九年级数学期末试卷测试卷(含答案解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学期末试卷测试卷(含答案解析) 一、选择题
1.有一组数据5,3,5,6,7,这组数据的众数为( )
A .3
B .6
C .5
D .7
2.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3- D .3
3.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )
A .70°
B .72°
C .74°
D .76° 4.一元二次方程x 2=9的根是( ) A .3
B .±3
C .9
D .±9 5.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )
A .22(3)2y x =-+
B .22(3)2y x =++
C .22(3)?2y x =-
D .22(3)?2y x =+
6.关于x 的一元二次方程x 2+bx-6=0的一个根为2,则b 的值为( ) A .-2 B .2 C .-1
D .1 7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程
20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )
A .53t -<<
B .5t >-
C .34t <≤
D .54t -<≤
8.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若
从中任意摸出1个球,则( )
A .摸出黑球的可能性最小
B .不可能摸出白球
C .一定能摸出红球
D .摸出红球的可能性最大 9.下列对于二次函数y =﹣x 2+x 图象的描述中,正确的是( ) A .开口向上
B .对称轴是y 轴
C .有最低点
D .在对称轴右侧的部分从左往右是下降的 10.如图,在正方形 ABCD 中,
E 是BC 的中点,
F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;
②射线FE 是∠AFC 的角平分线;
③CF =13
CD ; ④AF =AB +CF .
其中正确结论的个数为( )
A .1 个
B .2 个
C .3 个
D .4 个 11.某市计划争取“全面改薄”专项资金120 000 000元,用于改造农村义务教育薄弱学校100所数据120 000 000用科学记数法表示为( )
A .12×108
B .1.2×108
C .1.2×109
D .0.12×109 12.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )
A .54
B .36
C .32
D .27
二、填空题
13.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.
14.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.
15.抛物线y =3(x+2)2+5的顶点坐标是_____. 16.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.
17.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)
18.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.
19.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.
20.如图,直线y=12
x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=
k x 的图象上,CD 平行于y 轴,S △OCD =52
,则k 的值为________.
21.像23x +=x 这样的方程,可以通过方程两边平方把它转化为2x +3=x 2,解得x 1=3,x 2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,当x 1=3时,9=3满足题意;当x 2=﹣1时,1=﹣1不符合题意;所以原方程的解是x =3.运用以上经验,则方程x +5x +=1的解为_____.
22.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、
AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14
PA PB +的最小值为__________.
23.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.
24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.
三、解答题
25.如图,AB BC =,以BC 为直径作
O ,AC 交O 于点E ,过点E 作EG AB ⊥于
点F ,交CB 的延长线于点G .
(1)求证:EG 是O 的切线;
(2)若23GF =4GB =,求
O 的半径. 26.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且
∠APB=30°,设图中阴影部分的面积为y.
(1)⊙O的半径为;
(2)若点P到直线AB的距离为x,求y关于x的函数表达式,并直接写出自变量x的取值范围.
27.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作
DE∥AC,交BC的延长线于点E.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)若CE=16
3
,AB=6,求⊙O的半径.
28.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2 m,两棵树苗之间的距离CD为16 m,在路灯的照射下,树苗CE的影长CG为1 m,树苗DF的影长DH为3 m,点G、C、B、D、H在一条直
线上.求路灯AB的高度.
29.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结
BC.
(1)求证:AE=ED;
(2)若AB=10,∠CBD=36°,求AC的长.
30.为加快城乡对接,建设美丽乡村,某地区对A、B两地间的公路进行改建,如图,A,B两地之间有一座山.汽车原来从A地到B地需途经C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶,已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地要走多少千米?
(2)开通隧道后,汽车从A地到B地可以少走多少千米?(结果保留根号)
31.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;
(3)△A2B2C2的面积是平方单位.
32.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:
售价x(元/件)4045
月销售量y(件)300250
月销售利润w(元)30003750
注:月销售利润=月销售量×(售价-进价)
(1)①求y关于x的函数表达式;
②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
根据众数的概念求解.
【详解】
这组数据中5出现的次数最多,出现了2次,
则众数为5.
