代数式单元测试题(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)
1.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类
①若a≠0,b=c=0,则称该整式为P类整式;
②若a≠0,b≠0,c=0,则称该整式为PQ类整式;
③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;
(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;
(2)说明整式x2﹣5x+5为“PQ类整式;
(3)x2+x+1是哪一类整式?说明理由.
【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.
若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
故答案是:a=b=0,c≠0;a=0,b≠0,c≠0
(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)
=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.
即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”
(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),
∴该整式为PQR类整式.
【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.
(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.
(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.
2.如图
(1)2020年9月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右相邻的三个数,设最小的数为x,用含x的式子表示这三个数的和为________;如果任意圈出一竖列上下相邻的三个数,设最小的数为y,用含y的式子表示这三个数的和为________
(2)如图2,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为96?如果存在,请求出这四个数中的最小的数字;如果不存在,请说明理由
(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a1,最后一行3个数的和为a2.若|a1﹣a2|=6,请求出正方形框中位于最中心的数字m的值.
【答案】(1)3x+3;3y+21
(2)解:设所框出的四个数最小的一个为a,则另外三个分别是:(a+1)、(a+7)、(a+8),则
a+(a+1)+(a+7)+(a+8)=96,
解得,a=20,
由图2知,所框出的四个数存在,
故存在被框住的4个数的和为96,其中最小的数为20
(3)解:根据题意得,a1=m+(m﹣1)+(m+1)+(m﹣7)+(m﹣6)+(m﹣8)=6m ﹣21,
a2=(m+7)+(m+6)+(m+8)=3m+21,
∵|a1﹣a2|=6,
∴|(6m﹣21)﹣(3m+21)|=6,即|3m﹣42|=6,
解得,m=12(因12位于最后一竖列,不可能为9数的中间一数,舍去)或m=16,
∴m=16.
【解析】【解答】(1)解:如果任意圈出一横行左右相邻的三个数,设最小的数为x,则三数的和为:
x+(x+1)+(x+2)=x+x+1+x+2=3x+3;
如果任意圈出一竖列上下相邻的三个数,设最小的数为y,则三数和为:
y+(y+7)+(y+14)=y+y+7+y+14=3y+21.
故答案为:3x+3;3y+21
【分析】(1)由三个数的大小关系,表示另两个数,再求和并化简即可;
(2)设最小数为a,并用a的代数式表示所框出的四个数的和,再根据四个数和为96可列方程,解方程,若方程有符合条件的解,则存在,反之不存在;
(3)且m表示出a1和a2,再由|a1−a2|=6列方程求解.
3.A和B两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差别:A公司,年薪20000元,每年加工龄工资200元;B公司,半年薪10000元,每半年加工龄工资50元.
(1)第二年的年待遇:A公司为________元,B公司为________元;
(2)若要在两公司工作n年,从经济收入的角度考虑,选择哪家公司有利(不考虑利率等
因素的影响)?请通过列式计算说明理由.
【答案】(1)20200;20250
(2)解:A公司:20000+200(n-1)=200n+19800
B公司:10000+50(2n-2)+10000+50(2n-1)=200n+19850,
∴从应聘者的角度考虑的话,选择B家公司有利.
【解析】【解析】(1)解:A公司招聘的工作人员第二年的工资收入是:20000+200=20200元;
B公司招聘的工作人员第二年的工资收入是:1000+50×2+1000+50×3=20250元;
【分析】(1)根据第二年的年待遇等于年薪+工龄工资,即可算出;
(2)分别表示出第n年在A,B两家公司工作的年收入,再比较大小即可。

4.从2开始,连续的偶数相加时,它们的和的情况如下表:
S和n之间有什么关系?用公式表示出来,并计算以下两题:
(1)2a+4a+6a+…+100a;
(2)126a+128a+130a+…+300a.
【答案】(1)解:依题可得:S=n(n+1).
2a+4a+6a+…+100a,
=a×(2+4+6+…+100),
=a×50×51,
=2550a.
(2)解:∵2a+4a+6a+…+126a+128a+130a+…+300a,
=a×(2+4+6+…+300),
=a×150×151,
=22650a.
又∵2a+4a+6a+…+124a,
=a×(2+4+6+…+124),
=a×62×63,
=3906a,
∴126a+128a+130a+…+300a,
=22650a-3906a,
=18744a.
【解析】【分析】(1)根据表中规律可得出当n个连续偶数相加时,它们的和S=n(n+1);由此计算即可得出答案.
(2)根据(1)中公式分别计算出2a+4a+……+300a和2a+4a+……+124a的值,再用前面代数式的值减去后面代数式的值即可得出答案.,
5.温州和杭州某厂同时生产某种型号的机器若干台,温州厂可支援外地台,杭州厂可支援外地台.现在决定给武汉台,南昌台.每台机器的运费(单位:百元)如表.设杭州运往南昌的机器为台.
南昌武汉
温州厂
杭州厂
(1)用的代数式来表示总运费(单位:百元).
(2)若总运费为元,则杭州运往南昌的机器应为多少台?
(3)试问有无可能使总运费是元?若有可能,请写出相应的调运方案;若无可能,请说明理由.
【答案】(1)解:设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,
温州运往南昌(6-x)台,运往武汉(4+x)台,根据题意得:
W=4(6-x)+8(4+x)+3x+5(4-x)=2x+76,
∴总运费为(2x+76)百元
(2)解:当W=8200元=82百元时,76+2x=82,解得x=3.
答:总运费为8200元,杭州运往南昌的机器应为3台
(3)解:当W=7400元=74百元时,
74=2x+76,解得:x=-1,
∵0≤x≤4,
∴x=-1不符合题意,
总运费不可能是7400元.
【解析】【分析】(1)设总费用为W百元,由杭州运往南昌x台,运往武汉(4-x)台,温州运往南昌(6-x)台,运往武汉(4+x)台,杭州运往南昌x台需要的运费为:3x百元,杭州运往武汉(4-x)台需要的运费为:5(4-x)百元,温州运往南昌(6-x)台需要的运费为4(6-x)百元,温州运往武汉(4+x)台需要的运费为:8(4+x)百元,根据总运费等于各条线路的运费之和即
可列出W与x之间的函数关系式;
(2)把W=8200元=82百元代入(1)列的函数关系式即可算出x的值,从而得出答案;(3)把W=7400元=74百元代入(1)列的函数关系式即可算出x的值,根据x的取值范围进行检验即可得出结论。

