安徽省皖南名校2020-2021学年高二上学期期中考试 数学 Word版含答案
湖北省武汉市部分重点中学2020-2021学年第一学期期中考试高一数学试卷含答案
![湖北省武汉市部分重点中学2020-2021学年第一学期期中考试高一数学试卷含答案](https://img.taocdn.com/s3/m/474e76207275a417866fb84ae45c3b3567ecddd7.png)
2020-2021学年度第一学期武汉市部分重点中学期中考试高一数学试卷考试时间:2020年11月12日8:00-10:00 试卷满分:150分一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1 .下面四个关系中正确的是( )A .{}0∅∈B .{}a a ∉C .{}00⊆D .{}{},,a b b a ⊆2 .已知集合{}1,0,1,2A =−,{}11B x x =−≤≤,则A B =( )A .{}0,1B .{}1,1−C .{}1,0,1−D .{}0,1,23 .函数()x f x x x=+的图象是( )4 .已知函数()21,0,0x x f x x x +⎧=⎨⎩≥<,则()2f f −⎡⎤⎣⎦的值为( )A .1B .2C .4D .65 .已知函数()f x 的定义域为[]0,2,则()21f x +的定义域为( )A .[]0,2B .11,22⎡⎤−⎢⎥⎣⎦C .[]1,1−D .[]1,56 .已知命题:p x y ∃<,使得x x y y ≥,则p ⌝为( ) A .x y ∃≥,使得x x y y ≥ B .x y ∃≥,使得x x y y ≥C .x y ∃<,使得x x y y <D .x y ∀<,总有x x y y <7 .定义在R 上的奇函数()f x 在()0,+∞上单调递减,若()11f =−,则满足()121f x −−≤≤的取值范围是( )A .[]2,2−B .[]1,1−C .[]0,4D .[]1,38 .咖啡产品的经营和销售如何在中国开拓市场是星巴克、漫咖啡等欧美品牌一直在探索的内容,而2018年至今中国咖啡行业的发展实践证明了以优质的原材料供应以及大量优惠券、买赠活动吸引消费者无疑是开拓中国咖啡市场最有效的方式之一.若某品牌的某种在售咖啡产品价格为30元/杯,其原材料成本为7元/杯,营销成本为5元/杯,且该品牌门店提供如下4种优惠方式:(1)首杯免单,每人限用一次;(2)3.8折优惠券,每人限用一次;(3)买2杯送2杯,每人限用两次;(4)买5本送5本,不限使用人数和使用次数.每位消费者都可以在以上4种优惠方式中选择不多于2种使用.现在某个公司有5为后勤工作人员去该品牌门店帮每位技术人员购买1杯咖啡,购买杯数与技术人员人数必须保持一致;请问,这个公司的技术人员不少于( )人时,无论5位后勤人员采用什么样的优惠方式购买咖啡,这笔订单该品牌门店都能保证盈利. A .28 B .29 C .30 D .31二、选择题(本小题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.) 9 .已知集合{}2,1,0,1A =−−,()(){}120B x x x =−+≤,则( ) A .{}2,1,0,1A B =−− B .{}2,1,0,1A B =−−C .{}1,0,1AB =−D .{}21AB x x =−≤≤10.下列各组函数是同一个函数的是( ) A .()221f x x x =−−与()221g t t t =−− B .()0f x x =与()01g x x =C .()1f x x=与()2g x x =D .()()21f x x x =−∈Z 与()()21g x x x =+∈Z11.下列函数中,在区间()0,1上是增函数( )A .y x =B .3y x =+C .1y x=D .24y x =−+12.已知()223f x x x =−−,[]0,x a ∈,a 为大于0的常数,则()f x 的值域可能为( )A .[]4,3−−B .RC .[]4,10−D .[]3,10−三、填空题(本题共4小题,每小题5分,共20分.)13.若函数()2211y x a x =+−+在区间(],2−∞上是减函数,则实数a 的取值范围是_______. 14.若0a >,0b >,则“4a b +≤”是“4ab ≤”的_______.(填:充分不必要,必要不充分,既不充分又不必要,充要)15.若命题“x ∃∈R 使()2110x a x +−+<”是假命题,则实数a 的取值范围为_______. 16.设a ,b 均为正数,且21a b +=,则下列四个命题正确的有_______.①ab 有最大值18③22a b +有最小值15④22a b +有最小值14−四、解答题(本题共6小题,共70分,17题10分。
2020-2021学年安徽省合肥六中高二上学期期中物理试卷(含答案解析)
![2020-2021学年安徽省合肥六中高二上学期期中物理试卷(含答案解析)](https://img.taocdn.com/s3/m/cd1293354028915f814dc21a.png)
2020-2021学年安徽省合肥六中高二上学期期中物理试卷一、单选题(本大题共7小题,共28.0分)1.在边长为a的正方形的四个顶点都有一个点电荷q,则在正方形中心处的场强为()A. 0B. k2qa2C. k8qa2D. 无法确定2.如图所示,理想变压器原、副线圈的匝数分别为n1、n2,原、副线圈两端的电压分别为U1、U2,原、副线圈中通过的电流分别为I1、I2。
若保持n1、n2、U1不变,将开关S由闭合变为断开,则()A. U2增大B. I1增大C. I2增大D. 变压器的输入功率减小3.如图所示的匀强电场场强为103N/C,ab、cd平行于电场线,ac、bd垂直于电场线,ab=cd=4cm,ac=bd=3cm.则下述计算结果正确的是()A. a、b之间的电势差为40 VB. a、c之间的电势差为50 VC. 将q=−5×10−3C的点电荷沿矩形路径abdca移动一周,电场力做的功是−0.25JD. 将q=−5×10−3C的点电荷沿abd从a移到d,电场力做的功是0.25J4.如图所示,两个较大的平行金属板A、B分别接在电源正、负极上,这时质量为m,带电的油滴恰好静止在两极板之间。
在其他条件不变的情况下,如果将B板非常缓慢地向下移动一些,那么在移动的过程中A. 油滴将向上加速运动,电流计中的电流从a流向bB. 油滴将向下加速运动,电流计中的电流从a流向bC. 油滴静止不动,电流计中的电流从b流向aD. 油滴静止不动,电流计中的电流从a流向b5.在如图所示的并联电路中,保持干路上的电流I不变,当增大R1的阻值时A. R1和R2上的电压减小B. R1上的电流I1增大C. R2上的电流I2减小D. I1和I2之和不变6.如图所示,两块较大的金属板A、B相距为d,平行放置并与一电源相连,S闭合后,两板间恰好有一质量为m、带电量为q的油滴处于静止状态,以下说法正确的是()A. 油滴带负电B. 若将S断开,则油滴将做自由落体运动,G表中无电流C. 若将A向左平移一小段位移,则油滴向下加速运动,G表中有b→a的电流D. 若将A向下平移一小段位移,则油滴向上加速运动,G表中有a→b的电流7.在真空中有A和B两个点电荷,它们所带电荷量分别为Q A和Q B,已知Q A=5Q B,则A电荷受到B电荷的作用力是B电荷受到A电荷作用力的()A. 1倍B. 1倍 C. 5倍 D. 25倍5二、多选题(本大题共3小题,共12.0分)8.如图,圆O所在的平面内有一与圆面平行的匀强电场,ac、bd为两条互相垂直的直径,圆的半径为10cm,已知圆心O点的电势为零,a点的电势为−10V,一带负电的粒子仅在电场力作用下以速率v0从b点进入圆内,到达d点时的速率仍为v0,则下列判断正确的是()A. 从b点到d点粒子一定做匀速直线运动B. c点的电势为10VC. b点的电势可能为5V,d点的电势可能为−5VD. 电场强度大小为100V/m9.如图,直线a、b和c、d是处于匀强电场中的两组平行线,M、N、P、Q是它们的交点,四点处的电势分别为φM,φN,φP,φQ,一电子由M点分别到N点和P点的过程中,电场力所做的负功相等,则()A. 直线a位于某一等势面内,φM>φQB. 直线c位于某一等势面内,φM>φNC. 若电子由M点运动到Q点,电场力做正功D. 若电子由P点运动到Q点,电场力做正功10.如图所示,在水平向右的匀强电场中,在O点固定一电荷量为Q的正电荷,a、b、c、d为以O为圆心的同一圆周上的四点,bd连线与电场线平行,ac连线与电场线垂直。
2020-2021学年初一(上)期中考试数学试卷(含答案)
![2020-2021学年初一(上)期中考试数学试卷(含答案)](https://img.taocdn.com/s3/m/256cae41960590c69fc37638.png)
2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。
安徽省合肥市2020-2021学年高二上学期期中考试物理试题 含答案
![安徽省合肥市2020-2021学年高二上学期期中考试物理试题 含答案](https://img.taocdn.com/s3/m/f2ce4793f61fb7360b4c656a.png)
安徽省合肥2020-2021学年高二上学期期中考试物理试题(考试时间:100分钟满分:100分)一、选择题(本大题共14小题,共47分。
在每小题给出的四个选项中,第1~9题只有一项符合题目要求,每小题3分;第10~14题有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的得0分。
)1、下列关于电场强度的说法中,正确的是( )A.根据公式可知,场强E跟电荷所受的电场力F成正比,跟放入电荷的电荷量q 成反比B.由公式可知,在真空中由点电荷Q形成的电场中,某点的场强E跟Q成正比,跟该点到Q的距离r的平方成反比C.由公式可知,沿电场线方向上经过相等的距离降低的电势相等D.由公式及均可以确定在真空中点电荷形成的电场中某点的场强,可见场强E与Q或q均有关2、关于电动势E,下列说法中正确的是()A.电动势E的大小,与非静电力功W的大小成正比,与移送电荷量q的大小成反比B.电动势E是由电源本身决定的,跟电源的体积和外电路均有关C.电动势E的单位与电势、电势差的单位都是伏特,故三者本质上一样D.电动势E是表征电源把其他形式的能转化为电能本领的物理量3、两个质量相同的小球用不可伸长的细线连结,置于场强为E的匀强电场中,小球1和小球2均带正电,电量分别为q1和q2(q1>q2)。
将细线拉直并使之与电场方向平行,如图所示。
若将两小球同时从静止状态释放,则释放后细线中的张力T 为(不计重力及两小球间的库仑力)( )A .121()2T q q E =-B .121()2T q q E =+C .12()T q q E =-D .12()T q qE =+4、空间有一电场,各点电势φ随位置的变化情况如图所示.下列说法正确的是( )A .O 点的电场强度一定为零B .-x 1与-x 2点的电场强度相同C .将负电荷从-x 1移到x 1电荷的电势能增大D .-x 1和x 1两点在同一等势面上5、某家庭用电器与供电电源距离L ,线路上的电流为I ,若要求线路上的电压降不超过U ,已知输电导线的电阻率为ρ,那么,该输电导线的横截面积的最小值是( )A.ρL UB.2ρLI UC.U ρLID.2UL Iρ6、如图1所示,半径为R 均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P (坐标为x )的电场强度可以由库仑定律和电场强度的叠加原理求出:,方向沿x 轴。
2020-2021学年安徽省合肥市一六八中学高一上学期期中考试数学试题Word版含解析
![2020-2021学年安徽省合肥市一六八中学高一上学期期中考试数学试题Word版含解析](https://img.taocdn.com/s3/m/0aaf3fc202020740bf1e9b55.png)
2020-2021学年安徽省合肥市一六八中学上学期期中考试高一数学试题一、单选题1.已知集合{|0}M x x =,{}|,xN y y e x R ==∈,那么正确的一项是( )A NB .0N ∈C .M ND .N M ⊆【答案】D【解析】先求值域得集合N ,再根据元素与集合关系判断A,B ,根据集合与集合关系判断C,D. 【详解】{}|,(0,)x N y y e x R ==∈=+∞N N N∉,0,M ,故选:D 【点睛】本题考查函数值域、元素与集合关系以及集合与集合关系,考查基本分析判断能力,属基础题. 2.下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .ln ||y x = B .212y x =-C .||4x y -=D .x xy e e -=-【答案】A【解析】直接根据函数解析式分别判断奇偶性与单调性. 【详解】ln ||y x =是偶函数,且在(0,)+∞上单调递增;212y x =-是偶函数,且在(0,)+∞上单调递减; ||4x y -=是偶函数,且在(0,)+∞上单调递减; x x y e e -=-是奇函数,且在(0,)+∞上单调递增;故选:A 【点睛】本题考查基本奇偶性与单调性的分析判断能力,属基础题.3.函数2()46f x x x =--的定义域为[0,]m ,值域为[10,6]--,则m 的取值范围是A .[0,4]B .[4,6]C .[2,6]D .[2,4]【答案】D【解析】因为函数()246f x x x =--的图象开口朝上,由 ()()()046,210f f f ==-=-,结合二次函数的图象和性质可得m 的取值范围. 【详解】函数()246f x x x =--的图象是开口朝上,且以直线2x =为对称轴的抛物线, 故()()()046,210f f f ==-=-,函数()246f x x x =--的定义域为[]0,m ,值域为[]10,6--,所以24m ≤≤,即m 的取值范围是[]2,4,故选D. 【点睛】本题主要考查二次函数的图象和性质,以及函数的定义域与值域,意在考查灵活应用所学知识解答问题的能力.4.已知函数234,0()2,01,0x x f x x x x ⎧->⎪=+=⎨⎪-<⎩,则((1))=f f ( )A .1B .2C .1-D .3【答案】C【解析】根据自变量范围代入对应解析式计算得结果. 【详解】((1))(34)(1)1f f f f =-=-=-故选:C 【点睛】本题考查分段函数求值,考查基本分析求解能力,属基础题.5.一元二次方程24260x mx m -++=有两个不等的非正根,则实数m 的范围为( ) A .30m -<<B .31m -<-C .31m -≤<-D .312m -≤【答案】C【解析】根据实根分布列不等式组,解得结果. 【详解】因为一元二次方程24260x mx m -++=有两个不等的非正根,所以231164(26)022********m m m m m m m m m ⎧><-⎪⎧∆=-+>⎪⎪<∴<∴-≤<-⎨⎨⎪⎪+≥≥-⎩⎪⎩或 故选:C 【点睛】本题考查实根分布,考查数形结合思想方法以及求解能力,属中档题. 6.已知5log 26a =,b =0.90.6c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】A【解析】根据指数函数、幂函数和对数函数的单调性,结合临界值1和2可确定,,a b c 的大致范围,从而得到结果. 【详解】10.95550.60.61992log 25log 26<==<=<==<,即a b c >>本题正确选项:A 【点睛】本题考查根据指数函数、幂函数和对数函数单调性比较大小的问题,解决此类题的常用方法是利用临界值来确定所比较数字的大致范围. 7.函数()21ln f x x x=-+的图像大致为( )A .B .C .D .【答案】B 【解析】取特值1e判断正负,即可得出答案。
