴b=1,
将b=1代入(1)和(2)得:

(5)-(4)得:
8a=8,
∴a=1,
将a=1,b=1代入(1)得:
c=-4,
∴原方程组的解为:.
【考点】三元一次方程组解法及应用
【解析】【分析】依题可得一个三元一次方程组,用加减消元解之即可得出答案.。

相关文档
最新文档