TN-C系统和TN-S系统的区别

合集下载

TN-C系统和TN-S系统的区别

TN-C系统和TN-S系统的区别

TN-C系统和TN-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S 系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V 供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

TN-C和TN-C-S的比较

TN-C和TN-C-S的比较

TN-S系统和TN-C-S系统的比较:
一、TN-S系统是具有保护零线作用,即保护零线与工作零线完全分开的系统;
适用于危险性较大或安全要求较高的场所。

TN-S供电系统。

它是把工作零线N和专用保护线PE在供电电源出严格分开的供电系统,也称三相五线。

它的优点是专用保护线上无电流,此线专门承接故障电流,确保其保护装置动作。

N为工作零线,PE为专用【保护接地】线,即设备外壳连接到PE上。

因为用5线配电,有色金属用量大,费用较高,多为民用建筑配电选择方式。

二、TN-C-S系统是干线部分保护零线与工作零线前部分共用,后部分分开的系
统,适用于低压进线的车间。

TN-C-S供电系统,该系统PEN线自A点起分开为保护线(PE)和中性线(N)。

为防止PE线与N线混淆,应分别给PE线和PEN线涂上黄绿相间的色标,N线涂以浅蓝色色标。

此外,自分开后,PE线不能再与N线再合并。

是三相四线供电。

TN-C-S系统是一个广泛采用的配电系统,无论在工矿企业还是在民用建筑中,其线路结构简单,又能保证一定安全水平。

TN C系统 TN S系统 TN C S系统 TT系统的区别

TN C系统 TN S系统 TN C S系统 TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:5/6/2010 10:22:14 AM建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。

国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。

其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。

下面内容就是对各种供电系统做一个扼要的介绍。

一,工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。

(1 )TT 方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。

第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。

在TT 系统中负载的所有接地均称为保护接地,这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护点很分散的地方。

(2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。

TN-C系统、TN-S系统、TN-C-S系统

TN-C系统、TN-S系统、TN-C-S系统

TN—C系统TN—S系统TN—C—S系统根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。

TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。

下面分别进行介绍。

其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

由上可知,TN-C系统存在以下缺陷:(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。

当三相负载严重不平衡时,触及零线可能导致触电事故。

(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。

TNC系统和TNS系统的区别

TNC系统和TNS系统的区别

T N-C系统和T N-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S?系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

??2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

TNC系统和TNS系统的区别

TNC系统和TNS系统的区别

T N C系统和T N S系统的区别集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]TN-C系统和TN-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

TNC系统和TNS系统的区别

TNC系统和TNS系统的区别

T N-C系统和T N-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S?系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

??2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

TN-S系统、TN-C系统、TN-C-S三种供电系统的区别

TN-S系统、TN-C系统、TN-C-S三种供电系统的区别

TN-C系统、TN-S系统、TN-C-S系统是我们常用的三种供电方式,那它有什么不同之处在我们日常生活中有什么应用呢?
工具/原料

TN-C系统、TN-S系统、TN-C-S
TN-C系统、TN-S系统、TN-C-S的物理定义
TN-C系统是三相四线制,四根导线颜色分为黄L1、绿L2、红L3、黄绿线PEN。

工作零线兼做保护零线。

.
.
TN-S系统是三相五线制,五根导线颜色分别为黄L1、绿L2、红L3、淡蓝N、黄绿线PE。

供电系统是工作零线和保护线是分开的。

.
.
TN-C-S系统是三相五线制,五根导线颜色分别为黄L1、绿L2、红L3、淡蓝N、黄绿线PE。

就是TN-C系统、TN-S系统合并的系统,中性导线N和保护导线PE合为一保护保护导线PEN线,二次线路中将中性导线N和保护导线PE在结构上分开。

.
.
END
.
TN-C系统、TN-S系统、TN-C-S生活中的应用
TN-C系统的PEN将PE线和N线合并的作用,可节省一根导线,比较经济。

但线路中不允许接入漏电保护器。

.
TN-S系统保护线PE 不许有开路,也不许进入漏电开关。

PE 线对地没有电压,所有设备金属外壳接保护线PE 上,安全可靠。

.
.
.
TN-C-S系统,在施工规范规定施工必须采用TN-S 方式供电系统在二次线路中后部分现场总配电箱分出PE 线,就成了TN-C-S系统。

.
.
END
.
注意事项

按接地方式不同也可分为TT 、TN 和IT 系统。

•。

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别建筑工程供电使用的基本供电系统有三相三线制和三相四线制等,但这些术语的内涵并不十分严格。