安徽省皖南名校20202021学年高二上学期期中考试物理含答案.docx
![安徽省皖南名校20202021学年高二上学期期中考试物理含答案.docx](https://img.taocdn.com/s3/m/d4cfc3fff80f76c66137ee06eff9aef8941e4877.png)
皖南名校2020-2021学年上期期中考试高二物理试题(考试时间:90分钟 试卷满分:110分)一、选择题(共10小题,每小题5分,共50分。
其中1〜6题为单选题;7〜10题有多个选项 是正确的,全部选对的得5分,选对但不全的得3分,有选错的得。
分)1. 关于电压与电动势的说法中正确的是A. 电压与电动势的单位都是伏特,所以电动势与电压是同一物理量的不同叫法B. 电动势就是两板间的电压C. 电动势公式E=—中的W 与电压U= 2中的W 是一样的,都是电场力做的功 qqD. 电动势是反映电源把其他形式的能转化为电能本领强弱的物理量2. 下列四幅图中有关电场说法正确的是A. 图甲为等量同种点电荷形成电场的电场线B. 图乙离点电荷距离相等的a 、b 两点电场强度相同C. 图丙中在c 点静止释放一正电荷,可以沿着电场线运动到d 点D. 图丁中把某一电荷从e 点沿平行金属板方向移动到f 点,电场力不做功该款电动汽车的部分参数如图乙所示,则下列说法正确的适用年龄6个月~3岁家长遥控可自驾核定截重25kg电源规格 12V 4.5A - h充电器 12V 1000mA电 机 RS290-12V 2A乙 A. 电源规格中的4.5A • h, A • h 是能量的单位B. 电机的输出功率小于24WC. 电机线圈的电阻为6Q3.如图甲所示为一款儿童电动汽车,S 乙 图甲 图丙 图丁是甲D.行驶过程中电机突发故障,被卡住无法转动,此时通过电机的电流为2A4.如图所示,Oxy坐标系中,将一负检验电荷Q由y轴上a点移至x轴上b点,需克服静电力做功W;若从a点移至x轴上c点时,也需克服静电力做功w,那么关于此空间存在的静电场不可能的是° b c xA.存在电场强度方向沿y轴负方向的匀强电场B.存在电场强度方向沿y轴正方向的匀强电场C.处于第I象限某一位置的正点电荷形成的电场D.处于第IV象限某一位置的负点电荷形成的电场5.点电荷。
安徽省名校2020_2021学年第一学期期中联考高二理科数学(含答案)
![安徽省名校2020_2021学年第一学期期中联考高二理科数学(含答案)](https://img.taocdn.com/s3/m/b97978020b1c59eef8c7b4b3.png)
高二第一学期期中检测理科数学参考答案题号123456789101112答案A DB DC B A C C B A C 1.【解析】因为{}{}{}1202,102>-<=>-+=≤<=x x x x x x N x x M 或,=N C R {},12≤≤-x x 所以{}10)(≤<=x x N C M R (]1,0=.2.【解析】因为正项等比数列{}n a 满足142=a a ,由于2342a a a =,所以1,1,121323===q a a a .因为133=S ,所以1q ≠.由)1(1)1(21313q q a q q a S ++=--=得,,11322q q q ++=即01122=--q q ,解得31=q ,或41-=q (舍去).3.【解析】初始值2,5==x n ,程序运行过程如下表所示1v =;6421=+⨯=v ;15326=+⨯=v ;322215=+⨯=v ;651232=+⨯=v ;1300265=+⨯=v .1i =-,跳出循环,输出.130=v 4.【解析】因为2745432=+++=x ,,45.1145.58.32.2m m y +=++++=所以61.02746.145.11-⨯=+m ,解得.5.6=m 5.【解析】该几何体是底面半径为1,母线长为2的半圆锥,因此其表面积为.323243121212212122+=⨯+⨯+⨯⨯⨯⨯πππ6.【解析】由⇒=-⋅0)(b a a b a a ⋅=22222)(b b a a b a +⋅-=-=-,13222=+-=+-=b b a .27.【解析】特值法,当βα⊥时,D C B ,,,0cos =θ均不成立.8.【解析】由题意知,当3π=x 时,函数()f x 取得最大值,所以.,223Z k k ∈+=⋅ππωπ解得.,236N k k ∈+=ω因为)(x f 在区间⎦⎤ ⎝⎛-3,12ππ上递增,在⎪⎭⎫⎢⎣⎡125,3ππ上递减,所以123ππωπ+≥且3125ππωπ-≥,解得.5120≤<ω因此23=ω.9.,1,2.245cos 221cos 66cos 269cos 24cos 2==+=⋅ AC AB所以.22sin ,22cos ,2==⋅=A A A AC AB 于是ABC ∆.22=A 10.【解析】设等差数列的公差为.d 由13853a a =得,)12(5)7(311d a d a +=+,整理得,.2391d a -=因此d n d dn n d n d a n d S n 200)20(22022(22212--=-=-+=,20S 最大.11.【解析】4214≥-+x a x 4821)2(4≥+-+-⇔a x a x 4821)2(4min ≥⎥⎦⎤⎢⎣⎡+-+-⇔a x a x 即,484≥+⇔aa 解得40≤<a .12.【解析】001()1111x x x f x x <<<⎧⎪=⎨--⎪+⎩≤, ,.作函数()y f x =的图象,如图所示.函数()g x 零点的个数⇔函数()y f x =的图象与直线4y mx m =+公共点的个数.当直线4y mx m =+过点(11),时,15m =,,所以当510<<m 时,直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(01x <<-)相交时,联立⎪⎩⎪⎨⎧-+=+=1114x y m mx y 消去y 得,0)15(42=++-m x m mx 因此016)15(22>-+=∆m m 且015<+m 时,解得.1-<m 综上知,实数m 的取值范围是51,0()1,( --∞.13.【答案】.0723=+-y x 【解析】设直线l 的方程是.023=+-c y x 将2,1=-=y x 代入得,,043=+--c 所以7=c .故l 的方程是.0723=+-y x 14.【答案】61【解析】因抛掷一颗骰子有6种结果,所以抛掷两颗骰子有3666=⨯种不同结果.点),(b a S 在不等式所表示的区域内,有如下几种情况:当1=a 时,=b 1,2,3;当2=a 时,=b 1,2;当3=a 时,1=b .共有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)六个点落在条件区域内,故61366)(==A P .15.【答案】21【解析】因为m x x x x f ++=cos sin 32cos 2)(2162sin(22sin 32cos 1+++=+++=m x m x x π.]2,0[π∈x ,∴]1,21[62sin(67626-∈+≤+≤ππππx x ,则.∴]3,[1)62sin(2)(m m m x x f +∈+++=π.由=+]3,[m m 27,21[得,且27321=+=m m 故21=m .16.【答案】.242π【解析】如图,因为平面BDC ⊥平面ABD ,所以AB ⊥平面BDC ,CD ⊥平面ABD ,得.AD CD BC AB ⊥⊥,取AC 的中点O ,则OD OC OB OA ===.于是外接球的球心是O ,12OA AC =,2214OA AC =.而.21)24(2122222222=+=+=+=BD AB BD AB BC AB AC 所以半径.4221==AC OA 于是外接球的体积为.24242(343ππ=17.【解析】(1)由频率分布直方图可知,月用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2×0.5×a,解得a=0.30.………………………………………………………………4分(2)由(1)知,100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300000×0.12=36000(人).………………………………………………………6分(3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.…………………………………10分18.【解析】(1)因为n m ,互相垂直,所以0)3(22)(=-⋅++⋅-=⋅a b b c a c a n m ,……………………………………2分即2223b ab c a -=-,ab c b a 3222=-+.…………………………………4分由余弦定理得,=C cos .23232222==-+ab ab ab c b a 因为π<<C 0,所以6π=C .…………………………………………………6分(2)因为,236sin 21==∆πab S ABC 所以32=ab .……………………………8分ab c b a 3222=-+就是ab b a 3)6sin 2(222=-+π,即ab ab b a 312)(2=--+,因此347123)(2+=++=+ab ab b a ,32+=+b a .…………………11分故ABC ∆的周长是33+=++c b a .…………………………………………12分19.【解析】(1)直线1-=kx y 就是,01=--y kx 圆C 的圆心是),0,0(C 半径是21.由题意得,圆心)0,0(C 到直线l 的距离是21112<+k ,……………………………2分解得3-<k 或.3>k 故k 的取值范围是).,3()3,(+∞--∞ ………………5分(2)当1=k 时,直线l 与圆C 相离.设点P 的坐标是),(00y x ,则直线MN 的方程是4100=+y y x x .………………………………………………7分因为点P 在直线1-=x y 上,所以100-=x y .代入4100=+y y x x 中,得到,41)1(00=-+y x x x 即.0)41()(0=+-+y x y x ……9分由⎪⎩⎪⎨⎧=+-=+0)41(0y y x 得,.4141⎪⎪⎩⎪⎪⎨⎧-==y x 故直线MN 恒过一个定点).41,41(-…………………………………………………12分20.【解析】(1)因为AC=BC ,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB ⊂平面ABC ,所以VC AB ⊥.………………………2分而,C CD VC = 所以⊥AB 平面.VCD 又AB ⊂平面VAB ,所以平面VAB ⊥平面VCD .…………………………………5分(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE.连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.…………………………7分在t R VFD ∆中,DF VD =.又因为VD=,所以DF =.在t R DCE ∆中,可求出DE=1.故知点E 位于线段AD 的中点或线段BD 的中点.…10分三棱锥VDE C -的体积为.3222212213131=⨯⨯⨯⨯=⋅⋅A VC S CDE (12)分21.【解析】(1)令0n , 1==m 代入等式中可得,2)0(-=f ,即2-=c .………2分再令n m -=得,2)(),12()()0(2-+=++--=-n n n f n n n n f f ,所以.2)(2-+=z z z f ………………………………………………6分(2)因为直线被圆9)2()1(22=-++y x 截得的弦长为6,所以直线过圆心,有1=+b a .……………………………………………………8分于是由均值不等式得,abb a +4=94545))(41(41=+≥++=++=+a b b a b a b a b a ,当且仅当a b b a =4,即32,31==b a 时等号成立.故abb a +4的最小值是.9…………12分22.【解析】(1)当2≥n 时,.12)1(221-=--=-=-n n n S S a n n n 在2n S n =中,令1=n ,则111==S a ,满足.12-=n a n 故数列{}n a 的通项公式是.,12*∈-=N n n a n ……………………………4分(2)因为一般项)11(41121121+++++-=n n n n n n n a a a a a a a ,所以原式⎥⎦⎤⎢⎣⎡-+⋅⋅⋅+-+-=+++11()11()11(4121143323221n n n n a a a a a a a a a a a a =-=++11(412121n n a a a a .)32)(12(32)32)(12(64222+++=+++n n n n n n n n ………………………8分于是)32)(12(322+++n n n n ,)2141(2λn n +≥即存在*∈N n ,使≤λ)32)(12(34++n n 成立.≤λ.454)32)(12(34max =⎥⎦⎤⎢⎣⎡++n n 故实数λ的最大值是.454………………………12分。
2020-2021学年人教PEP版三年级下册期中模拟测试英语试卷(word版 含答案)
![2020-2021学年人教PEP版三年级下册期中模拟测试英语试卷(word版 含答案)](https://img.taocdn.com/s3/m/96a17757d0d233d4b04e6910.png)