故选:C.
【点睛】
本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.
2.B
解析:B
【解析】
【分析】
x-=的两根,再利用韦达定理即可求解.
根据题干可以明确得到p,q是方程230
【详解】
x-=的两根,
解:由题可知p,q是方程230
∴
,
故选B.
【点睛】
本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.
3.D
解析:D
【解析】
【分析】
连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.
【详解】
解:连接OC
∵OA=OC ,OB=OC
∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°
∴∠ACB=∠OCB-∠OCA=54°-16°=38°
∴∠AOB=2∠ACB=76°
故选:D
【点睛】
本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.
4.B
解析:B
【解析】
【分析】
两边直接开平方得:3x =±,进而可得答案.
【详解】
解:29x =,
两边直接开平方得:3x =±,
则13x =,23x =-.
故选:B .
【点睛】
此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成2
(0)x a a =的形式,利用数的开方直接求解. 5.A
解析:A
【解析】
将二次函数2
2y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.
故选A.
6.D
解析:D
【解析】
【分析】
根据一元二次方程的解的定义,把x=2代入方程得到关于b 的一次方程,然后解一次方程即可.
【详解】
解:把x=2代入程x 2+bx-6=0得4+2b-6=0,
解得b=1.
故选:D .
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
7.D
解析:D
【解析】
【分析】
首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围.
【详解】
将()4,0代入二次函数,得
2440m -+=
∴4m =
∴方程为240x x t -+=
∴42
x ±= ∵15x <<
∴54t -<≤
故答案为D .
【点睛】
此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.
8.D
解析:D
【解析】
【分析】
根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.
【详解】
解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,
∴摸出黑球的概率是2 23
,
摸出白球的概率是1 23
,
摸出红球的概率是20 23
,
∵1
23
<
2
23
<
20
23
,
∴从中任意摸出1个球,摸出红球的可能性最大;
故选:D.
【点睛】
本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.
9.D
解析:D
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.
【详解】
解:∵二次函数y=﹣x2+x=﹣(x
1
2
)2+
1
4
,
∴a=﹣1,该函数的图象开口向下,故选项A错误;
对称轴是直线x=1
2
,故选项B错误;
当x=1
2
时取得最大值
1
4
,该函数有最高点,故选项C错误;
在对称轴右侧的部分从左往右是下降的,故选项D正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握函数解析式和二次函数的性质是解题的关键.
10.B
解析:B
【解析】
【分析】
根据点E为BC中点和正方形的性质,得出∠BAE的正切值,从而判断①,再证明
△ABE∽△ECF,利用有两边对应成比例且夹角相等三角形相似即可证得△ABE∽△AEF,可判断②③,过点E作AF的垂线于点G,再证明△ABE≌△AGE,△ECF≌△EGF,即可证明④.
【详解】
解:∵E 是BC 的中点,
∴tan ∠BAE=1=2
BE AB , ∴∠BAE ≠30°,故①错误;
∵四边形ABCD 是正方形,
∴∠B=∠C=90°,AB=BC=CD ,
∵AE ⊥EF ,
∴∠AEF=∠B=90°,
∴∠BAE+∠AEB=90°,∠AEB+FEC=90°,
∴∠BAE=∠CEF ,
在△BAE 和△CEF 中,
==B C BAE CEF ∠∠⎧⎨∠∠⎩
, ∴△BAE ∽△CEF , ∴==2AB BE EC CF
, ∴BE=CE=2CF ,
∵BE=CF=12BC=12
CD , 即2CF=12
CD , ∴CF=14
CD , 故③错误;
设CF=a ,则BE=CE=2a ,AB=CD=AD=4a ,DF=3a ,
∴AE=,,AF=5a ,
∴
=5AE AF ,=5BE EF , ∴=AE BE AF EF
, 又∵∠B=∠AEF ,
∴△ABE ∽△AEF ,
∴∠AEB=∠AFE ,∠BAE=∠EAG ,
又∵∠AEB=∠EFC ,
∴∠AFE=∠EFC ,
∴射线FE 是∠AFC 的角平分线,故②正确;
过点E 作AF 的垂线于点G ,
在△ABE 和△AGE 中,
=
=
=
BAE GAE
B AGE
AE AE
∠∠
⎧
⎪
∠∠
⎨
⎪
⎩
,
∴△ABE≌△AGE(AAS),
∴AG=AB,GE=BE=CE,
在Rt△EFG和Rt△EFC中,
=
=
GE CE
EF EF
⎧
⎨
⎩
,
Rt△EFG≌Rt△EFC(HL),
∴GF=CF,
∴AB+CF=AG+GF=AF,故④正确.
