建阳区第三中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
建阳区第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,棱长为的正方体1111D ABC A B C D -中,,E F 是侧面对角线11,BC AD 上一点,若 1BED F 是菱形,则其在底面ABCD 上投影的四边形面积( )
A .
12 B .34 C. 2
D .34-2. 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )
A .10 13
B .12.5 12
C .12.5 13
D .10 15
3. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣2y ﹣5=0
D .2x+y ﹣5=0
4. 设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β
5. 设函数f (x )在x 0处可导,则等于( )
A .f ′(x 0)
B .f ′(﹣x 0)
C .﹣f ′(x 0)
D .﹣f (﹣x 0)
6. 已知实数x ,y 满足有不等式组,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
A .2
B .
C .
D .
7. 下列命题中错误的是( ) A .圆柱的轴截面是过母线的截面中面积最大的一个 B .圆锥的轴截面是所在过顶点的截面中面积最大的一个
C .圆台的所有平行于底面的截面都是圆面
D .圆锥所有的轴截面是全等的等腰三角形
8. 如图,一个底面半径为R 的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是( )
A .
B .
C .
D .
9. 设为虚数单位,则
( )
A .
B .
C .
D .
10.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)
C .(4,﹣3,1)
D .(﹣5,3,4)
11.数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -=
C .(1)
2
n n n a += D .21n a n =+ 12.设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2
项的系数是( ) A .﹣13 B .6 C .79 D .37
二、填空题
13.已知a=
(
cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .
14.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .
15.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用下面的条形图表示.根据条形图可得这50名学生这一天平均的课外阅读时间为 小时.
16.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________.
17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{
5
2128
lnx x x
f x m x mx x +>=-++≤,,
,,
若()()g x f x m =-有三个零点,则实数m 的取值范围是________.
18.对于|q|<1(q 为公比)的无穷等比数列{a n }
(即项数是无穷项),我们定义S n (其中S n 是数列{a n }
的前n 项的和)为它的各项的和,记为S ,即
S=S n
=
,则循环小数
0.
的分数形式是 .
三、解答题
19.如图1,∠ACB=45°,BC=3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连
接AB ,沿AD 将△ABD 折起,使∠BDC=90°(如图2所示),
(1)当BD 的长为多少时,三棱锥A ﹣BCD 的体积最大;
(2)当三棱锥A ﹣BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小。
20.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 是棱DD 1的中点. (Ⅰ)求直线BE 与平面ABB 1A 1所成的角的正弦值;
(Ⅱ)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.
21.已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.
(1)求x2的系数取最小值时n的值.
(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.
22.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在1,2,3,4,5,6点中任选一个,并押上赌注m元,然后掷1颗骰子,连续掷3次,若你所押的点数在3次掷骰子过程中出现1次,2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;
(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.
23.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2
(1)求a,b的值;
(2)设函数g(x)=f(x)﹣2x+2,求g(x)在其定义域上的最值.
24.已知一个几何体的三视图如图所示.
(Ⅰ)求此几何体的表面积;
(Ⅱ)在如图的正视图中,如果点A为所在线段中点,点B为顶点,求在几何体侧面上从点A到点B的最短路径的长.
建阳区第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1. 【答案】B 【解析】
试题分析:在棱长为的正方体1111D ABC A B C D -中,11BC AD ==AF x =x
解得4
x =
,即菱形1BED F 44=
,则1BED F 在底面ABCD 上的投影四边形是底边为34,高为的平行四边形,其面积为3
4
,故选B. 考点:平面图形的投影及其作法.
2. 【答案】C
【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标, ∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5
而中位数是把频率分布直方图分成两个面积相等部分的平行于Y 轴的直线横坐标 第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可 ∴中位数是13 故选:C .
【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距
×
,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.
3. 【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0
∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7
∴x ﹣2y+7=0 故选A .
【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.
4. 【答案】B
【解析】解:对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A 错;
对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,
且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,
故命题B正确.
对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;
对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.
故选B.
【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.
5.【答案】C
【解析】解:=﹣=﹣f′(x0),故选C.
6.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=.
故选:B.
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
7.【答案】B
【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.
∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.
对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为
,
∴截面三角形SAB的高为,∴截面面积
S==≤=.
故截面的最大面积为.故B错误.
对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.
对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.
故选:B.
【点评】本题考查了旋转体的结构特征,属于中档题.
8.【答案】A
【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,
则这个椭圆的短半轴为:R,长半轴为:=,
∵a2=b2+c2,∴c=,
∴椭圆的离心率为:e==.
故选:A.
【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.
9.【答案】C
【解析】【知识点】复数乘除和乘方
【试题解析】
故答案为:C 10.【答案】C
【解析】解:设C (x ,y ,z ),
∵点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C ,
∴,解得x=4,y=﹣3,z=1,
∴C (4,﹣3,1). 故选:C .
11.【答案】C 【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 12.【答案】 D
【解析】
二项式系数的性质. 【专题】二项式定理.