2020-2021学年人教PEP版三年级下册期中模拟测试英语试卷学校:___________姓名:___________班级:___________考号:___________一、听音,选择听到的内容1.听录音,选出你所听到的单词。
(_________)1.A.caр B.at C.fat(_________)2.A.leg B.red C.bag(_________)3.A.big B.pig C.gift(_________)4.A.she B.he C.me(_________)5.A.long B tall C.tail(_________)6.A.student B.sister C.pupil(_________)7.A.friend B.father C.brother(_________)8.A.Canada B.China C.UK2.听录音,选出与你所听到的内容相符的图片。
(_______) 1.А.B.(_______) 2.A.B.(________) 3.АB.(________) 4.А.B.(________) 5.А.B.二、听音,选择正确答案3.听录音,选择正确的答语。
(_________)1. A.She's my sister.B.He's my father.C.This is my father.(_________)2. A.No, he isn't.B.Yes, she is.C.He's my grandfather.(_________)3. A.I'm from Shandong.B.Where are you from?C.She's from the UK.(_________)4. A.I have a monkey.B.Wow! It's so funny!C.Look at the pig.(_________)5. A.You are welcome.B.Nice to see you again.C.Nice to meet you, too.三、听音排序4.听录音,用数字给下列图片标号。
2020-2021学年安徽省六校协作体高二下学期期中数学复习卷(含答案解析)
![2020-2021学年安徽省六校协作体高二下学期期中数学复习卷(含答案解析)](https://img.taocdn.com/s3/m/b9eafb1f89eb172dec63b79d.png)
2020-2021学年安徽省六校协作体高二下学期期中数学复习卷一、单选题(本大题共12小题,共36.0分)1.小明准备从重庆到奉节参观白帝城,有两种交通方案:(1)坐大巴直达,有10班车;(2)先坐动车到万州,有8班列车,第二天再坐大巴到奉节,有7班车.则小明共有()种不同的出行方法?A. 25B. 560C. 66D. 1502.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机不玩手机合计学习成绩优秀4812学习成绩不优秀16218合计201030经计算K2的值,则有()的把握认为玩手机对学习有影响.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828A. 95%B. 99%C. 99.5%D. 99.9%3.函数f(x)=(kx+3)lnx−12x(x>1),若f(x)>0的解集中只有一个整数,则实数k的取值范围是()A. (12ln2−32,12ln3−1) B. (12ln3−23,12ln2−32]C. (12ln3−23,12ln2−32) D. (12ln2−32,12ln3−1]4.某类种子每粒发芽的概率是90%,现播种该种子1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望与方差分别是()A. 100;90B. 100;180C. 200;180D. 200;3605.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么其中至少有一人解决这个问题的概率是()A. B. C. D.6.已知一组数据1,3,5,7的方差为n,则在二项式(2x−13x)n的展开式所有项中任取一项,取到有理项的概率为()A. 16B. 112C. 13D. 577.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A. 324B. 328C. 360D. 6488.函数f(x)=x3+4x2−5x在区间[−1,1]上()A. 有3个零点B. 有2个零点C. 有1个零点D. 没有零点9.已知定义在R上的函数f(x)满足f(x+1)=f(3−x),(x−2)f′(x)<0,设a=f(cos2π),b=f(12),c=f(4+sin2α),则a,b,c的大小关系为()A. a<b<cB. c<a<bC. b<c<aD. c<b<a10.函数f(x)=lnx−x−1e−1,则|f(x)|的极值点的个数是()A. 0B. 1C. 2D. 311.任取三个整数,至少有一个数为偶数的概率为()A. 0.125B. 0.25C. 0.5D. 0.87512.若不等式x 2+ax+1≥0对一切x∈(0,]恒成立,则a的最小值为()A. 0B. −2C.D. −3二、单空题(本大题共4小题,共12.0分)13.点是曲线上任意一点,则点到直线的最小距离为____14.在集合中任取一个元素,所取元素恰好满足方程的概率是 _________ .15.在x2− 8的展开式中,x的系数是________.(用数字作答)16.某同学为研究函数(0≤x≤1)的性质,构造了两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x).请你参考这些信息,推知函数f(x)的极值点是________;函数f(x)的值域是__ __.三、解答题(本大题共6小题,共72.0分)17.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040506070(1)请画出上表数据的散点图.(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程ŷ=b̂x+a.(3)经计算,相关指数R2=0.98,你可得到什么结论?(参考数值:2×30+4×40+5×50+6×60+8×70=1390)18.已知函数,,,,且满足:函数的图像与直线有且只有一个交点.(1).求实数的值;(2).若关于的不等式的解集为,求实数的值;(3).在(2)成立的条件下,是否存在,使得的定义域和值域均为,若存在,求出的值,若不存在,请说明理由.19.袋中装有7个红球和8个黑球,一次取4个球.(Ⅰ)求取出的4个球同色的概率;(Ⅱ)设取出黑球的个数为随机变量ξ,求ξ的分布列及数学期望.(a∈R).20.已知函数f(x)=ax+(1−a)lnx+1x(1)当a=0时,求f(x)的极值;(2)当a<0时,求f(x)的单调区间.21.某校要进行特色学校评估验收,有甲、乙、丙、丁、戊五位评估员将随机取A,B,C三个班进行随班听课,要求每个班级至少有一位评估员.(1)求甲、乙同时去A班听课的概率;(2)设随机变量ξ为这五名评估员去C班听课的人数,求ξ的分布列和数学期望.22.已知函数f(x)=(x2−ax−1)e x.(1)若a=1,求函数f(x)的单调区间;(2)当a≥0时,若函数g(x)=f(x)+2e x在x=1处取得极小值,求函数g(x)的极大值.【答案与解析】1.答案:C解析:解:根据题意,分2种情况讨论:①、坐大巴直达,有10班车,即有10种出行方式;②、先坐动车到万州,第二天再坐大巴到奉节,有8×7=56种出行方式; 则共有10+56=66种出行方式; 故选:C .根据题意,分2种情况讨论:①、坐大巴直达,②、先坐动车到万州,第二天再坐大巴到奉节,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,属于基础题.2.答案:C解析:解:根据表中数据,计算 K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=30×(4×2−8×16)212×18×20×10=10>7.879,∴有99.5%的把握认为玩手机对学习有影响. 故选:C .根据表中数据计算观测值,对照临界值得出结论. 本题考查了独立性检验的应用问题,是基础题.3.答案:D解析:解:令f(x)>0,得:kx +3>12x lnx,令g(x)=12x lnx,则g′(x)=12lnx−12(lnx)2,令g′(x)>0,解得:x >e ,令g′(x)<0,解得:1<x <e , 故g(x)在(1,e)递减,在(e,+∞)递增, 结合函数的单调性得:{3k +3≤g(3)2k +3>g(2),即{3k +3≤32ln32k +3>1ln2,解得:12ln2−32<k ≤12ln3−1.故选:D.令f(x)>0,得到kx+3>12xlnx,令g(x)=12xlnx,结合函数图象求出k的范围即可.本题考查导数的应用以及数形结合思想,考查运算求解能力,是中档题.4.答案:D解析:本题主要考查二项分布的期望、方差,以及随机变量的性质,考查解决应用问题的能力,属于中档题.首先分析题目已知某种种子每粒发芽的概率都为0.9,现播种了1000粒,即不发芽率为0.1,故没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).又没发芽的补种2个,故补种的种子数记为X=2ξ,根据二项分布的期望公式、方差公式,即可求出结果.解:由题意可知播种了1000粒,没有发芽的种子数ξ服从二项分布,即ξ~B(1000,0.1).而每粒需再补种2粒,补种的种子数记为X,故X=2ξ,则EX=2Eξ=2×1000×0.1=200,故方差为DX=D(2ξ)=22⋅Dξ=4npq=4×1000×0.1×0.9=360,故选D.5.答案:B解析:本题考查的知识点是相互独立事件的概率乘法公式及对立事件概率公式,属于基础题.求出“甲乙两个至少有一人解决这个问题”的事件的对立事件为“甲、乙两人均不能解决该问题”的概率,继而可得答案.解:∵甲解决这个问题的概率是13,∴甲解决不了这个问题的概率是1−13=23,∵乙解决这个问题的概率是14,∴乙解决不了这个问题的概率是1−14=34,则甲、乙两人均不能解决该问题的概率为23×34=12,则甲、乙两人至少有一人解决这个问题为1−12=12.故选B.6.答案:C解析:解:由题意可得,数据1,3,5,7的平均值为4,它的方差为n=(1−4)2+(3−4)2+(5−4)2+(7−4)2=20,二项式(2x−13x )n=(2x−13x)20的展开式的通项公式为Tr+1=C20r⋅(−1)r⋅220−r⋅x20−4r3.令20−4r3为整数,可得r=0,3,6,9,12,15,18,共计7项,而展开式共有21项,故在所有项中任取一项,取到有理项的概率为721=13,故选:C.由条件利用方差的定义求得n,再求得(2x−13x)20的展开式的通项公式,求得有理项共有7项,而所有项共有21项,从而求得取到有理项的概率.本题主要考查方差的定义,二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于基础题.7.答案:B解析:分两类:(一)末位为0,共有个,(二)末位不为0,共有个,故共有,故选B.8.答案:B解析:解:∵f(0)=0,f(1)=1+4−5=0,∴0和1是函数的两个零点, ∵f(−1)=−1+4+5=8>0,当x →−∞时,f(x)<0, ∴在(−∞,−1)内函数f(x)也存在一个零点, ∵f(x)最多有三个零点,∴f(x)=x 3+4x 2−5x 在区间[−1,1]上有2个零点, 故选:B根据三次函数的图象,结合函数零点的定义,即可得到结论.本题主要考查函数零点个数的判断,利用三次函数的图象和性质是解决本题的关键.9.答案:D解析:解:∵f(x +1)=f(3−x), ∴f(x +2)=f(−x +2), ∴函数f(x)对称轴为x =2, ∵(x −2)f ′(x)<0∴当x >2时,f ′(x)<0单调递减, 当x <2时,f ′(x)>0单调递增,∵a =f(cos2π)=f(1),b =f(12)<f(1), ∴f(1)=f(3),f(12)=f(72)∵4≤4+sin 2a ≤5∴3<72<4+sin 2a ,∴f(3)>f(72)>f(4+sin 2a),即c <b <a , 故选:D根据条件求出函数的对称性和单调性,利用函数的单调性和对称性的性质即可得到结论. 本题主要考查函数值的大小比较,根据函数的对称性和单调性之间的关系是解决本题的关键.10.答案:D解析:解:因为lnx−x−1e−1,所以f′(x)=1x −1e−1.当x∈(0,e−1)时,f′(x)>0,f(x)单调递增;当x∈(e−1,+∞)时,f′(x)<0,f(x)单调递减.又因为f(1)=0,f(e)=0,所以当x∈(0,1)时,f(x)<0;当x∈(1,e−1)时,f(x)>0;当x∈(e−1,e)时,f(x)>0;当x∈(e,+∞)时,f(x)<0.故y=|f(x)|的极小值点为1和e,极大值点为e−1.故选:D.确定导函数和单调区间,可得函数的极值点.本题考查利用导数研究函数的极值,比较基础.11.答案:D解析:解:依题意共有8种可能.至少有一个偶数的情况有7种,因此概率为78=0.875.故选:D.列举出所有情况,让有且只有一个偶数的情况数除以总情况数即为所求的概率.本题考查的是概率的公式,用满足条件的个数除以总个数即可得出概率.正确进行列举是解题的关键.12.答案:C解析:本题考查了利用导数研究其单调性极值与最值、恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.解:不等式对一切恒成立,则,令,,∴函数f(x)在x∈(0,]上单调递增,∴当x=时,函数f(x)取得最大值,,∴a的最小值为.故选.C13.答案:解析:试题分析:当过点P的切线和直线y=x−2平行时,点P到直线y=x−2的距离最小.直线y=x−2的斜率等于1,令y=x2−lnx的导数y′=2x−=1,x=1,或x=−(舍去),故曲线y=x2−lnx上和直线y=x−2平行的切线经过的切点坐标(1,1),点(1,1)到直线y=x−2的距离等于故点P到直线y=x−2的最小距离为,故答案为考点:点到直线的距离公式点评:本题考查点到直线的距离公式的应用,函数的导数的求法及导数的意义,体现了转化的数学思想。
安徽名校2020-2021学年高二上学期期中联考数学(文)答案
![安徽名校2020-2021学年高二上学期期中联考数学(文)答案](https://img.taocdn.com/s3/m/e224736d26fff705cc170ac7.png)
1 于是 1 4t 0 , t 0.