6.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.
当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1
(1)若y2= + ,求y2的值
(2)若y3= + + ,则y3的值为________;
(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.
【答案】(1)解:∵ =±1, =±1,
∴y2= + =±2或0
(2)±1或±3
(3)2017;4032
【解析】【解答】解:(2)∵ =±1, =±1, =±1,
∴y3= + + =±1或±3.
故答案为±1或±3,
( 3 )由(1)(2)可知,
y1有两个值,y2有三个值,y3有四个值,…,
由此规律可知,y2016有2017个值,
最大值为2016,最小值为﹣2016,
最大值与最小值的差为4032.
故答案分别为2017,4032.
【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。

(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。

(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。

7.某服装厂生产一种夹克和T恤,夹克每件定价100元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:
① 买一件夹克送一件T恤;
② 夹克和T恤都按定价的80%付款.
现某客户要到该服装厂购买夹克30件,T恤x件(x >30).
(1)若该客户按方案①购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);
若该客户按方案②购买,夹克需付款________元,T恤需付款________元(用含x的式子表示);
(2)若x=40,通过计算说明按方案①、方案②哪种方案购买较为合算?
(3)若两种优惠方案可同时使用,当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.
【答案】(1)3000;;2400;
(2)解:当x=40时,方案①3000+60(40-30)=3600元方案②2400+48×40=4320元因为3600<4320,所以按方案①合算
(3)解:先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,此时10件的T恤费用为:10×60×0.8=480,∴此时共花费了:3000+480=3480<3600 所以按方案①买30套夹克和T恤,再按方案②买10件夹克和T恤更省钱
【解析】【解答】解:(1)方案①:夹克的费用:30×100=3000元,T恤的费用为:60(x-30)元;
方案②:夹克的费用:30×100×0.8=2400元,T恤的费用为:60×0.8x=48x元;故答案为:(1)3000,60(x-30),2400,48x;
【分析】(1)夹克每件定价100元,T恤每件定价60元根据向客户提供两种优惠方案,分别列式计算可求解。