___(IEC)对此作了统一规定,将不同的低压配电系统按接地方式的不同分为三种类型:TT系统、TN系统和IT系统。

其中,TN系统又分为TN-C、TN-S和TN-C-S系统。

下面是对各种供电系统的扼要介绍。

一、工程供电的基本方式根据IEC规定的各种保护方式和术语概念,低压配电系统按接地方式的不同分为三类,即TT、TN和IT系统,分别介绍如下。

1.TT方式供电系统TT方式是指将电气设备的金属外壳直接接地的保护系统,也称为保护接地系统,符号为TT。

在TT系统中,负载的所有接地都称为保护接地。

该供电系统的特点如下:1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统难以推广。

3)TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用TT系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

4)将新增加的专用保护线PE线和工作零线N分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT系统适用于接地保护点很分散的地方。

2.TN方式供电系统TN方式供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,符号为TN。

该供电系统的特点如下:一旦设备出现带电外壳,接零保护系统会将漏电电流上升到短路电流的水平,这个电流是TT系统的5.3倍,实际上相当于单相对地短路故障。

熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作跳闸,使故障设备断电,这样更安全。

TNC系统与TNCS接地系统和TN-S系统是什么意思

TNC系统与TNCS接地系统和TN-S系统是什么意思

TN-S接地系统整个系统的中性线和保护线是分开的TN-C接地系统整个系统的中性线和保护线是合一的TT接地系统TT接地系统有一个直接接地点;电气装置外露可导电部分则是接地TN-C-S接地系统整个系统有一部分的中性线和保护线是合一的IT接地系统 IT接地系统的带电部分与大地间;而电气装置的外露可导电部分则是接地的字母标识第一字母表示电力系统的对地关系T-----一点接地I-----所有带电部分与地绝缘;或一点经阻抗接地第二字母表示装饰的外露可导电部分对地关系T-----外露可导电部分对地直接电气连接;与电力系统的任何接地点无关N-----外露可导电部分与电力系统的接地点直接电气连接在交流系统中;接地点通常就是中性点如果后面还有字母;这个字母表示中性线和保护线的组合S-----中性线和保护线是分开的C-----中性线和保护线是合一的PEN线我们国家110KV及以上系统普遍采用中性点直接接地系统即大电流接地系统..35KV、10KV系统普遍采用中性点不接地系统或经大阻抗接地系统即小电流接地系统380V/220V低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统.. IT系统的电源中性点是对地绝缘的或经高阻抗接地;而用电设备的金属外壳直接接地..即:过去称三相三线制供电系统的保护接地..TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地;且与电源中性点的接地无关..即过去的三相四线制供电系统中的保护接地..TN系统;在变压器或发电机中性点直接接地的380/220V三相四线低压电网中;将正常运行时不带电的用电设备的金属外壳经公共的保护线与电源的中性点直接电气连接..即过去的三相四线制供电系统中的保护接零..TN系统的电源中性点直接接地;并有中性线引出..按其保护线形式;TN系统又分为:TN-C系统、TN-S系统和TN-C-S系统等三种..1TN-C系统三相四线制;该系统的中性线N和保护线PE是合一的;该线又称为保护中性线PEN线..它的优点是节省了一条导线;缺点是三相负载不平衡或保护中性线断开时会使所有用电设备的金属外壳都带上危险电压..2TN-S系统就是三相五线制;该系统的N线和PE线是分开的;从变压器起就用五线供电..它的优点是PE线在正常情况下没有电流通过;因此不会对接在PE线上的其他设备产生电磁干扰..此外;由于N线与PE线分开;N线断开也不会影响PE线的保护作用..③TN-C-S系统三相四线与三相五线混合系统;该系统从变压器到用户配电箱式四线制;中性线和保护地线是合一的;从配电箱到用户中性线和保护地线是分开的;所以它兼有TN-C系统和TN-S系统的特点;常用于配电系统末端环境较差或有对电磁抗干扰要求较严的场所..。