4
2 13.【答案】 【解析】因为 r
42 (3)2 5, x 4, y 3,
5
3
4
2
所以 sin ,cos . 故 2sin cos .
5
5
5
2
1 14.【答案】 【解析】因抛掷一颗骰子有 6 种结果,所以抛掷两颗骰子有 6 6 36 种不同结
(2)在 RtCDB1 中, CD AB 1, B1C BC 2, 所以 B1D B1C 2 CD2 3 .………………………………………………………………8 分
11
3
V 故 B1 ACD
VA B1CD
3
2
1
3 1
. 6
…………………………………12 分
4
20.【解析】(1)因为 m, n 互相垂直,
1
1
11
1
(2) 因为一般项
(
) , 所以
anan1 (2n 1)(2n 1) 2 2n 1 2n 1
11
1 1 11111
1
1
n
(1
)
. …8 分
a1a2 a2a3
anan1 2 3 3 5 5 7
2n 1 2n 1 2n 1
1 a1a2
1 a2a3
1 an an 1
高二第一学期期中检测
文科数学参考答案
题
号 1 2 3 4 5 6 7 8 9 10 11 12
答
案ABB DABACD D C C 1.【解析】因为 M x 0 x 1 , N x x2 x 2 0 x 2 x 1,
所以 M N x 0 x 1 0, 1.
安徽省皖南四校2020-2021学年八年级下学期期中数学试卷(含答案)
![安徽省皖南四校2020-2021学年八年级下学期期中数学试卷(含答案)](https://img.taocdn.com/s3/m/d4f7736ea36925c52cc58bd63186bceb19e8ed0d.png)
安徽省皖南四校2020-2021学年八年级下学期期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.下列式子中,一定属于二次根式的是()A.B.C.D.2.下列运算,结果正确的是()A.B.C.D.3.下列哪个方程是一元二次方程()A.3x﹣y=1B.x2+1=2xy C.x2=2x﹣3D.x2+2y﹣7=0 4.用配方法解方程x2﹣6x+7=0时,方程可变形为()A.(x﹣3)2=2B.(x﹣6)2=2C.(x﹣3)2=7D.(x﹣3)2=16 5.设方程x2﹣2x+3=0的两根分别是x1,x2,则x1+x2的值为()A.2B.﹣2C.3D.6.2018年,宣城市全年居民人均可支配收入26112元,2020年全年居民人均可支配收入为30746元,设宣城市2018年至2020年全年居民人均可支配收入的年平均增长率为x,则可列方程为()A.26112(1+2x)=30746B.26112(1+x)2=30746C.26112(1﹣2x)=30746D.26112(1﹣x)2=307467.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.9,12,13D.,,8.等腰三角形的底边长为6,腰长是方程x2﹣7x+12=0的一个根,则该等腰三角形的周长为()A.12B.14C.12或14D.159.如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是()A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=2410.定义新运算“a*b”对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如:4*3=(4+3)×(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根二.填空题(本大题共6小题,每小题3分,共18分)11.若代数式在实数范围内有意义,则x的取值范围是.12.计算:()=.13.关于x的方程5x2+2x﹣m=0的一个根是1,则m=.14.若,则a的取值范围是.15.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为.16.若实数m、n满足|m﹣6|=0,且m、n恰好是直角三角形的两条边,则该直角三角形的斜边长为.三.解答题(共6小题,共52分)17.(6分)计算:.18.(6分)解方程:x2﹣5x+6=019.(8分)一块四边形草地(如图所示四边形ABCD),AB=米,BC=5米,CD=AD =2米,∠D=90°,求∠A的度数.20.(10分)王师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到6050元,且从今年二月到四月,每月盈利的增长率都相同.(1)求每月盈利的增长率;(2)按照这个增长率,预计今年五月份的盈利能达到多少元?21.(10分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=400米,∠D=30°.那么另一边开挖点E离D多远正好使A、C、E三点在一直线上(≈1.732,结果精确到1米)?22.(12分)【问题提出】在2020年抗击新冠肺炎的斗争中,某中学响应政府“停课不停学”的号召进行线上学习,七年级一班的全体同学在自主完成学习任务的同时,全班每两个同学都通过一次视频电话,彼此关怀,互相勉励,共同提高,若每两名同学之间仅通过一次视频电话,如何求全班50名同学共通过多少次电话呢?【模型构建】用点M1、M2、M3、…、M50分别表示第1、2、3、…、50名同学,把该班级人数n与视频通话次数S之间的关系用如图模型表示:【问题解决】(1)填写如图中第5个图中S的值为.(2)通过探索发现,通电话次数S与该班级人数n之间的关系式为,则当n=50时,对应的S=.(3)若该班全体女生相互之间共通话190次,求该班共有多少名女生?【问题拓展】(4)若该班数学兴趣小组的同学,每两位同学之间互发一条微信问候,小明统计全组共发送微信110条,则该班数学兴趣小组的人数是人.参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.下列式子中,一定属于二次根式的是()A.B.C.D.【分析】根据二次根式的定义判断即可.【解答】解:A选项,被开方数不是非负数,没有意义,故该选项不符合题意;B选项,被开方数不能保证x﹣2是非负数,故该选项不符合题意;C选项,是三次根式,故该选项不符合题意;D选项,是二次根式,故该选项符合题意;故选:D.【点评】本题考查了二次根式的定义,掌握二次根式的定义是解题的关键,一般地,我们把形如(a≥0)的式子叫做二次根式.2.下列运算,结果正确的是()A.B.C.D.【分析】根据二次根式的加减法法则判断A、B;根据二次根式的除法法则判断C;根据二次根式的乘法法则判断D.【解答】解:A、与不是同类二次根式,不能合并,故本选项结果错误,不符合题意;B、4与不能合并,故本选项结果错误,不符合题意;C、÷=,故本选项结果错误,不符合题意;D、×=2,故本选项结果正确,符合题意;故选:D.【点评】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.3.下列哪个方程是一元二次方程()A.3x﹣y=1B.x2+1=2xy C.x2=2x﹣3D.x2+2y﹣7=0【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:A.该方程中含有2个未知数,不是一元二次方程,故此选项不符合题意;B.该方程中含有2个未知数,不是一元二次方程,故此选项不符合题意;C.该方程符合一元二次方程的定义,故此选项符合题意;D.该方程中含有2个未知数,不是一元二次方程,故此选项不符合题意;故选:C.【点评】此题主要考查了一元二次方程定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.4.用配方法解方程x2﹣6x+7=0时,方程可变形为()A.(x﹣3)2=2B.(x﹣6)2=2C.(x﹣3)2=7D.(x﹣3)2=16【分析】移项后两边都加上一次项系数一半的平方即可.【解答】解:∵x2﹣6x+7=0,∴x2﹣6x=﹣7,则x2﹣6x+9=﹣7+9,即(x﹣3)2=2,故选:A.【点评】本题考查了解一元二次方程﹣配方法,熟练掌握用配方法解一元二次方程的步骤是解决问题的关键.5.设方程x2﹣2x+3=0的两根分别是x1,x2,则x1+x2的值为()A.2B.﹣2C.3D.【分析】本题可利用根与系数的关系,求出该一元二次方程的二次项系数以及一次项系数的值,代入公式求值即可.【解答】解:由x2﹣2x+3=0可知,其二次项系数a=1,一次项系数b=﹣2,由根与系数的关系:x1+x2=﹣=﹣=2.故选:A.【点评】本题考查一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.6.2018年,宣城市全年居民人均可支配收入26112元,2020年全年居民人均可支配收入为30746元,设宣城市2018年至2020年全年居民人均可支配收入的年平均增长率为x,则可列方程为()A.26112(1+2x)=30746B.26112(1+x)2=30746C.26112(1﹣2x)=30746D.26112(1﹣x)2=30746【分析】根据题意可得等量关系:2018年全年居民人均可支配收入×(1+增长率)2=2020年全年居民人均可支配收入,根据等量关系列出方程即可.【解答】解:设宣城市2018年至2020年全年居民人均可支配收入的年平均增长率为x,由题意得:26112(1+x)2=30746,故选:B.【点评】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.以下列各组数为边长,不能构成直角三角形的是()A.3,4,5B.1,1,C.9,12,13D.,,【分析】判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【解答】解:A、∵32+42=52,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;B、∵12+12=()2,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;C、∵92+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故选项符合题意;D、∵()2+()2=()2,∴该三角形符合勾股定理的逆定理,故是直角三角形,故选项不符合题意;故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握勾股定理的逆定理是解本题的关键.8.等腰三角形的底边长为6,腰长是方程x2﹣7x+12=0的一个根,则该等腰三角形的周长为()A.12B.14C.12或14D.15【分析】先利用因式分解法解方程得到x1=4,x2=3,再根据三角形三边的关系得到等腰三角形的腰长为4,然后计算该等腰三角形的周长.【解答】解:∵x2﹣7x+12=0,∴(x﹣4)(x﹣3)=0,∴x﹣4=0或x﹣3=0,解得x1=4,x2=3,∵3+3=6,不符合三角形三边的关系,x=3舍去,∴等腰三角形的腰长为4,∴该等腰三角形的周长为4=4+6=14.故选:B.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了三角形三边的关系.9.如图,“赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形,已知大正方形面积为25,(x+y)2=49,用x,y表示直角三角形的两直角边(x>y),下列选项中正确的是()A.小正方形面积为4B.x2+y2=5C.x2﹣y2=7D.xy=24【分析】根据勾股定理解答即可.【解答】解:根据题意可得:x2+y2=25,故B错误,∵(x+y)2=49,∴2xy=24,故D错误,∴(x﹣y)2=1,故A错误,∴x2﹣y2=7,故C正确;故选:C.【点评】本题考查勾股定理,解题的关键学会用整体恒等变形的思想,属于中考常考题型.10.定义新运算“a*b”对于任意实数a,b,都有a*b=(a+b)(a﹣b)﹣1,其中等式右边是通常的加法、减法、乘法运算,例如:4*3=(4+3)×(4﹣3)﹣1=7﹣1=6.若x*k=x(k为实数)是关于x的方程,则它的根的情况为()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根【分析】利用新定义得到(x+k)(x﹣k)﹣1=x,再把方程化为一般式后计算判别式的值,然后利用Δ>0可判断方程根的情况.【解答】解:∵x*k=x(k为实数)是关于x的方程,∴(x+k)(x﹣k)﹣1=x,整理得x2﹣x﹣k2﹣1=0.∵Δ=(﹣1)2﹣4(﹣k2﹣1)=4k2+5>0,∴方程有两个不相等的实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.二.填空题(本大题共6小题,每小题3分,共18分)11.若代数式在实数范围内有意义,则x的取值范围是x>3.【分析】根据二次根式的被开方数非负和分母不为0,列出不等式组,求解不等式组即可得出答案.【解答】解:根据题意得:,解得:x>3,故答案为:x>3.【点评】本题考查了二次根式有意义的条件,分式有意义的条件,注意所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.计算:()=1﹣2.【分析】利用二次根式的除法法则运算.【解答】解:原式=1﹣=1﹣2.故答案为1﹣2.【点评】本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.13.关于x的方程5x2+2x﹣m=0的一个根是1,则m=7.【分析】把x=1代入方程5x2+2x﹣m=0得到一个关于m的方程,求出方程的解即可.【解答】解:把x=1代入方程5x2+2x﹣m=0,得5×12+2×1﹣m=0,解得m=7,故答案为:7.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.若,则a的取值范围是a≤2021.【分析】根据二次根式的性质可知a﹣2021≤0,得a≤2021.【解答】解:由题意知:a﹣2021≤0,解得:a≤2021,故答案为:a≤2021.【点评】本题考查了二次根式的性质,关键是根据性质得出a﹣2021≤0.15.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为(x﹣3)2+82=x2.【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【解答】解:设绳索长为x尺,可列方程为(x﹣3)2+82=x2,故答案为:(x﹣3)2+82=x2.【点评】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键.16.若实数m、n满足|m﹣6|=0,且m、n恰好是直角三角形的两条边,则该直角三角形的斜边长为10或8.【分析】利用非负数的性质求出m,n的值,然后利用勾股定理解答;需要分类讨论:n 直角边和斜边两种情况.【解答】解:∵|m﹣6|=0,且|m﹣6|≥0,≥0,∴m=6,n=8.①当m,n是直角边时,∴直角三角形的斜边==10,②当m=8是斜边时,斜边为8,故答案为:10或8.【点评】本题考查非负数的性质,勾股定理等知识,根据非负数的性质求得m、n的值是解题的突破口.三.解答题(共6小题,共52分)17.(6分)计算:.【分析】利用平方差公式,二次根式的乘法,零指数幂进行运算,再进行加减运算即可.【解答】解:==5.【点评】本题主要考查二次根式的混合运算,零指数幂,平方差公式,解答的关键是对相应的运算法则的掌握.18.(6分)解方程:x2﹣5x+6=0【分析】利用因式分解法求解可得.【解答】解:∵x2﹣5x+6=0,∴(x﹣2)(x﹣3)=0,则x﹣2=0或x﹣3=0,解得x1=2,x2=3.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.19.(8分)一块四边形草地(如图所示四边形ABCD),AB=米,BC=5米,CD=AD =2米,∠D=90°,求∠A的度数.【分析】连接AC,根据等腰直角三角形的性质求出∠DAC=∠DCA=45°,根据勾股定理求出AC,根据勾股定理的逆定理得出∠BAC=90°,再求出答案即可.【解答】解:连接AC,∵CD=AD=2米,∠D=90°,∴AC===2(米),∠DAC=∠DCA=45°,∵AB=米,BC=5米,∴AB2+AC2=BC2,∴∠BAC=90°,∴∠DAB=∠DAC+∠BAC=45°+90°=135°.【点评】本题考查了等腰直角三角形的性质,勾股定理和勾股定理的逆定理等知识点,能灵活运用知识点进行推理和计算是解此题的关键.20.(10分)王师傅今年初开了一家商店,二月份开始盈利,二月份的盈利是5000元,四月份的盈利达到6050元,且从今年二月到四月,每月盈利的增长率都相同.(1)求每月盈利的增长率;(2)按照这个增长率,预计今年五月份的盈利能达到多少元?【分析】(1)设每月盈利的增长率为x,根据等量关系:二月份盈利额×(1+增长率)2=四月份的盈利额列出方程求解即可.(2)五月份盈利=四月份盈利×(1+增长率).【解答】解:(1)设每月盈利的增长率为x,根据题意得:5000(1+x)2=6050.解得:x1=10%,x2=﹣210%(不符合题意,舍去).答:每月盈利的平均增长率为10%;(2)6050(1+10%)=6655(元).答:按照这个增长率,预计今年五月份这家商店的盈利将达到6655元.【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量×(1±x)2=后来的量,其中增长用+,减少用﹣,难度一般.21.(10分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=400米,∠D=30°.那么另一边开挖点E离D多远正好使A、C、E三点在一直线上(≈1.732,结果精确到1米)?【分析】由∠ABD=120°,可求出∠EBD=60°,再结合∠D=30°,可证∠BED=90°,根据含30°角的直角三角形的性质,可得BE=BD,从而求得BE的长,在Rt△BDE中,根据勾股定理,即可求出DE的长.【解答】解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=400m,∠D=30°,∴BE=BD=200m,∴DE==200≈346(m),答:另一边开挖点E离D346m,正好使A,C,E三点在一直线上.【点评】本题主要考查了勾股定理、含30°角直角三角形的性质的应用.22.(12分)【问题提出】在2020年抗击新冠肺炎的斗争中,某中学响应政府“停课不停学”的号召进行线上学习,七年级一班的全体同学在自主完成学习任务的同时,全班每两个同学都通过一次视频电话,彼此关怀,互相勉励,共同提高,若每两名同学之间仅通过一次视频电话,如何求全班50名同学共通过多少次电话呢?【模型构建】用点M1、M2、M3、…、M50分别表示第1、2、3、…、50名同学,把该班级人数n与视频通话次数S之间的关系用如图模型表示:【问题解决】(1)填写如图中第5个图中S的值为15.(2)通过探索发现,通电话次数S与该班级人数n之间的关系式为s=,则当n=50时,对应的S=1225.(3)若该班全体女生相互之间共通话190次,求该班共有多少名女生?【问题拓展】(4)若该班数学兴趣小组的同学,每两位同学之间互发一条微信问候,小明统计全组共发送微信110条,则该班数学兴趣小组的人数是11人.【分析】(1)根据图形即可得知;(2)由前面几个图形可以得出规律S=,然后将n=50代入即可;(3)设该班有x名女生,根据题意,列方程,解方程即可;(4)设该班数学兴趣小组有m人,根据题意列方程m(m﹣1)=110,解方程即可.【解答】解:(1)根据图形可知S=15,故答案为:15.(2)通过几个图形,可以得出规律:S=,∴当n=50时,代入得S=1225.故答案为:S=,1225.(3)设该班共有女生x名,根据题意,得,解得x1=20,x2=﹣19(不符合题意,舍去),答:该班共有20名女生.(4)设该班数学兴趣小组有m人,根据题意,得m(m﹣1)=110,解方程得x1=11,x2=﹣10(不符合题意,舍去),故答案为:11.【点评】本题考查了一元二次方程的实际应用,推出图形的规律并根据题意列方程是解决本题的关键.。