(2)根据x=40时,分别求出两种优惠方案所付费用,再比较大小,即可作出判断。

(3)抓住已知:两种优惠方案可同时使用,可以先买30套夹克,此时T恤共有30件,剩下的10件的T恤用方案②购买,计算出所需费用,再比较大小,可得出结论。

8.已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a=________,b=________,c=________.
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C
的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点
P、Q、T所对应的数分别是x P、x Q、x T,点Q出发的时间为t,当<t<时,求2|x P ﹣x T|+|x T﹣x Q|+2|x Q﹣x P|的值.
【答案】(1)﹣24;﹣10;10
(2)解:①当点P在线段AB上时,14+(34﹣4t)=40,解得t=2.
②当点P在线段BC上时,34+(4t﹣14)=40,解得t=5,
③当点P在AC的延长线上时,4t+(4t-14)+(4t-34)=40,解得t= ,不符合题意,排除,
∴t=2s或5s时,P到A、B、C的距离和为40个单位.
(3)解:当点P追上T的时间t1= .
当Q追上T的时间t2= .
当Q追上P的时间t3= =20,
∴当<t<时,位置如图,
∴2|x P﹣x T|+|x T﹣x Q|+2|x Q﹣x P|
=2(3t-14)+34-4t+2(20-t)6t-28+34-4t+40-2t
=74-28
=46.
【解析】【解答】解:(1)∵M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,∴a+24=0,b=﹣10,c=10,∴a=﹣24,
故答案为﹣24,﹣10,10.
【分析】(1)根据二次多项式的定义,列出方程求解即可;(2)分三种情形,分别构建
方程即可解决问题;(3)当点P追上T的时间t1= .当Q追上T的时间t2=
.当Q追上P的时间t3= =20,推出当<t<时,位置如图,利用绝对值的性质即可解决问题.
9.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.
小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.
(1)根据小明的发现,用代数式表示阴影部分⑥的周长________.
(2)阴影部分⑥与阴影部分⑤的周长之差与正方形________(填编号)的边长有关,请计算说明.________
【答案】(1)2a
(2)②
;解:设②的边长是m.
∴阴影部分⑤的周长是2(a-m).
∴阴影部分⑥-阴影部分⑤=2a-2(a-m)=2m
【解析】【解答】解(1)设长方形⑥的长为x, 宽为y, 则x+y=a, 周长=2(x+y)=2a.
【分析】(1)设长方形⑥的长为x, 宽为y, 因为这个长方形的长与宽之和为a, 则周长为2a.
(2)设②的边长是m,把⑤的周长用含m和a的代数式表示,再计算阴影部分⑥的周长和阴影部分⑤的周长之差即可,其结果正好等于正方形②的周长.
10.阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
尝试应用:
(1)把(a﹣b)2看成一个整体,合并3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2的结果是________.
(2)已知x2﹣2y=4,求3x2﹣6y﹣21的值;
拓广探索:
(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.【答案】(1)﹣(a﹣b)2
(2)解:∵x2﹣2y=4,
∴原式=3(x2﹣2y)﹣21=12﹣21=﹣9;
(3)解:∵a﹣2b=3,2b﹣c=﹣5,c﹣d=10,
∴a﹣c=﹣2,2b﹣d=5,
∴原式=﹣2+5﹣(﹣5)=8.
【解析】【解答】解:(1)∵3(a﹣b)2﹣6(a﹣b)2+2(a﹣b)2=(3﹣6+2)(a﹣b)2=﹣(a﹣b)2;
故答案为:﹣(a﹣b)2;
【分析】(1)利用整体思想,把(a−b)2看成一个整体,合并3(a−b)2−6(a−b)2+2(a−b)2即可得到结果;(2)原式可化为3(x2−2y)−21,把x2−2y=4整体代入即可;(3)依据a−2b=3,2b−c=−5,c−d=10,即可得到a−c=−2,2b−d=5,整体代入进行计算即可.
11.历史上的数学巨人欧拉最先把关于x的多项式用记号f(x)的形式来表示,把x等于某数a时的多项式的值用f(a)来表示,例如x=﹣1时,多项式f(x)=x2+3x﹣5的值记为f(﹣1),则f(﹣1)=﹣7.已知f(x)=ax5+bx3+3x+c,且f(0)=﹣1
(1)c=________.
(2)若f(1)=2,求a+b的值;
(3)若f(2)=9,求f(﹣2)的值.
【答案】(1)-1
(2)解:∵f(1)=2,c=-1
∴a+b+3-1=2,
∴a+b=0
(3)解:∵f(2)=9,c=-1,
∴32a+8b+6-1=9,
∴32a+8b=4,
∴f(-2)=-32a-8b-6-1=-4-6-1=-11.
【解析】【解答】(1)∵f(x)=ax5+bx3+3x+c,且f(0)=-1,
∴c=-1,
故答案为-1.
【分析】(1)把x=0,代入f(x)=ax5+bx3+3x+c,即可解决问题;(2)把x=1,代入f (x)=ax5+bx3+3x+c,即可解决问题;(3)把x=2,代入f(x)=ax5+bx3+3x+c,利用整体代入的思想即可解决问题;
12.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=.
利用数轴,根据数形结合思想,回答下列问题:
(1)数轴上表示2和6两点之间的距离是________,数轴上表示1和的两点之间的距离为________
(2)数轴上表示和1两点之间的距离为________,数轴上表示和两点之间的距离为________
(3)若表示一个实数,且,化简,
(4)的最小值为________,
的最小值为________.
(5)的最大值为________
【答案】(1)4;3
(2);
(3)8
(4)7;6
(5)4
【解析】【解答】解:(1)数轴上表示2和6两点之间的距离,
数轴上表示1和的两点之间的距离;
( 2 )数轴上表示和1两点之间的距离,
数轴上表示和两点之间的距离;
( 3 )∵,
∴ ;
( 4 )∵的几何意义为到-3与到4的距离和,
∴取最小值时,在-3与4之间,即最小值,
同理可得的最小值为6;
( 5 )∵取最大值时,最小,
∴,,
∴最大值 .
【分析】(1)(2)根据数轴上表示的任意两点间的距离等于这两个点所表示的数的差的绝对值即可得出答案;
(3)根据x的取值范围,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号,再合并同类项即可;
(4)根据题意表示x与-3距离和x与4的距离的和,要求距离和的最小值,根据两点之间距离最短从而得出当x介于-3 与4之间的任意一个位置的时候,其和就是最短的,根据有理数的减法法则判断出绝对值符号里面运算结果的正负,再根据绝对值的意义去掉绝对值符号即可;同理算出
的最小值;
(5)取最大值时,最小,根据绝对值的非负性即可得出,,从而代入即可算出答案。

相关文档
最新文档