故选B.
【点睛】
此题考查了相似三角形的判定与性质和全等三角形的判定和性质,以及正方形的性质.题目综合性较强,注意数形结合思想的应用.
11.B
解析:B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
120 000 000=1.2×108,
故选:B.
【点睛】
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
12.D
【解析】
【分析】
由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠
【详解】
切线性质得到90BAO ∠=
903654AOB ∴∠=-=
OD OA =
OAD ODA ∠=∠∴
AOB OAD ODA ∠=∠+∠
27ADC ADO ∴∠=∠=
故选D
【点睛】
本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键
二、填空题
13.【解析】
【分析】
通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根
1
【解析】
【分析】
通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.
【详解】
如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,
∵四边形ABCD 是菱形,
∴AB=BC=CD=4,AD ∥BC,
∴∠E=∠EMB, ∠EAN=∠NBM,
∵AN=BN,
∴△EAN ≌BMN,
∴AE=BM,EN=MN,
∵90DNM ∠=︒,
∴DE=DM,
∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF
∴△ABM ≌△DCF,
∴BM=CF,
设BM=x,则DE=DM=4+x,
在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,
在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,
∴(4+x)2-42=4 2-x 2,
解得,x 1=232-,x 2=23
2(不符合题意,舍去) ∴DM=232+,
∴90DNM ∠=︒
∴过M 、N 、D 三点的外接圆的直径为线段DM,
∴其外接圆的半径长为1312DM .
31.
【点睛】
本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.
14.50
【解析】
【分析】
连接AC ,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可.
【详解】
解:连接AC ,
∵四边形ABCD 是半圆的内接四边形,
∴
∵DC=CB
∴
∵AB 是直
解析:50
【解析】 【分析】
连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.
【详解】
解:连接AC ,
∵四边形ABCD 是半圆的内接四边形,
∴DAB 180DCB 80∠∠=︒-=︒
∵DC=CB
∴1CAB 402
DAB ∠=∠=︒ ∵AB 是直径
∴ACB 90∠=︒
∴ABC 90CAB 50∠∠=︒-=︒
故答案为:50.
【点睛】
本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 15.(﹣2,5)
【解析】
【分析】
已知抛物线的顶点式,可直接写出顶点坐标.
【详解】
解:由y =3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).
故答案为:(﹣2,5).
【点
解析:(﹣2,5)
【解析】
【分析】
已知抛物线的顶点式,可直接写出顶点坐标.
【详解】
解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).
故答案为:(﹣2,5).
【点睛】
本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.
16.(2,﹣3)
【解析】
【分析】
根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
【详解】
抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题
解析:(2,﹣3)
【解析】
【分析】
根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).
【详解】
抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).
故答案为(2,﹣3)
【点睛】
本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.
17.60π
【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可.
由题意得圆锥的母线长
∴圆锥的侧面积.
考点:勾股定理,圆锥的侧面积
点评:解题的关键是熟练掌握圆锥的侧
解析:60π 【解析】
试题分析:先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式求解即可. 由题意得圆锥的母线长
∴圆锥的侧面积
. 考点:勾股定理,圆锥的侧面积
点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线. 18.【解析】
【分析】
根据二次函数图象的平移规律平移即可.
【详解】
抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是
即
故答案为:.
【点睛】
本题主要考查二次函
解析:22(1)2y x =+-
【解析】
【分析】
根据二次函数图象的平移规律平移即可.