安徽省皖南名校2020-2021学年高二上学期期中考试 数学试题(扫描版含答案详解)
![安徽省皖南名校2020-2021学年高二上学期期中考试 数学试题(扫描版含答案详解)](https://img.taocdn.com/s3/m/f26238a4fc4ffe473368abc0.png)
高二数学参考答案
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)
题号
1 2 3 4 5 6 7 8 9 10
11
12
答案 D C C B D D A A B B
C
D
{ } 1.D【解析】∵ A = {x | 2 < x < 4} , B = x x2 − 4x + 3 < 0 , = {x |1 < x < 3}
x + y ≥1
【解析】由约束条件 y − x ≤1,作出可行域如图中阴影部分, x ≤ 1
由图可知,当
z
取得最小值时,最优解为
A
,联立
x y
+ −
y x
= =
1 1
,解得
A(
0,1)
,∴
z
=
2x
−
y
+
3
的最小值为 2×0 −1+ 3 = 2 .
高二数学参考答案 第 3 页(共 9 页)
15.【答案】 ( −4, 2)
−
a3
=
1 3
−
1 4பைடு நூலகம்
⋅⋅⋅
an
−
an−1
=
1 n −1
−
1 n
an
−
a1
=
1−
1 n
a1 = 1
所以 ,所以 an
=
2
−
1 n
a2020
=
2
−
1 2020
=
4039 2020
.
10.B【解析】当
S N
安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案
![安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案](https://img.taocdn.com/s3/m/913a548d294ac850ad02de80d4d8d15abf230078.png)
安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案2020—2021学年度第一学期高二第二次考试数学(理)试题 ★祝考试顺利★注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
第I 卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。
) 1.若直线l 与直线1,7y x ==分别交于点,P Q ,且线段PQ 的中点坐标为()1,1-,则直线l 的斜率为( )A. 13 B 。
13- C 。
32- D.232。
直线l 经过()2,1A , 11,2B m m⎛⎫+-⎪⎝⎭两点()0m >,那么直线l 的倾斜角的取值范围是( )A. ,42ππ⎡⎫⎪⎢⎣⎭B.0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭C.0,4π⎡⎤⎢⎥⎣⎦D.0,,42πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭3。
直线2130x my m -+-=,当m变化时,所有直线都过定点( )A. 1,32⎛⎫- ⎪⎝⎭B 。
1,32⎛⎫⎪⎝⎭C. 1,32⎛⎫- ⎪⎝⎭ D 。
1,32⎛⎫-- ⎪⎝⎭4。
下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ay b+=1表示D 经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121来表示5。
已知直线1l :70x my ++=和2l :()2320m x y m -++=互相平行,则实数m = ( )A. 1m =-或 3 B 。
浙江省9 1高中联盟2020-2021学年高二上学期期中考试数学试题 Word版含答案
![浙江省9 1高中联盟2020-2021学年高二上学期期中考试数学试题 Word版含答案](https://img.taocdn.com/s3/m/842081fb0066f5335b8121c9.png)
2020学年第一学期9+1高中联盟期中考试高二年级数学学科试题第Ⅰ卷(选择题 共40分)一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线3y =+的倾斜角为( )A . 30°B . 60°C . 120°D .150°2. 已知直线1:10l mx y +-=,()2:2310l m x my ++-=,m R ∈,则“2m =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.椭圆2241x y +=的离心率为 ( )A .34 B C . 23D .4. 在空间直角坐标系中,已知()()1,0,2,3,2,4M N --,则MN 的中点Q 关于平面xOy 的对称点坐标是( )A .()1,1,1-B .()1,1,1--C . ()1,1,1--D .()1,1,1 5. 已知m 为空间的一条直线,,αβ为两个不同的平面,则下列说法正确的是( ) A .若//,//m ααβ,则//m β B .若,m αβα⊥⊥,则//m β C . 若//,m ααβ⊥,则m β⊥ D .若,//m ααβ⊥,则m β⊥6. 方程2x =所表示的曲线大致形状为( )A .B .C .D .7. 已知点F 为椭圆221:+184x y C =的右焦点,点P 为椭圆1C 与圆()222:218C x y ++=的一个交点,则PF =( )A . 1BC . 2D .8. 设有一组圆()()()224*:1k C x y k k k N -+-=∈,给出下列四个命题:①存在k ,使圆与x 轴相切 ②存在一条直线与所有的圆均相交 ③存在一条直线与所有的圆均不相交 ④所有的圆均不经过原点 其中正确的命题序号是( )A .①②③B .②③④C .①②④D .①③④9. 若三棱锥P ABC -满足,,,PA BC PB AC PC AB ===,则该三棱锥可能是( ) A .2,3,4AB BC CA === B .3,4,5AB BC CA === C . 4,5,6AB BC CA === D .以上选项都不可能10. 如图,在棱长为1的正方体中1111ABCD A B C D -,若点,M N 分别为线段1BD ,1CB 上的动点,点P 为底面ABCD 上的动点,则MN MP +的最小值为( )A .23B .CD .1第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知直线():10l mx y m m R ++-=∈过定点P ,则点P 的坐标是___________,点P 关于直线20x y +-=的对称点Q 的坐标是__________.12.某几何体的三视图如图所示,其中俯视图中的圆弧为14圆周,则该几何体的体积为__________,表面积为___________.13.已知(),P m n 是椭圆2214x y +=上的动点,则23m n +的最大值是 ,点P 到直线:20l x y -+=的最小距离是___________.14.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面ABC ,AD PB ⊥,垂足为D ,DE PC ⊥,垂足为E ,若2PA AC ==,则PEEC= ,三棱锥P ADE -体积的最大值是__________.15.经过点()2,1M -作圆22:5O x y +=的切线,则切线的方程为 .16.已知正三棱柱111ABC A B C -的棱长均为2,则异面直线AB 与1A C 所成角的余弦值为 .17.已知O 为坐标原点,12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左右焦点,A 为椭圆的右顶点,P为C 上一点,且2PF x ⊥轴,过点A 的直线l 与线段2PF 交于点M ,与y 轴交于点N ,若直线1F M 与y 轴交于点Q ,且3ON OQ =,则C 的离心率为___________.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知m R ∈,命题:p 方程22119x y m m+=+-表示焦点在y 轴上的椭圆;命题:q 函数()2f x x x m =-+在[]2,2-上有零点.(1)若命题p 是真命题,求实数的取值范围;(2)若命题,p q 中有且只有一个真命题,求实数m 的取值范围. 19. 如图,三棱柱111ABC A B C -的棱长均相等,113CC B π∠=,平面ABC ⊥平面11BCC B ,,E F 分别为棱11A B 、BC 的中点.(1)求证://BE 平面11A FC ; (2)求二面角111F AC B --的大小.20. 如图,已知三棱锥A BCD -中,点M 在BD 上,2BAD BDC π∠=∠=,BM MD DC ==,且ACD∆为正三角形.(1)证明:CM AD ⊥;(2)求直线CM 与平面ACD 所成角的正弦值.21.如图,已知圆()()221:112C x y -++=,圆()()222:215C x y +++=,过原点O 的直线l 与圆1C ,2C 的交点依次是,,P O Q .(1)若2OQ OP =,求直线l 的方程;(2)若线段PQ 的中点为M ,求点M 的轨迹方程.22.如图,已知椭圆22:143x y Γ+=,斜率为k 的直线l 与椭圆Γ交于,A B 两点,过线段AB 的中点M 作AB 的垂线交y 轴于点C .(1)设直线,OA OB 的斜率分别为12,k k ,若1k =,直线l 经过椭圆Γ的左焦点,求1211k k +的值; (2)若AB =23,14k ⎡⎤∈⎢⎥⎣⎦,求OMC ∆面积的取值范围.试卷答案一、选择题1-5:CABDD 6-10:DBCCA 二、填空题11. ()()1,1,1,3- 12. 26π+,)144π+13. 5,5 14. 3,3415. 250x y -+=16. 4 17. 13三、解答题18.解:(1)命题:91014p m m m ->+>⇒-<<, 即实数m 的取值范围为()1,4-;(2)命题p 真:[]2,2x ∈-时,216,4m x x ⎡⎤=-∈-⎢⎥⎣⎦,p 真q 假时1,44m ⎛⎫∈ ⎪⎝⎭,p 假q 真时[]6,1m ∈--,∴[]16,1,44m ⎛⎫∈--⋃ ⎪⎝⎭. 19.证明:(1)取11A C 的中点G ,连接,EG FG , 于是111//2EG B C ,又111//2BF B C , 所以//BF EG ,所以四边形BFGE 是平行四边形,所以//BE FG ,而BE ⊄面11A FC ,FG ⊆面11A FC , 所以直线//BE 平面11A FC ;(2)连接11,FB B G ,∵ 四边形11BCC B 为菱形,01160CC B ∠=,F 为BC 的中点,∴111FB B C ⊥,∵平面ABC ⊥平面11BCC B ,∴1FB ⊥平面111A B C ,又111B G AC ⊥,∴11FG A C ⊥, ∴1FGB ∠就是二面角11F A C B --的平面角,设棱长为2,则11FB BG ==14FGB π∠=,∴二面角11F A C B --的大小为4π. 20.解:(1)取AD 中点P ,连结,MP CP ,由条件CP AD ⊥, 又由,//2BAD MP AB π∠=得MP AD ⊥,∴AD ⊥面CMP ,又∵CM ⊂面MPC ,∴CM AD ⊥;(2)过M 作MH CP ⊥于点H ,由(1)可知,AD MH ⊥,∴MH ⊥面ACD , ∴MCP ∠即为直线CM 与面ACD 所成的角, 不妨设1CD =,则CM MP CP ===,∴cos MCP ∠==∴sin 3MCP ∠=所以直线CM 与平面ACD21.解:(1)设直线l 的方程为:y kx =,12,C C 到直线l 的距离为12,d d .由条件=221243d d -=,所以2243⨯-=,整理,得240k k -=,解得0k =或4k =, 所以直线l 的方程为:0y =或4y x =;(2)设:l y kx =;则由()()22215y kx x y =⎧⎪⎨+++=⎪⎩消去y ,得()()221240k x k x +++=, 解得122240,1k x x k+==-+.其中2k ≠-, 所以()222424,11k k k Q k k +⎛⎫+-- ⎪++⎝⎭, 由()()22112y kx x y =⎧⎪⎨-++=⎪⎩消去y ,得()()221220k x k x ++-=, 解得342220,1kx x k -==+,其中1k ≠,所以()222222,11k k k P k k -⎛⎫- ⎪++⎝⎭, 设(),M x y ,则()22211211k x k k k y k +⎧=-⎪+⎪⎨+⎪=-⎪+⎩消去k ,得:2220x y x y +++=,(挖去点33,22⎛⎫-- ⎪⎝⎭和36,55⎛⎫- ⎪⎝⎭). 22.解:(1)由已知可得直线l 的方程为:1y x =+,设()()1122,,,A x y B x y ,由221143y x x y =+⎧⎪⎨+=⎪⎩得:27880x x +-=,且121288,77x x x x +=-=-,所以12121212121212121221181113x x x x x x x x k k y y x x x x x x +++=+=+==+++++;(2)设直线l 的方程为:y kx m =+,()()1122,,,A x y B x y ,由22143y kx m x y =+⎧⎪⎨+=⎪⎩,得:()2224384120k x kmx m +++-=,由韦达定理可知21212228412,4343km m x x x x k k -+=-=++, 所以2443M kmx k =-+, 线段AB 的中垂线方程为:221434343km m y x k k k ⎛⎫=-++ ⎪++⎝⎭,整理得2143my x k m =--+, 所以243C my k =-+.又由()222221212228412414234343km m AB x x x x k k k -⎛⎫=+-=+--= ⎪++⎝⎭, 整理可得:2224343k k +-=+,即()222224314341k m k k +=+-+①, 所以()22222411222434343OMD M km m k S OC x m k k k ∆===+++将①代入整理可得:2211112231432124OMC kk S k k k k k k∆=-=-++++, 因为23,14k ⎡⎤∈⎢⎥⎣⎦,所以2k ⎤∈⎥⎣⎦,而我们知道,1112,3124y y k k kk==-++都是关于k 在2⎤⎥⎣⎦上的单调递减函数,所以当1k =时,OMC S ∆有最小值128,当k =时,OMC S ∆所以1,2842OMC S ∆⎡∈⎢⎣⎦.。
2020-2021学年高二上学期期末考试数学试卷(含解析)
![2020-2021学年高二上学期期末考试数学试卷(含解析)](https://img.taocdn.com/s3/m/72afc0b4dc88d0d233d4b14e852458fb770b3834.png)
