人教版八年级数学上册多边形及其内角和(含知识点)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021 同步练习
(§11.3 多边形及其内角和) 班级 学号 姓名 得分 1.填空:
(1)平面内,由____________________________________________________________叫做
多边形.组成多边形的线段叫做______.如果一个多边形有n 条边,那么这个多边形
叫做______.多边形____________叫做它的内角,
多边形的边与它的邻边的______组成的角叫做多边形的外角.
连结多边形________________的线段叫做多边形的对角线.
(2)画出多边形的任何一条边所在直线,如果整个多边形都在______,那么这个多边形称
作凸多边形.
(3)各个角______,各条边______的______叫做正多边形. 2.(1)n 边形的内角和等于____________.这是因为,从n 边形的一个顶点出发,可以引______
条对角线,它们将此n 边形分为______个三角形.而这些三角形的内角和的总和就是
此n 边形的内角和,所以,此n 边形的内角和等于180°×______.
(2)请按下面给出的思路,进行推理填空.
如图,在n 边形A 1A 2A 3…A n -1A n 内任取一点O ,依次连结______、______、______、……、
______、______.则它们将此n 边形分为______个三角形,而这些三角形的内角和的
总和,减去以O 为顶点的一个周角就是此多边形的内角和.所以,n 边形的内角和=
180°×______-( )=( )×180°.
3.任何一个凸多边形的外角和等于______.它与该多边形的______无关. 4.正n 边形的每一个内角等于______,每一个外角等于______. 5.若一个正多边形的内角和2340°,则边数为______.它的外角等于______.
(1)如果一个多边形的内角和等于它的外角和的两倍,则这个多边形是( ).
(A)四边形(B)五边形(C)六边形(D)七边形
(2)一个多边形的边数增加,它的内角和也随着增加,而它的外角和( ).
(A)随着增加(B)随着减少(C)保持不变(D)无法确定
(3)若一个多边形从一个顶点,只可以引三条对角线,则它是( )边形.
(A)五(B)六(C)七(D)八
(4)如果一个多边形的边数增加1,那么它的内角和增加( ).
(A)0°(B)90°(C)180°(D)360°
(5)如果一个四边形四个内角度数之比是2∶2∶3∶5,那么这四个内角中( ).
(A)只有一个直角(B)只有一个锐角
(C)有两个直角(D)有两个钝角
(6)在一个四边形中,如果有两个内角是直角,那么另外两个内角( ).
(A)都是钝角(B)都是锐角
(C)一个是锐角,一个是直角(D)互为补角
10.已知:如图四边形ABCD中,∠ABC的平分线BE交CD于E,∠BCD的平分线CF交AB于F,BE、CF相交于O,∠A=124°,∠D=100°.求∠BOF的度数.
11.(1)已知:如图1,求∠1+∠2+∠3+∠4+∠5+∠6___________.
图1
(2)已知:如图2,求∠1+∠2+∠3+∠4+∠5+∠6+∠7+∠8____________.
图2
12.如图,在图(1)中,猜想:∠A+∠B+∠C+∠D+∠E+∠F=______度.请说明你猜想的理由.
图1
如果把图1成为2环三角形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F;图2称为2环四边形,它的内角和为∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H;
图2
则2环四边形的内角和为_____________________________________________度;
2环五边形的内角和为________________________________________________度;
2环n边形的内角和为________________________________________________度.13.一张长方形的桌面,减去一个角后,求剩下的部分的多边形的内角和.
14.一个多边形的内角和与某一个外角的度数总和为1350°,求这个多边形的边数.15.如果一个凸多边形除了一个内角以外,其它内角的和为2570°,求这个没有计算在内
的内角的度数.
16.小华从点A出发向前走10米,向右转36°,然后继续向前走10米,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回点A时共走了多少米?
若不能,写出理由.
八年级上册参考答案
1.略.
2.(1)(n -2)×180°,n -3,n -2,n -2.
(2)OA 1,OA 2,OA 3……,OA n -1,OA n ,n ,n ,360°,(n -2).
3.360°,边数. 4.⋅⨯-n n n o
o 360,180)2( 5.十五,24°. 6.1260°. 7.12,54. 8.65°或115°.
9.(1)C ,(2)C ,(3)B ,(4)C ,(5)A ,(6)D 10.68°
11.(1)360°;(2)360°.
12.(1)360°;(2)720°;(3)1080°;(4)2(n -2)×180°.
13.180°或360°或540°.
14.九.提示:设多边形的边数为n ,某一个外角为α.
则(n -2)×180+α =1350.
从而180
9071801350)2(αα-+=-=-n . 因为边数n 为正整数,所以α =90,n =9.