【详解】
抛物线2
2(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-
即2
2(1)2y x =+-
故答案为:22(1)2y x =+-.
【点睛】
本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 19.【解析】
【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根据,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧
解析:72- 【解析】 【分析】
首先判定直角三角形∠CAB=30°,∠ABC=60°,
()22223323AB AC BC =+=+=,然后根据PAB PBC ∠=∠,得出
∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小,构建圆,利用勾股定理,即可得解.
【详解】
∵90ACB ∠=︒,3AC =,3BC =
, ∴()22223323AB AC BC =+=+=
∴∠CAB=30°,∠ABC=60°
∵PAB PBC ∠=∠,∠PAB+∠PAC=30°
∴∠ACB+∠PAC+∠PBC=∠APB=120°
∴定角定弦,点P 的轨迹是以AB 为弦,圆周角为120°的圆弧上,如图所示,当点C 、O 、P 在同一直线上时,CP 最小
∴CO ⊥AB ,∠COB=60°,∠ABO=30°
∴OB=2,∠OBC=90°
∴()2222237OC OB BC =+=
+= ∴72CP OC OP =-=
-
故答案为72-.
【点睛】
此题主要考查直角三角形中的动点综合问题,解题关键是找到点P 的位置.
20.【解析】
【分析】
【详解】
试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D
解析:【解析】
【分析】
【详解】
试题分析:把x=2代入y=1
2
x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得
出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.
解:∵点C在直线AB上,即在直线y=1
2
x﹣2上,C的横坐标是2,
∴代入得:y=1
2
×2﹣2=﹣1,即C(2,﹣1),∴OM=2,
∵CD∥y轴,S△OCD=5
2
,
∴1
2CD×OM=
5
2
,
∴CD=5
2
,
∴MD=5
2﹣1=
3
2
,
即D的坐标是(2,3
2
),
∵D在双曲线y=k
x
上,
∴代入得:k=2×3
2
=3.故答案为3.
考点:反比例函数与一次函数的交点问题.
点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.
21.x=﹣1
【解析】
【分析】
根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.
【详解】
解:将x移到等号右边得到:=1﹣x,
两边平方,得
x+5=1﹣2x
解析:x=﹣1
【解析】
【分析】
根据等式的性质将x移到等号右边,再平方,可得一元二次方程,根据解一元二次方程,可得答案.
【详解】
解:将x1﹣x,
两边平方,得
x+5=1﹣2x+x2,
解得x1=4,x2=﹣1,
检验:x=4时,=5,左边≠右边,∴x=4不是原方程的解,
当x=﹣1时,﹣1+2=1,左边=右边,∴x=﹣1是原方程的解,
∴原方程的解是x=﹣1,
故答案为:x=﹣1.
【点睛】
本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.
22.【解析】
【分析】
先在CB上取一点F,使得CF=,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.
【详解】
解:如图:在CB上取一点F,使得CF=,再连接PF、AF,
解析:145 2
【解析】【分析】
先在CB上取一点F,使得CF=1
2
,再连接PF、AF,然后利用相似三角形的性质和勾股定理
求出AF,即可解答.【详解】
解:如图:在CB上取一点F,使得CF=1
2
,再连接PF、AF,
∵∠DCE=90°,DE=4,DP=PE,
∴PC=1
2
DE=2,
∵
1
4
CF
CP
=,
1
4
CP
CB
=
∴CF CP CP CB
=
又∵∠PCF=∠BCP,∴△PCF∽△BCP,
∴
1
4 PF CF
PB CP
==
∴PA+1
4
PB=PA+PF,
∵PA+PF≥AF,AF=
2
222
1145
6
22 CF AC
⎛⎫
+=+=
⎪
⎝⎭
∴PA+1
4
PB ≥.
145
2
∴PA+1
4
PB的最小值为
145
,
故答案为145
.
【点睛】
本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.
23.0或﹣1
【解析】
【分析】
根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.
【详解】
∵函数经过原点,
∴m(m+1)=0,
∴m=0或m =﹣1,
故答案为0或﹣1.