tn一s和tn一c一s的区别

tn一s和tn一c一s的区别

tn一s和tn一c一s的区别
TN-C:三相四线制供电,分别引出L1,L2,L3,PEN。

PEN为【保护接零】方式,即设备外壳连接到工作零线上(通常PEN要在用电侧进线处做重复接地)。

节省线路有色金属,工业供电常用(三相负荷相对平衡运行时,PEN线上的电流一般不太大),民用建筑不用。

TN-S:三相五线制供电,分别引出L1,L2,L3,N,PE。

N为工作零线,PE为专用【保护接地】线,即设备外壳连接到PE上。

因为用5线配电,有色金属用量大,多为民用建筑配电选择方式,对于大量单相负荷造成的三相不平衡问题,因为N为专用,平时PE不导电,安全性好。

TN-C-S:变压器引出为TN-C方式,在某级配电系统开始将PE 与N从PEN中区分开(二者此后不得再见面握手),也就是该分歧点之前为TN-C型式,此后类似TN-S(不是真正的TN-S)。

对于要求不严格的民用建筑可以选用,如变压器及一级配电用TN-C,在建筑电源进线总箱处将PE从PEN中分离,建筑二级配电仍为5线制。

无论什么方式,变压器的中性点一般都是接地的(包括外壳),所以对变压器来说,PE、N是连接在一起的。

对变压器,TT、TN-S中性点接地方式相同,比如用扁钢将变压器外壳接到【总接地装置】上,变压器的N排也与之连接(可以有不同做法),但通过工作电流的N线(到开关柜)和五线制的PE必须按照设计要求,一般仍是铜排、母线。

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。

国际电工委员会( IEC )对此作了统一规定,称为 TT 系统、 TN 系统、 IT 系统。

其中 TN 系统又分为 TN-C 、 TN-S 、 TN-C-S 系统。

下面内容就是对各种供电系统做一个扼要的介绍。

TT 系统 TN-C供电系统→ TN 系统→ TN-SIT 系统 TN-C-S(一)工程供电的基本方式根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。

( 1 )TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。

第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。

在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。

这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。

3 ) TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③ TT 系统适用于接地保护占很分散的地方。

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别

TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别TN-C系统、TN-S系统、TN-C-S系统、TT系统的区别:建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。

国际电工委员会(IEC )对此作了统一规定,称为 TT 系统、 TN 系统、 IT 系统。

其中 TN 系统又分为 TN-C 、 TN-S 、 TN-C-S 系统。

下面内容就是对各种供电系统做一个扼要的介绍。

TT 系统 TN-C供电系统→ TN 系统→ TN-SIT 系统 TN-C-S(一)工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。

( 1 ) TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。

第一个符号 T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。

在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。

这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。

3 ) TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③ TT 系统适用于接地保护占很分散的地方。

TN-C系统与TN-C-S接地系统和TN-S系统是什么意思?

TN-C系统与TN-C-S接地系统和TN-S系统是什么意思?

TN-C系统与TN-C-S接地系统和TN-S系统是什么意思?1、TN-C系统:三相四线制PEN线规定距离内接地,在⼊户端就近接地,四线到达⽤电设备。

节省了⼀根线!为了安全连接设备时要动些脑筋。

对设备直接使⽤者有些迷茫!导线分为黄、绿、红、黄绿线。

节省⼀根淡蓝线!2、TN-C-S系统:伪三相五线制,三相四线制PEN线规定距离内接地,在⼊户端就近接地,进⼊⼊户端后分为五线制到达⽤电设备。

对设备直接使⽤者接线对号⼊座就可!导线分为⼊户端前为黄、绿、红、黄绿线、⼊户端后分为黄、绿、红、N淡蓝、PE黄绿线。

节省⼊户端前的淡蓝线!⽰意图:凡是从主零线上分出⼯作零线和保护地线的,都属于TN-C-S制。

如下⽰意图3、TN-S系统:三相五线制,变压器输出三相五线制PE在规定距离内接地,⼊户端就近接地。

五线制到达⽤电设备。

对设备直接使⽤者接线对号⼊座就可!导线分为黄、绿、红、N淡蓝、PE黄绿线。

最费材料的系统!因为PEN、PE线都在⼊户端接了地,⼴义上讲对使⽤者供电、使⽤⽆区别!但对设备使⽤者的安全⾓度TN-C-S系统和TN-S系统是相等的!对⽤电者安全使⽤素质相对素质可以放得很低!知道⼀定的基本安全知识就可使⽤!⽽对于TN-C系统,是考验⼀个职业电⼯的安全技术素质!考验对于PEN线的知识如何区分PE保护零线、N⼯作零线的PEN线的区分⽤途⽅法!须要经过培训的合格的素质!真真理解PE保护零线、N⼯作零线的区分。