2020-2021学年高二上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.若3324A 10A n n =,则n =( )A .1B .8C .9D .102.期末考试结束后,某班要安排6节课进行试卷讲评,要求课程表中要排入语文、数学、英语、物理、化学、生物共六节课,如果第一节课只能排语文或数学,最后一节不能排语文,则不同的排法共有( ) A .192种B .216种C .240种D .288种3.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A .0.1536B .0.1808C .0.5632D .0.97284.某市气象部门根据2021年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10℃的月份有5个D .从2021年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势5.若()2N 1,X σ~,则()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,已知()21,3X N ~,则(47)P X <≤=( )A .0.4077B .0.2718C .0.1359D .0.04536.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算()200.01P K k ≥=,根据这一数据分析,下列说法正确的是( )A .有1%的人认为该栏目优秀;B .有1%的把握认为该栏目是否优秀与改革有关系;C .有99%的把握认为电视栏目是否优秀与改革有关系;D .没有理由认为电视栏目是否优秀与改革有关系.7.若1021001210)x a a x a x a x =++++,则012310a a a a a -+-++的值为.A 1B 1C .101)D .101)8.关于()72x +的二项展开式,下列说法正确的是( ) A .()72x +的二项展开式的各项系数和为73B .()72x +的二项展开式的第五项与()72x +的二项展开式的第五项相同C .()72x +的二项展开式的第三项系数为4372CD .()72x +的二项展开式第二项的二项式系数为712C9.如图,某建筑工地搭建的脚手架局部类似于一个3×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A .528B .514C .29D .1210.三棱锥P ABC -中P A 、PB 、PC 两两互相垂直,4PA PB +=,3PC =,则其体积( ) A .有最大值4B .有最大值2C .有最小值2D .有最小值4二、填空题11.最小二乘法得到一组数据(),(1,2,3,4,5)i i x y i =的线性回归方程为ˆ23yx =+,若5125ii x==∑,则51i i y ==∑___________.12.某班举行的联欢会由5个节目组成,节目演出顺序要求如下: 节目甲不能排在第一个,并且节目甲必须和节目乙相邻.则该班联欢会节目演出顺序的编排方案共有____种. 13.若随机变量X 的概率分布如表,则表中a 的值为______.14.设随机变量ξ~B (2,p ),若P (ξ≥1)=59,则D (ξ)的值为_________.15.已知等差数列{}n a 中,33a =,则1a 和5a 乘积的最大值是______.16.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了5个问题就晋级下一轮的概率为___________.17.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下:则该营业窗口上午9点钟时,至少有2人排队的概率是_____.18.点A ,B ,C 在球O 表面上,2AB =,BC =90ABC ∠=︒,若球心O 到截面ABC的距离为___________.19.如图,在三棱柱111ABC A B C -中,四边形11AAC C 是边长为4的正方形,平面ABC ⊥平面11AAC C ,3AB =,5BC =.(℃)求证:1AA ⊥平面;(℃)若点E 是线段的中点,请问在线段是否存在点E ,使得面11AAC C ?若存在,请说明点E 的位置,若不存在,请说明理由; (℃)求二面角的大小.20.四根绳子上共挂有10只气球,绳子上的球数依次为1,2,3,4,每枪只能打破一只球,而且规定只有打破下面的球才能打上面的球,则将这些气球都打破的不同打法数是________.三、解答题21.已知集合(){}()12,,,|,1,2,,1nn i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ℃若()1,2A ,()4,6B ,则(),7d A B =;℃在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ℃在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+;(3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.22.今年4月,教育部办公厅印发了《关于加强义务教育学校作业管理的通知》,规定初中学生书面作业平均完成时长不超过90分钟.某市为了更好地贯彻落实“双减”工作要求,作教育决策,该市教育科学研究院就当前全市初三学生每天完成书面作业时长抽样调查,结果是学生书面作业时长(单位:分钟)都在区间[]50,100内,书面作业时长的频率分布直方图如下:(1)若决策要求:在国家政策范围内,若当前初三学生书面作业时长的中位数估计值大于或等于平均数(计算平均数时,同一组中的数据用该区间的中点值代表)估计值,则减少作业时长;若中位数估计值小于平均数,则维持现状.请问:根据这次调查,该市应该如何决策?(2)调查统计时约定:书面作业时长在区间[]90,100内的为A 层次学生,在区间[)80,90内的为B 层次学生,在区间[70,80)内的为C 层次学生,在其它区间内的为D 层次学生.现对书面作业时长在70分钟以上(含70分钟)的初三学生,按作业时长出现的频率用分层抽样的方法随机抽取8人,再从这8人中随机抽取3人作进一步调查,设这3人来自X 个不同层次,求随机变量X 的分布列及数学期望.23.国家文明城市评审委员会对甲、乙两个城市是否能入围“国家文明城市”进行走访调查.派出10人的调查组.先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分).他们给出甲、乙两个城市分数的茎叶图如图所示:(1)请你用统计学的知识分析哪个城市更应该入围“国家文明城市”,请说明理由;(2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率;(3)从对乙城市的打分中任取2个,设这2个分数中不小于80分的个数为X,求X的分布列和期望.参考答案:1.B【分析】根据排列数的运算求解即可.【详解】由332A 10A n n =得,2(21)(22)10(1)(2)n n n n n n --=--,又3,n n *≥∈N ,所以2(21)5(2)n n -=-,解得8n =, 所以正整数n 为8. 故选:B. 2.B【分析】对第一节课的安排进行分类讨论,结合分步乘法计数原理和分类加法计数原理可得结果.【详解】分以下两种情况讨论:℃若第一节课安排语文,则后面五节课的安排无限制,此时共有55A 种;℃若第一节课安排数学,则语文可安排在中间四节课中的任何一节,此时共有444A 种.综上所述,不同的排法共有54544216A A +=种.故选:B. 3.D【详解】设在一个小时内有ξ台机床需要工人照看,则ξ~B (4,0.2),所以P (ξ≤2)=04C (0.8)4+14C (0.8)3×0.2+24C (0.8)2×(0.2)2=0.972 8. 故选D 4.D【分析】利用折线图可以判断选项ABC 正确,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,所以选项D 错误.【详解】解:由2021年各月的每天最高气温平均值和最低气温平均值(单位:C)︒数据,绘制出的折线图,知:在A 中,各月最高气温平均值与最低气温平均值为正相关,故A 正确;在B 中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B 正确; 在C 中,全年中各月最低气温平均值不高于10C ︒的月份有1月,2月,3月,11月,12月,共5个,故C 正确;在D 中,从2021年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D 错误. 故选:D . 5.C【分析】由题意,得(47)(2)P X P X μσμσ<≤=+<≤+,再利用3σ原则代入计算即可.【详解】℃()21,3X N ~,由()0.6827P X μσμσ-<≤+=,(22)0.9545P X μσμσ-<≤+=,℃1(47)(2)(0.95450.6827)0.13592P X P X μσμσ<≤=+<≤+=-=.故选:C 6.C【分析】利用独立性检验的基本原理即可求出答案.【详解】解:℃()200.01P K k ≥=表示“电视栏目是否优秀与改革没有关系”的概率,℃有99%的把握认为电视栏目是否优秀与改革有关系, 故选:C .【点睛】本题主要考查独立性检验的基本应用,准确的理解判断方法是解决本题的关键,属于基础题. 7.D【详解】分析:令1021001210())f x x a a x a x a x ==++++,再求f(-1)的值得解.详解:令1021001210())f x x a a x a x a x ==++++,1001210(1)1)f a a a a -==-+++.故答案为D .点睛:(1)本题主要考查二项式定理中的系数求法问题,意在考查学生对这些基础知识 的掌握水平.(2) 二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()?··n n f x a a x a x a x =++++,0123(1)n a a a a a f ++++⋅⋅⋅+=, 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-.8.A【分析】利用赋值法求出展开式各项系数和,即可判断A ,根据二项式展开式的通项,即可判断B 、C 、D ;【详解】解:()72x +展开式的通项为7172rrr r T C x -+=⋅⋅,故第二项的二项式系数为177C =,故D 错误; 第三项的系数为2572C ⋅,故C 错误;()72x +的展开式的第五项为43472C x ⋅⋅,()72x +的展开式的第五项为44372C x ⋅⋅,故B 错误; 令1x =则()7723x +=,即()72x +的二项展开式的各项系数和为73,故A 正确; 故选:A 9.B【解析】将问题抽象成“向左三次,向前两次,向上三次”,计算出总的方法数,然后利用插空法计算出最近的行走路线中不连续向上攀登的事件数,最后根据古典概型概率计算公式,计算出所求概率.【详解】从A 的方向看,行走方向有三个:左、前、上. 从A 到B 的最近的行走线路,需要向左三次,向前两次,向上三次,共8次.所以从A 到B 的最近的行走线路,总的方法数有88332332560A A A A =⋅⋅种. 不连续向上攀登的安排方法是:先将向左、向前的安排好,再对向上的方法进行插空.故方法数有:53563232200A C A A ⨯=⋅.所以最近的行走路线中不连续向上攀登的概率为200556014=. 故选:B【点睛】本小题主要考查古典概型的计算,考查有重复的排列组合问题,考查插空法,属于中档题. 10.B【分析】依题意可得1113332P ABC PABV PC SPA PB -=⋅=⨯⨯⋅再利用基本不等式计算可得; 【详解】解:依题意21111132332222P ABCPABPA PB V PC S PA PB PA PB -+⎛⎫=⋅=⨯⨯⋅=⋅≤= ⎪⎝⎭,当且仅当2PA PB ==时取等号,所以()max 2P ABC V -=, 故选:B11.65【分析】由最小二乘法得到的线性回归方程过点(),x y ,代入即可解决 【详解】由5125i i x ==∑可知,数据的平均数2555x ==, 又线性回归方程ˆ23yx =+过点(),x y , 所以25313y =⨯+=,故51551365i i y y ===⨯=∑故答案为:65 12.42【分析】由题意可知,甲可排在第二、三、四、五个,再根据甲、乙相邻,分别计算. 【详解】由题意可知,甲可排在第二、三、四、五个,当甲排在第二、三、四个时,甲乙相邻,有22A 种排法,将甲乙当做一个整体,剩下三个节目全排列,共3×22A ×33A =36种当甲排在第五个时,甲乙相邻,只有一种排法,剩下三个节目全排列,共33A =6种 综上,编排方案共36+6=42种【点睛】本题考查了分类计数原理,分类时要注意不重不漏;解决排列问题时,相邻问题常用捆绑法,特殊位置要优先考虑. 13.0.2【解析】利用概率和为1可求出答案. 【详解】由随机变量X 的概率分布表得: 0.20.30.31a +++=,解得0.2a =. 故答案为:0.2【点睛】本题考查的是分布列的性质,较简单. 14.49【分析】由二项分布的特征,先求出13p =,套公式即可求出D (ξ). 【详解】因为随机变量ξ~B (2,p ),且P (ξ≥1)=59,所以P (ξ≥1)=()11P ξ-<= ()10P ξ-==()25119p --=. 解得:13p =. 所以D (ξ)()12412339np p =-=⨯⨯=.故答案为:4915.9【分析】设出公差,根据等差数列的性质,表示出15,a a ,再列式即可求得结果. 【详解】因为{}n a 是等差数列,设公差为d ,可得13532,2a a d a a d =-=+,于是得()()2153322949a a a d a d d =-+=-≤,当且仅当d =0,即153a a ==时,取得最大值. 故答案为:9.【点睛】本题考查等差数列的下标和性质,属基础题. 16.1443125##0.04608 【分析】认真分析该选手所有可能的答题情况,是本题的关键【详解】由该选手恰好回答了5个问题就晋级下一轮,说明他第4、第5两个问题是连续答对的,第3个问题没有答对,第1和第2两个问题也没有全部答对,即他答题结果可能有三种情况:⨯⨯⨯√√或⨯√⨯√√或√⨯⨯√√,根据独立事件同时发生的概率公式,可得该选手恰好回答了5个问题就晋级下一轮的概率为0.20.20.20.80.8+0.20.80.20.80.8+0.80.20.20.80.8=0.04608⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯故答案为:0.04608 17.0.74【详解】试题分析:x 表示人数,(2)(2)(3)(4)(5)P x P x P x P x P x ≥==+=+=+≥0.30.30.10.040.74=+++=.考点:互斥事件的概率.18.【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,BC =90ABC ∠=︒,所以4AC ==,所以三角形外接圆半径22ACr ==,又球心O 到截面ABC 的距离为R =球体积为(334433V R ππ==⨯=.故答案为:.19.(℃)(℃)(℃)见解析【详解】试题分析:(℃)由正方形的性质得1AC AA ⊥,然后由面面垂直的性质定理可证得结果;(℃)当点E 是线段1AB 的中点时,利用中位线定理可得1DE AC ,进而得出DE 面11AAC C ;(℃)利用二面角的定义先确定11C AC ∠是二面角111C A B C --的平面角,易求得11tan C A C ∠,从而求得二面角的平面角为的度数.试题解析:(℃)因为四边形11AAC C 为正方形,所以1AC AA ⊥. 因为平面ABC ⊥平面11AAC C ,且平面ABC ⋂平面11AAC C AC =, 所以1AA ⊥平面ABC .(℃)当点E 是线段1AB 的中点时,有DE 面11AAC C , 连结1AB 交1AB 于点E ,连结BC ,因为点E 是1AB 中点,点⊄是线段DE 的中点,所以1DE AC . 又因为BC ⊂面11AAC C ,11A C 面11AAC C ,所以DE 面11AAC C .(℃)因为1AA ⊥平面ABC ,所以.又因为,所以面11AAC C ,所以11A B ⊥面11AAC C ,所以11A B ⊥1A C ,11A B ⊥11A C ,所以11C AC ∠是二面角111C A B C --的平面角, 易得,所以二面角111C A B C --的平面角为45°.考点:1、线面垂直的判定;2、线面平行的判定;2、二面角.【方法点睛】立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究.解决这类问题时一般根据探索性问题的设问,假设其存在并探索出结论,然后在假设下进行推理,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设. 20.12600【详解】问题等价于编号为1,2,3,10的10个小球排列,其中2,3号,4,5,6号,7,8,9,10号的排列顺序是固定的,据此可得:将这些气球都打破的不同打法数是101023423412600A A A A =⨯⨯. 21.(1)℃;(2)证明见解析;(3)125n =,证明见解析.【解析】(1)℃根据新定义直接计算.