【点
解析:0或﹣1
【解析】
【分析】
根据题意把原点(0,0)代入解析式,得出关于m 的方程,然后解方程即可.
【详解】
∵函数经过原点,
∴m (m +1)=0,
∴m =0或m =﹣1,
故答案为0或﹣1.
【点睛】
本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.
24.1250cm2
【解析】
【分析】
设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是cm ,cm ,再列出二次函数,求其最小值即可.
【详解】
如图:设将铁丝分成xcm 和(200﹣
解析:1250cm 2
【解析】
【分析】
设将铁丝分成xcm 和(200﹣x )cm 两部分,则两个正方形的边长分别是4
x cm ,
2004x -cm ,再列出二次函数,求其最小值即可. 【详解】
如图:设将铁丝分成xcm 和(200﹣x )cm 两部分,列二次函数得:
y =(
4x )2+(2004
x -)2=18(x ﹣100)2+1250, 由于18>0,故其最小值为1250cm 2, 故答案为:1250cm 2.
【点睛】
本题考查二次函数的最值问题,解题的关键是根据题意正确列出二次函数.
三、解答题
25.(1)见解析;(2)
O 的半径为4. 【解析】
【分析】
(1) 连接OE ,利用AB=BC 得出A C ∠=∠,根据OE=OC 得出,OEC C ∠=∠,从而求出OE AB ,再结合EG AB ⊥即可证明结论;
(2)先利用勾股定理求出BF 的长,再利用相似三角形的性质对应线段比例相等求解即可.
【详解】
解:(1)证明:连接OE .
∵AB BC =∴A C ∠=∠
∵OE OC =∴OEC C ∠=∠
∴A OEC ∠=∠∴OE
AB ∵BA GE ⊥,∴OE EG ⊥,且OE 为半径 ∴EG 是O 的切线
(2)∵BF GE ⊥∴90BFG ∠=︒
∵23GF =,4GB =∴222BF BG GF =
-=
∵BF OE ∥∴BGF OGE ∆∆∽ ∴
BF BG OE OG =∴244OE OE
=+ ∴4OE =即O 的半径为4. 【点睛】
本题考查的知识点是切线的判定与相似三角形的性质,根据题目作出辅助线,数形结合是解题的关键.
26.(1)4;(2)y=2x +83π-43 (0<x≤23+4)
【解析】
【分析】
(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;
(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=
12
AB=2,再利用勾股定理得出OH 的值,进而求解.
【详解】
(1)解:(1)∵∠APB=30°,
∴∠AOB=60°,又OA=OB ,
∴△AOB 是等边三角形,
∴⊙O 的半径是4;
(2)解:过点O 作OH ⊥AB ,垂足为H
则∠OHA =∠OHB =90°
∵∠APB =30°
∴∠AOB =2∠APB =60°
∵OA=OB ,OH ⊥AB
∴AH=BH=12
AB=2 在Rt △AHO 中,∠AHO =90°,AO =4,AH =2
∴OH 22AO AH -3∴y =16×16 π-123+12
×4×x
=2x+8
3
π-43 (0<x≤23+4).
【点睛】
本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.
27.(1)DE与⊙O相切;理由见解析;(2)4.
【解析】
【分析】
(1)连接OD,由D为AC的中点,得到AD CD
=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;
(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD
=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.
【详解】
(1)解:DE与⊙O相切
证:连接OD,在⊙O中
∵D为AC的中点
∴AD CD
=
∴AD=DC
∵AD=DC,点O是AC的中点
∴OD⊥AC
∴∠DOA=∠DOC=90°
∵DE∥AC
∴∠DOA=∠ODE=90°
∵∠ODE=90°
∴OD⊥DE
∵OD⊥DE,DE经过半径OD的外端点D
∴DE与⊙O相切.