【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整
数,可得m=3、n=2,从而求得含x 2
项的系数.
【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n
中含x 一次项的系数为(﹣2)+
(﹣5)=﹣16,
可得2m+5n=16 ①.
再根据m 、n 为正整数,可得m=3、n=2,
故含x 2
项的系数是
(﹣2)2
+
(﹣5)2
=37,
故选:D .
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.
二、填空题
13.【答案】 240 .
【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,
则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,
令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,
故答案为:240.
【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】{x|﹣1<x<1}.
【解析】解:∵A={x|﹣1<x<3},B={x|x<1},
∴A∩B={x|﹣1<x<1},
故答案为:{x|﹣1<x<1}
【点评】本题主要考查集合的基本运算,比较基础.
15.【答案】0.9
【解析】解:由题意,=0.9,
故答案为:0.9
16.
【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
17.【答案】
7 1
4⎛⎤ ⎥⎝⎦,
【解析】
18.【答案】.
【解析】解:0.=++…+==,
故答案为:.
【点评】本题考查数列的极限,考查学生的计算能力,比较基础.
三、解答题
19.【答案】(1)1
(2)60°
【解析】(1)设BD=x,则CD=3﹣x
∵∠ACB=45°,AD⊥BC,∴AD=CD=3﹣x
∵折起前AD⊥BC,∴折起后AD⊥BD,AD⊥CD,BD∩DC=D
∴AD⊥平面BCD
∴V A﹣BCD=×AD×S△BCD=×(3﹣x)××x(3﹣x)=(x3﹣6x2+9x)
设f(x)=(x3﹣6x2+9x) x∈(0,3),
∵f′(x)=(x﹣1)(x﹣3),∴f(x)在(0,1)上为增函数,在(1,3)上为减函数
∴当x=1时,函数f(x)取最大值
∴当BD=1时,三棱锥A﹣BCD的体积最大;
(2)以D为原点,建立如图直角坐标系D﹣xyz,
20.【答案】
【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.
又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,
∠EBM直线BE与平面ABB1A1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=,
于是在Rt△BEM中,
即直线BE与平面ABB1A1所成的角的正弦值为.
(Ⅱ)在棱C1D1上存在点F,使B1F平面A1BE,
事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,BG,CD1,FG,
因A1D1∥B1C1∥BC,且A1D1=BC,所以四边形A1BCD1为平行四边形,
因此D1C∥A1B,又E,G分别为D1D,CD的中点,所以EG∥D1C,从而EG∥A1B,这说明A1,B,G,E 共面,所以BG⊂平面A1BE
因四边形C1CDD1与B1BCC1皆为正方形,F,G分别为C1D1和CD的中点,所以FG∥C1C∥B1B,且
FG=C1C=B1B,因此四边形B1BGF为平行四边形,所以B1F∥BG,而B1F⊄平面A1BE,BG⊂平面A1BE,故B1F∥平面A1BE.
【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.
21.【答案】
【解析】
【专题】计算题.
【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,
将m,n的关系代入得到关于m的二次函数,配方求出最小值
(2)通过对x分别赋值1,﹣1,两式子相加求出展开式中x的奇次幂项的系数之和.
【解答】解:(1)由已知C m1+2C n1=11,∴m+2n=11,
x2的系数为C m2+22C n2=+2n(n﹣1)=+(11﹣m)(﹣1)=(m﹣)2+.∵m∈N*,∴m=5时,x2的系数取得最小值22,
此时n=3.
(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.
设这时f(x)的展开式为
f(x)=a0+a1x+a2x2++a5x5,
令x=1,a0+a1+a2+a3+a4+a5=25+33,
令x=﹣1,a0﹣a1+a2﹣a3+a4﹣a5=﹣1,
两式相减得2(a1+a3+a5)=60,
故展开式中x的奇次幂项的系数之和为30.
【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题.
22.【答案】
【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.
23.【答案】
【解析】解:(1)f(x)=x+ax2+blnx的导数f′(x)=1+2a+(x>0),
由题意可得f(1)=1+a=0,f′(1)=1+2a+b=2,
得;
(2)证明:f(x)=x﹣x2+3lnx,g(x)=f(x)﹣2x+2=3lnx﹣x2﹣x+2(x>0),g′(x)=﹣2x﹣1=﹣,
可得g(x)max=g(1)=﹣1﹣1+2=0,无最小值.
24.【答案】
【解析】解:(Ⅰ)由三视图知:几何体是一个圆锥与一个圆柱的组合体,且圆锥与圆柱的底面半径为2,母线长分别为2、4,
其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.
S圆锥侧=×2π×2×2=4π;
S圆柱侧=2π×2×4=16π;
S圆柱底=π×22=4π.
∴几何体的表面积S=20π+4π;
(Ⅱ)沿A点与B点所在母线剪开圆柱侧面,如图:
则AB===2,
∴以从A点到B点在侧面上的最短路径的长为2.。