℃根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;℃由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,℃若()1,2A ,()4,6B ,则(),41627d A B =-+-=,℃正确;℃在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y ,所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,℃错误; ℃在ABC 中,若()(),,d A B d A C =,在℃中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,℃错误.空格处填℃(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥.,(3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,℃04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,℃,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=,现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立. 22.(1)该市应该作出减少作业时长的决策; (2)分布列见解析;期望为167.【分析】(1)根据题意,结合频率分布直方图,分别求出中位数和平均数,即可求解; (2)根据题意,结合分层抽样以及离散型随机变量的分布列与期望求法,即可求解. (1)作业时长中位数的估计值为直方图中等分面积的线对立的值,设为x .0.01100.01100.02100.5⨯+⨯+⨯<. 0.01100.01100.02100.03100.5⨯+⨯+⨯+⨯>,()0.01100.01100.02100.03800.5x ∴⨯+⨯+⨯+⨯-=.解得2503x =,即中位数的故计值2503分钟.又作业时长平均数估计值为0.0110550.0110650.021075⨯⨯+⨯⨯+⨯⨯ 2500.0310850.031095813+⨯⨯+⨯⨯=<. 因为中位数的估计值2503分钟大于平均数估计值81分钟, 所以,根据这次调查,该市应该作出减少作业时长的决策. (2)由题,作业时长在70分钟以上(含70分钟)为[90.100],[80,90),[70,80)三个区间,其频率比为3:3:2,分别对应A ,B ,C 三个层次.根据分层抽样的方法,易知各层次抽取的人数分别为3,3,2, 因此X 的所有可能值为1,2,3.因为333821(1)28C P X C ⨯===,111233389(3)28C C C P X C ⋅⋅===, 121221333232382229(2)14C C C C C C P X C ⨯⋅+⨯⋅+⨯⋅===, 所以X 的分在列为:故数学期望19916()1232814287E X =⨯+⨯+⨯=. 23.(1)乙城市更应该入围“国家文明城市”.理由见解析. (2)425; (3)分布列见解析,期望为1.【分析】(1)根据得分的平均值与方差说明,极差最值也可用来说明;(2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,由()()(|)()()P AC P C P C A P A P A ==计算; (2)X 的可能值是0,1,2,分别求得概率得概率分布列,由期望公式计算出期望. (1)乙城市更应该入围“国家文明城市”. 理由如下:由茎叶图,计算两个城市的得分的均值为 甲:6365987910x +++==,乙:6568927910y +++==,均值相等,方差为甲:222211[(16)(14)19]13610s =-+-++=, 乙:222221[(14)(11)13]59.810s =-+-++=,甲的方差远大于乙的方差,说明乙的得分较稳定,甲极其不稳定,因此乙城市更应该入围“国家文明城市”. (2)记抽到的数据中有大于80分为事件A ,甲城市抽到的分数有大于80分为事件B ,乙城市抽到的分数有大于80分为事件C ,262102()13C P B C =-=,252107()19C P C C =-=,2725()1(1)(1)3927P A =--⨯-=,7()()9P AC P C ==, 所以()()()()749(|)1(|)111252527P AC P C P C A P C A P A P A =-=-=-=-=;(3)乙城市10个人中5个大于80分,5个小于80,X 的可能是0,1,2,252102(0)9C P X C ===,11552105(1)9C C P X C ===,252102(2)9C P X C ===,所以X 的分布列为:52()12199E X =⨯+⨯=.。
皖南名校2020-2021学年度(上)高二年级期中考试英语试题及答案
![皖南名校2020-2021学年度(上)高二年级期中考试英语试题及答案](https://img.taocdn.com/s3/m/1e11bda7a8114431b90dd8df.png)
皖南名校2020—2021学年上期期中考试高二英语参考答案一、听力1—5ACACB 6—10CBACC 11—15AABBA 16—20BCACB一、阅读理解21-23CBD 24-27DAAD 28-31CBBC 32-35DCAB 36-40EDFAG二、完形填空41-45BACDC 46-50ADBBA 51-55CDBAD 56-60BADCC三、语法填空61.length 62.built 63.finishing 64.of 65.were made66.increasingly 67.an 68.projects 69.more popular 70.If四、短文改错My dog Banner has a heart of st Sunday,she finds a sealed box in the woods withseven newborn cats inside only a day old or almost frozen to death.Banner led myself to the woods,which I took out the tiny cats one by one carefully after opening the box.I guessed someone must just abandoned them.Since that moment,Banner hasn't left the cats and has adopted to them as if they were her own baby.She took care of them sincere.I am so happy now because of Banner.These cats will go on live their lives with loving families.I am deeply moving by my kind Banner.五、书面表达One possible answer:Last weekend,our classmates,accompanied by our teachers,went to visit the West Hill Park as an autumn hike.It was a fine day,which made us relaxed.When we arrived at the park at 10:00in the morning,our teachers asked us to appreciate the beautiful scenery.We noticed some leaves turning yellow and some still remaining green.The whole park looked just like a great painting.Some students began to take photos in order to keep the moment for ever.We walked,sang some songs and laughed happily.∧have ∕sincerelymovedand where mebabies living foundAs far as I am concerned,we have lost ourselves in studying for so long a time that we have forgotten to enjoy the beauty of nature in person.I do wish that our school would organize more such activities in future.听力文本Text1W:I don’t know how to start my iPhone.Did I break it?Why is the screen all black?M:You just press these two buttons at the same time.There,see?Now it’s working again.(1)Text2M:I was thinking we could take a picnic to the lake this afternoon.Do we have any food to take,or should we go to the store?W:I think we have some bread and meat to make some sandwiches,but we could still stop at the store to buy some chips.(2)Text3W:I want to sell this old refrigerator.How much do you think I can get for it?I bought it for$800 five years ago.(3)It works really well,except for the broken shelf.M:If the shelf weren’t broken,I’d say you could get$300.But you’ll probably only get about$150. Text4M:My wife and I are planning on driving from California to Canada for a few weeks.(4)W:That’s exciting.My husband and I took a car trip from New York to Canada a few years ago.It was a lot of fun.Text5W:All the plants in my garden died!I don’t know what happened.I watered them a lot and fed them plant food.What did I do wrong?M:Maybe the garden wasn’t in enough sun.You did plant it on the side of the house that gets the most shade.(5)Text6M:Today in class,we learned all about Christopher Columbus.(7)W:Oh,yeah?What did you learn about him,sweetheart?(7)M:That he discovered America,except the Native Americans were there first…so really,they were the ones that discovered America.(6)W:When I was your age,I learned a song in school about Columbus.(7)It starts like this:“In 1492,Columbus sailed the ocean blue.He had three ships that left from Spain;he sailed through sunshine,wind,and rain.”There’s more,but I forget the rest.M:I like that song.Text7W:I’m feeling very shaky this morning.(8)M:Try drinking some water or having something to eat.W:I already ate a cake,but I’m still feeling strange.(8)M:Are you sure you’re not sick or something?W:I could be.M:Yeah,you don’t look very good.Maybe you should skip the meeting this afternoon.I’m sure everyone will understand.W:OK.I think I might just go home now.Do you mind telling the boss for me?(9)I’ll finish my project when I come back tomorrow,if I’m feeling better.M:Sure.(9)Are you okay to drive?W:I think so.I’ll just drive slowly.Text8W:Excuse me,sir.Do you intend to pay for that cookie you just ate?M:What cookie?W:I just saw you grab a cookie from the counter and put it in your mouth.(10)M:I didn’t do that.W:Yes,you did.I just saw you,and you have some chocolate on your face.(10)You need to pay.M:I’d pay for the cookie if I ate it,but I didn’t.(11)W:Sir,we have video cameras in the store.Would you like to come into the back with me?I can show you the tape.M:I don’t see any cameras.W:Look right there.See it?And we have another one right over there.M:Okay,fine.I ate the cookie.How much will it be?(12)W:$2.M:$2?The cookie wasn’t even that good.Here,take the money.(12)W:Next time,please pay before you eat something.Otherwise,it’s considered stealing,and I could call the police.Text9M:Jennie and Matt got lucky this weekend.The weather is perfect for an outdoor wedding.(13)W:Yeah,it really is.M:Do you think there will be a lot of dancing at the celebration tonight?W:I hope so!I’m also really hungry.When is the food going to be served?(14)M:Soon,I hope.Did you see those small pieces of cheese they had over at the table in the front?I ate a bunch of those when we first arrived.(15)W:No,I didn’t see those!I missed out.Cheese sounds really good right now.M:Matt told me they’re serving fish tonight.And rice.W:I’m looking forward to the cake for dessert.M:I think Jennie looked really beautiful this afternoon.(16)W:She really did.That dress must have cost a lot of money.