(2)解:连接BD
∵四边形ABCD是⊙O的内接四边形
∴∠DAB+∠DCB=180°
又∵∠DCE+∠DCB=180°
∴∠DAB=∠DCE
∵AC为⊙O的直径,点
D、B在⊙O上,
∴∠ADC=∠ABC=90°
∵AD CD
=,
∴∠ABD=∠CBD=45°
∵AD=DC,∠ADC=90°
∴∠DAC=∠DCA=45°
∵DE∥AC
∴∠DCA=∠CDE=45°
在△ABD和△CDE中
∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE
∴AB
CD
=
AD
CE
∴
6
CD
=16
3
AD
∴AD=DC=42, CE=16
3
,AB=6,
在Rt△ADC中,∠ADC=90°,AD=DC=42,
∴AC=22
AD DC
+=8
∴⊙O的半径为4.
【点睛】
本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.
28.m
【解析】
【分析】
设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.
【详解】
解:设BC的长度为x m
由题意可知CE∥AB∥DF
∵CE∥AB
∴△GCE∽△GBA,△HDF∽△HBA
∴GC CE
GB AB
=,即
1
1x
+
=
2
AB
HD HB =
FD
AB
,即()
3
316x
+-
=
2
AB
∴
1
1x
+
=()
3
316x
+-
∴x=4
∴AB=10
答:路灯AB的高度为10 m.
【点睛】
此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.29.(1)证明见解析;(2)2
ACπ
=
【解析】
【分析】
【详解】
分析:(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;
(2)根据弧长公式解答即可.
详证明:(1)∵AB是⊙O的直径,
∴∠ADB=90°,
∵OC∥BD,
∴∠AEO=∠ADB=90°,
即OC⊥AD,
∴AE=ED;
(2)∵OC⊥AD,
∴AC BD
=,
∴∠ABC=∠CBD=36°,
∴∠AOC=2∠ABC=2×36°=72°,
∴AC=725
2 180
π
π
⨯
=.
点睛:此题考查弧长公式,关键是根据弧长公式和垂径定理解答.
30.(1)开通隧道前,汽车从A地到B地要走)千米;(2)汽车从A地到B地比原来
少走的路程为[40+40(2﹣3)]千米.
【解析】
【分析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=CD
BC
,BC=80千米,
∴CD=BC•sin30°=80×1
2
=40(千米),
AC=
CD
402
sin45︒
=(千米),
AC+BC=80+
1
-
8
(千米),
答:开通隧道前,汽车从A地到B地要走(80+
1
-
8
)千米;
(2)∵cos30°=BD
BC
,BC=80(千米),
∴BD=BC•cos30°=80×
3
=403
2
(千米),
∵tan45°=CD
AD
,CD=40(千米),
∴AD=
CD
40
tan45︒
=(千米),
∴AB=AD+BD=40+403(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=80+
1
-
8
﹣40﹣403=
40+40(23)
-(千米).
答:汽车从A地到B地比原来少走的路程为 [40+40(23)
-]千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
31.(1)(2,﹣2);
(2)(1,0);
(3)10.
【解析】
试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
(3)利用等腰直角三角形的性质得出△A2B2C2的面积.
试题解析:(1)如图所示:C1(2,﹣2);
故答案为(2,﹣2);
(2)如图所示:C2(1,0);
故答案为(1,0);
(3)∵=20,=20,=40,
∴△A2B2C2是等腰直角三角形,
∴△A2B2C2的面积是:××=10平方单位.
故答案为10.
考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
32.(1)①y=-10x+700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.
【解析】
【分析】
(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;
(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.
【详解】
(1)①解:设y =kx +b (k ,b 为常数,k ≠0)
根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩
∴y =-10x +700
②解:当该商品的进价是40-3000÷300=30元
设当该商品的售价是x 元/件时,月销售利润为w 元
根据题意得:w =y (x -30)=(x -30)(-10x +700)
=-10x 2+1000 x -21000=-10(x -50)2+4000
∴当x =50时w 有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:
w=[x-(m+30)](-10x+700)
=-10x 2+(1000+10m )x-21000-700m
对称轴为x=50+
2m ∵m >0
∴50+2
m >50 ∵商家规定该运动服售价不得超过40元/件
∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元
∴-10×402+(1000+10m )×40-21000-700m=2400
解得:m=2
∴m 的值为2.
【点睛】
本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.。