15.130°.提示:设多边形的边数为n ,没有计算在内的内角为x °.(0<x <180)则(n -
2)×180=2570+x .
从而⋅++=-180
50142x n 因为边数n 为正整数,所以x =130.
16.可以走回到A 点,共走100米.
人教版八年级数学上册必须要记、背的知识点
第十一章 三角形 一、知识框架:
二、知识概念:
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角
形.
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.
4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
8.多边形的内角:多边形相邻两边组成的角叫做它的内角.
9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.
10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对
角线.
11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.
12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用
多边形覆盖平面,
13.公式与性质:
⑴三角形的内角和:三角形的内角和为180°
⑵三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和.
性质2:三角形的一个外角大于任何一个和它不相邻的内角.
⑶多边形内角和公式:n边形的内角和等于(2)
n-·180°
⑷多边形的外角和:多边形的外角和为360°.
⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)
n-条对角
线,把多边形分成(2)
n-个三角形.②n边形共有
(3)
2
n n-
条对角线.
第十二章全等三角形
二、知识概念:
1.基本定义:
⑴全等形:能够完全重合的两个图形叫做全等形.
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.
⑷对应边:全等三角形中互相重合的边叫做对应边.
⑸对应角:全等三角形中互相重合的角叫做对应角.
2.基本性质:
⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.
⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.
3.全等三角形的判定定理:
⑴边边边(SSS):三边对应相等的两个三角形全等.
⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.
⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.
⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.
⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形
全等.
4.角平分线:
⑴画法:
⑵性质定理:角平分线上的点到角的两边的距离相等.
⑵根据题意,画出图形,并用数字符号表示已知和求证.
⑶经过分析,找出由已知推出求证的途径,写出证明过程.
第十三章轴对称
一、知识框架:
二、知识概念:
1.基本概念:
⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
⑸等边三角形:三条边都相等的三角形叫做等边三角形.
2.基本性质:
⑴对称的性质:
①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一
对对应点所连线段的垂直平分线.
②对称的图形都全等.
⑵线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等. ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质
①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.
②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.
⑷等腰三角形的性质:
①等腰三角形两腰相等.
②等腰三角形两底角相等(等边对等角).
③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合. ④等腰三角形是轴对称图形,对称轴是三线合一(1条). ⑸等边三角形的性质:
①等边三角形三边都相等.
②等边三角形三个内角都相等,都等于60°
③等边三角形每条边上都存在三线合一. ④等边三角形是轴对称图形,对称轴是三线合一(3条).
3.基本判定:
⑴等腰三角形的判定:
①有两条边相等的三角形是等腰三角形.
②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对
等边).
⑵等边三角形的判定:
①三条边都相等的三角形是等边三角形. ②三个角都相等的三角形是等边三角形. ③有一个角是60°的等腰三角形是等边三角形. 4.基本方法:
⑴做已知直线的垂线:
⑵做已知线段的垂直平分线:
⑶作对称轴:连接两个对应点,作所连线段的垂直平分线. ⑷作已知图形关于某直线的对称图形: ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.
第十四章 整式的乘除与分解因式
一、知识框架:
二、知识概念:
1.基本运算: ⑴同底数幂的乘法:m n m n a a a +⨯=
⑵幂的乘方:()n m mn a a =
⑶积的乘方:()n n n ab a b =
2.整式的乘法:
⑴单项式⨯单项式:系数⨯⨯同字母,不同字母为积的因式. ⑵单项式⨯.
⑶多项式⨯多项式:用一个多项式每个项乘以另一个多项式每个项后相加.
3.计算公式:
⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+
4.整式的除法:
⑴同底数幂的除法:m n m n a a a -÷=
⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每个项除以单项式后相加.
教案⑷多项式÷多项式:用竖式.
5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式 子因式分解.
6.因式分解方法: ⑴提公因式法:找出最大公因式. ⑵公式法: ①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=±
③立方和:3322()()a b a b a ab b +=+-+
④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法 第十五章 分式
一、知识框架 :
二、知识概念: 1.分式:形如
A B ,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母. 2.分式有意义的条件:分母不等于0. 3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.
4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.
5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.
6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.
7.分式的四则运算: ⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c
±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分
式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd ±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分 母相乘的积作为积的分母.用字母表示为:a c ac b d bd ⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与 被除式相乘.用字母表示为:a c a d ad b d b c bc
÷=⨯= ⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:n
n n a a b b
⎛⎫= ⎪⎝⎭ 8.整数指数幂: ⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()n m mn a a =(m n 、是正整数)
⑶()n n n ab a b =(n 是正整数) ⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b
⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n n
a a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.
10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。

相关文档
最新文档