所以,TN-C-S和TN-S系统考虑的是安全!TN-C考虑的是节省材料。

但对供电、使⽤⽆区别!TN-C-S的使⽤场合最多,除了上⾯介绍的接地系统外还有TT系统,TT ⽅式是指将电⽓设备的⾦属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。

第⼀个符号 T表⽰电⼒系统中性点直接接地;第⼆个符号 T 表⽰负载设备外露不与带电体相接的⾦属导电部分与⼤地直接联接,⽽与系统如何接地⽆关。

在 TT 系统中负载的所有接地均称为保护接地。

TN-C系统和TN-S系统的区别

TN-C系统和TN-S系统的区别

TN-C系统和TN-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S 系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V 供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

TN-C系统和TN-S系统的区别之欧阳理创编

TN-C系统和TN-S系统的区别之欧阳理创编

TN-C系统和TN-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE 线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S 系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

如何区别TN-C TN-S等系统

如何区别TN-C TN-S等系统

如何区别:TN-C系统、TN-S系统、TN-C-S系统、TT系统建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。

国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。

其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。

下面内容就是对各种供电系统做一个扼要的介绍。

TT 系统TN-C供电系统→ TN 系统→ TN-SIT 系统TN-C-S(一)工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。

( 1 )TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。

第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。

在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。

这种供电系统的特点如下。

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统难以推广。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护占很分散的地方。

( 2 )TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TN-C系统和TN-S系统的区别在TN系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。

在TT系统中,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。

TN-S系统TN-C系统TN-C-S 系统TT系统首先阐述一下两者的概念:1、TN—S系统,整个系统的中性线与保护线是分开的(俗称的三相五线制)。

2、TN—C系统,整个系统的中性线与保护线是合一的(俗称的三相四线制)。

两者的区别:TN—S系统中(三相五线制),有五根线,五线是指三根火线(A、B、C)、一根工作零线(N)、一根保护零线(PE),工作零线和保护零线均由变压器的中性点引出,中性点直接接地,接地电阻R不得大于4欧姆;工作零线和保护零线均重复接地,接地电阻R不得大于10欧姆。

TN—C系统,有四根线,四线是指三根火线(A、B、C)、一根工作零线(N)。

现举例说明两者的区别:现在施工中强调要求采用三相五线制,原因是:原先低压配电系统多采用的是三相四线制,在三相四线制中,只有一根工作零线,而这根工作零线只有在三相负载平衡时,才没有电流通过,并且这时对地电压才为零。

在工程施工中,这一点是很难做到的,因为系统中的单相负载,即使在接线上能达到三相平衡,实际使用时的各相负载率是永远不会相等的。

在这种情况下,如有人触及零线的某一点,即便采用了重复接地,也会承受其值为不平衡电流乘以零线阻抗的电压而导致触电。

其次,由于中性线与保护线共用,不但要通过单相负载的工作电流、三相不平衡电流以及短路电流,还要承受意外事故的冲击电流,这样大大的加大了工作零线的负担,同时增加了断线的可能性。

断线后负载侧的中性线电压很高,可达到相电压,造成触电危险。

另外,工程施工中,经常发生相线、零线接反或者错接现象,这样也会造成严重后果。

为了改善和提高三相四线制低压电网的安全用电程度,克服上述不安全因素,380/220V 供电系统应多推广三相五线制,这样工作零线只通过单相负载的工作电流和三相不平衡电流,保护零线只作为保护接零使用,并能通过短路电流,这样就大大加强了供电的安全性和可靠性,因此,应大大推广三相五线制,尤其在工程施工中。

注意:当采用了三相四线制的漏电保护器时,工作零线穿入零序电流互感器后,工作零线不应该再重复接地,否则,漏保将会误动作。

低压配电系统接地方式系统接地的型式:型式以拉丁文字作代号,其意义为:1 第一个字母表示电源端与地的关系:T----电源端有一点直接接地;I-----电源端所有带电部分不接地或有一点用过阻抗接地。

2 第二个字母表示电气装置的外露可到电部分与地的关系:T----电气装置的外露可到电部分直接接地,此接地点独立于电源端的接地点;N----电气装置的外露可到电部分与电源端接地点有直接的电气连接。

3 短横线(-)后的字母用来表示中性导体和保护导体的组合情况S----中性导体和保护导体是分开的;C----中性导体和保护导体是合一的。

TN-S 的要求T----电源端有一点直接接地;N----电气装置的外露可到电部分与电源端接地点有直接的电气连接,S----中性导体和保护导体是分开的。

所以,它是5根线。

建筑工程供电使用的基本供电系统有三相三线制三相四线制等,但这些名词术语内涵不是十分严格。

国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。

其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。

下面内容就是对各种供电系统做一个扼要的介绍。

TT 系统TN-C供电系统→ TN 系统→ TN-SIT 系统TN-C-S(一)工程供电的基本方式根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。

(1)TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。

第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。

在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。

这种供电系统的特点如下。

1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统难以推广。

3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线PE 线和工作零线N 分开,其特点是:①共用接地线与工作零线没有电的联系;②正常运行时,工作零线可以有电流,而专用保护线没有电流;③TT 系统适用于接地保护占很分散的地方。

(2)TN 方式供电系统这种供电系统是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。

它的特点如下。

1)一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。

2)TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。

TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。

(3)TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示。

(4)TN-S 方式供电系统它是把工作零线N 和专用保护线PE 严格分开的供电系统,称作TN-S 供电系统,TN-S 供电系统的特点如下。

1)系统正常运行时,专用保护线上没有电流,只是工作零线上有不平衡电流。

PE 线对地没有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE 上,安全可靠。

2)工作零线只用作单相照明负载回路。

3)专用保护线PE 不许断线,也不许进入漏电开关。

4)干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但是不经过漏电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。

5)TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。

在建筑工程工工前的“三通一平”(电通、水通、路通和地平——必须采用TN-S 方式供电系统。

(5)TN-C-S 方式供电系统在建筑施工临时供电中,如果前部分是TN-C 方式供电,而施工规范规定施工现场必须采用TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出PE 线,TN-C-S 系统的特点如下。

1)工作零线N 与专用保护线PE 相联通,如图1-5ND 这段线路不平衡电流比较大时,电气设备的接零保护受到零线电位的影响。

D 点至后面PE 线上没有电流,即该段导线上没有电压降,因此,TN-C-S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于ND 线的负载不平衡的情况及ND 这段线路的长度。

负载越不平衡,ND 线又很长时,设备外壳对地电压偏移就越大。

所以要求负载不平衡电流不能太大,而且在PE 线上应作重复接地。

2)PE 线在任何情况下都不能进入漏电保护器,因为线路末端的漏电保护器动作会使前级漏电保护器跳闸造成大范围停电。

3)对PE 线除了在总箱处必须和N 线相接以外,其他各分箱处均不得把N 线和PE 线相联,PE 线上不许安装开关和熔断器,也不得用大顾兼作PE 线。

通过上述分析,TN-C-S 供电系统是在TN-C 系统上临时变通的作法。

当三相电力变压器工作接地情况良好、三相负载比较平衡时,TN-C-S 系统在施工用电实践中效果还是可行的。

但是,在三相负载不平衡、建筑施工工地有专用的电力变压器时,必须采用TN-S 方式供电系统。

(6)IT 方式供电系统I 表示电源侧没有工作接地,或经过高阻抗接地。

每二个字母T 表示负载侧电气设备进行接地保护。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

只有在供电距离不太长时才比较安全。

这种供电方式在工地上很少见。

(二)供电线路符号小结1 )国际电工委员会(IEC )规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。

如T 表示是中性点直接接地;I 表示所有带电部分绝缘。

2 )第二个字母表示用电装置外露的可导电部分对地的关系。

如T 表示设备外壳接地,它与系统中的其他任何接地点无直接关系;N 表示负载采用接零保护。

3 )第三个字母表示工作零线与保护线的组合关系。

如C 表示工作零线与保护线是合一的,如TN-C ;S 表示工作零线与保护线是严格分开的,所以PE 线称为专用保护线,如TN-S 。

工程施工用电的基本供电系统分为(三相三线制380V)和三相四线制(380/220V)等,这样分类欠严密。

国际电工委员会( IEC )统一规定分为: TT 系统、 TN 系统、 IT 系统。

其中 TN 系统又分为 TN-C 、 TN-S 、 TN-C-S 系统。

下面将各种供电系统进行介绍。

(一)工程供电的基本方式据 IEC 规定,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。

( 1 ) TT 方式供电系统TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。

第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。

在 TT 系统中负载的所有接地均称为保护接地。

1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。

但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统不宜在380/220V供电系统中应用。

相关文档
最新文档