(16)M:I liked the flowers in her hair.That was a nice detail.The color of the flowers matched Matt’s tie!W:Oh,look!The food is coming out!Let’s head over there.Text10Attention,beauty salon employees!We have an exciting announcement.It is time to give out our awards.Every year,we give three awards to our best employees at Elegant Salon.This year,the Best Customer Service award goes to Jen.Jen always smiles when customers walk in the door.She’s friendly,funny,and always makes customers feel calm and happy.(17)Jen started working at Elegant Salon two years ago.When she first started,she didn’t know anything about answering phones or making appointments.Today,she is one of our best employees!The Best Hairdresser award goes to Luisa.(18)Luisa does a fantastic job cutting people’s hair.Every day, a new customer calls asking for Luisa.Luisa is one of our newest employees,but in the last three months,she has already become one of our most valuable workers!Finally,our Employee of the Year award goes to Dina.Dina has worked for this salon for seven years and has changed it for the better.(19)While Dina has always been a great employee,this year,she taught four new employees how to do their jobs.Sometimes Dina can be strict,but it’s because she loves this salon. Jen,Luisa,and Dina will all get$300and two extra vacation days.(20)If you didn’t win an award this year,you can always try again next year!。
安徽省芜湖市2020-2021学年八年级下学期期中考试数学试卷(含答案)
![安徽省芜湖市2020-2021学年八年级下学期期中考试数学试卷(含答案)](https://img.taocdn.com/s3/m/665e173e7275a417866fb84ae45c3b3567ecdd2d.png)
安徽省芜湖市2020-2021学年八年级下学期期中数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.下列各式是最简二次根式的是()A.B.C.D.2.下列各式计算正确的是()A.6﹣2=4B.5+5=10C.4÷2=2D.4×2=8 3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC4.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:65.如图,有两棵树分别用线段AB和CD表示,树高AB=15米,CD=7米,两树间的距离BD=6米,一只鸟从一棵树的树梢(点A)飞到另一棵树的树梢(点C),则这只鸟飞行的最短距离AC=()A.6米B.8米C.10米D.12米6.当有意义时,a的取值范围是()A.a≥2B.a>2C.a≠2D.a≠﹣27.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或338.如图,△ABC和△DCE都是边长为3的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长()A.B.2C.3D.49.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3B.4C.6D.810.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1四边的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为()A.B.C.D.二、填空题(本题共4小题,每小题5分,共20分)11.(5分)﹣=.12.(5分)命题“对顶角相等”的逆命题是.13.(5分)如图所示,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为.14.(5分)已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边△ABD 和等边△BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是.三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:×﹣÷+(π﹣2021)0.16.(8分)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;四、(本大题共2小题,每小题8分,共16分)17.(8分)如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.18.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.五、(本大题共2小题,每小题10分,共20分)19.(10分)在5×5的正方形网格中,每个小正方形的边长均为1.以格点为顶点.(1)在图1中画一个边长分别为、2、的三角形;(2)在图2中画出一个两边长都为,面积都为2的三角形.20.(10分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.(1)在Rt△ABC中,AC=m,BC=n,∠ACB=90°,若图①中大正方形的面积为61,小正方形的面积为1,求(m+n)2;(2)若将图①中的四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,求这个风车的外围周长(图中实线部分).六、(本题满分12分)21.(12分)如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.七、(本题满分12分)22.(12分)观察下列各式:请利用你所发现的规律,解决下列问题:(1)第4个算式为:;(2)求的值;(3)请直接写出的结果.八、(本题满分14分)23.(14分)如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD 上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DP A'=10°时,∠A'PB=度;(2)如图2所示,当P A'⊥BC时,求线段P A的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.下列各式是最简二次根式的是()A.B.C.D.【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可.【解答】解:A、=3,故不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、=2,故不是最简二次根式,故C选项错误;D、=,故不是最简二次根式,故D选项错误;故选:B.【点评】本题考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键.2.下列各式计算正确的是()A.6﹣2=4B.5+5=10C.4÷2=2D.4×2=8【分析】直接利用二次根式的加减、乘除运算法则分别判断得出答案.【解答】解:A.6﹣2=4,故此选项不合题意;B.5+5无法合并,故此选项不合题意;C.4÷2=2,故此选项不合题意;D.4×2=8,故此选项符合题意;故选:D.【点评】此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD 为平行四边形的是()A.AB∥CD,AD∥BC B.AD∥BC,AB=CDC.OA=OC,OB=OD D.AB=CD,AD=BC【分析】根据平行四边形的判定方法即可判断.【解答】解:A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.【点评】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.4.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.如图,有两棵树分别用线段AB和CD表示,树高AB=15米,CD=7米,两树间的距离BD=6米,一只鸟从一棵树的树梢(点A)飞到另一棵树的树梢(点C),则这只鸟飞行的最短距离AC=()A.6米B.8米C.10米D.12米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=15m,小树高为CD=7m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=7m,EC=6m,AE=AB﹣EB=15﹣7=8(m),在Rt△AEC中,AC==10m,故小鸟至少飞行10m.故选:C.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.6.当有意义时,a的取值范围是()A.a≥2B.a>2C.a≠2D.a≠﹣2【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选:B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.故选:C.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.8.如图,△ABC和△DCE都是边长为3的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长()A.B.2C.3D.4【分析】根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现∠BDE=90°,再进一步根据勾股定理进行求解.【解答】解:∵△ABC和△DCE都是边长为3的等边三角形,∴∠DCE=∠CDE=60°,BC=CD=3.∴∠BDC=∠CBD=30°.∴∠BDE=90°.∴BD=.故选:C.【点评】此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理.9.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.3B.4C.6D.8【分析】连接EC,过A作AM∥BC交FE的延长线于M,求出平行四边形ACFM,根据等底等高的三角形面积相等得出△BDE的面积和△CDE的面积相等,△ADE的面积和△AME的面积相等,推出阴影部分的面积等于平行四边形ACFM的面积的一半,求出CF ×h CF的值即可.【解答】解:连接EC,过A作AM∥BC交FE的延长线于M,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥CD,∴AM∥DE∥CF,AC∥FM,∴四边形ACFM是平行四边形,∵△BDE边DE上的高和△CDE的边DE上的高相同,∴△BDE的面积和△CDE的面积相等,同理△ADE的面积和△AME的面积相等,即阴影部分的面积等于平行四边形ACFM的面积的一半,是×CF×h CF,∵△ABC的面积是24,BC=3CF∴BC×h BC=×3CF×h CF=24,∴CF×h CF=16,∴阴影部分的面积是×16=8,故选:D.【点评】本题考查了平行四边形的性质和判定,三角形的面积的应用,主要考查学生的推理能力和转化能力,题目比较好,但是有一定的难度.10.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1四边的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为()A.B.C.D.【分析】根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A8B8C8D8的周长.【解答】解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是正方形ABCD的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即正方形ABCD的,则周长是正方形ABCD的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即正方形ABCD的,则周长是正方形ABCD的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,即正方形ABCD的,则周长是正方形ABCD的;…故第n个正方形周长是原来的,以此类推:正方形A8B8C8D8周长是原来的,∵正方形ABCD的边长为1,周长为4,∴按此方法得到的四边形A8B8C8D8的周长为,故选:C.【点评】本题考查了利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方的性质.进而得到周长关系.二、填空题(本题共4小题,每小题5分,共20分)11.(5分)﹣=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:原式=3﹣=2.故答案为:2.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并,难度一般.12.(5分)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为:相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.13.(5分)如图所示,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=4,则AB的长为4.【分析】根据平行四边形的性质可得AB=CD,AD∥CD,然后根据角平分线定义证明DE=DC,进而可以解决问题.【解答】解:在平行四边形ABCD中,AB=CD,AD∥CD,∴∠DEC=∠BCE,∵AD=2AB,∴AD=2CD,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DCE=∠DEC,∴DE=DC,∴AD=2DE,∵AD=AE+DE,∴DE=AE=4,∴AB=4,故答案为:4.【点评】本题考查了平行四边形的性质,解决本题的关键是掌握平行四边形的性质.14.(5分)已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边△ABD 和等边△BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是.【分析】连接DC和AE,取AC的中点P,连接PM、PN,过P作PQ⊥MN于点Q,过点D作DH⊥AB于点H,证明△ABE≌△DBC,得到AE=DC,利用中位线的性质证明PM=PN,由勾股定理都觉得CD的长度,便可得PM与PN的长度,根据中位线的性质把∠MP A+∠NPC转化成∠MCA+∠MAC,根据∠DMA=∠MCA+∠MAC可知求出∠DMA 度数即可,再解直角三角形求得NQ,便可得MN的长度.【解答】解:连接DC和AE,取AC的中点P,连接PM、PN,过P作PQ⊥MN于点Q,过点D作DH⊥AB于点H,∵△ABD和△BCE都是等边三角形,∴AB=DB,BE=BC,∠ABD=∠CBE=60°,∴∠ABE=∠DBC,在△ABE和△DBC中,,∴△ABE≌△DBC(SAS).∴AE=DC.∠AEB=∠DCB,∵P为AC中点,N为EC中点,∴PN=AE.同理可得PM=DC.∴PM=PN.∵AC=6,BC=2,∴AB=4,∵△ABD是等边三角形,∴BD=AB=4,∴DH=BD•sin60°=2,BH=,∴,∴PM=PN=,∵P为AC中点,N为EC中点,∴PN∥AE.∴∠NPC=∠EAC.同理可得∠MP A=∠DCA,∴∠MP A+∠NPC=∠EAC+∠DCA.又∠DCA=∠AEB,∴∠MP A+∠NPC=∠EAC+∠AEB=∠CBE=60°.∴∠MPN=180°﹣60°=120°,∴∠NPQ=∠MPQ=60°,∴MQ=NQ=PN•sin60°=,∴.解法二:如图,过点M作MH⊥AB于H,过点N作NG⊥BC于G,过点N作NK⊥MH 于K.想办法求出MK,NK,路勾股定理求解.故答案为:.【点评】本题主要考查全等三角形的判定和性质、中位线的性质、等边三角形的性质,解题的关键是找到“手拉手”全等模型的构造直角三角形.难度较大,一般为中考压轴题.三、(本大题共2小题,每小题8分,共16分)15.(8分)计算:×﹣÷+(π﹣2021)0.【分析】直接利用二次根式的乘除运算法则以及零指数幂的性质分别化简,再合并得出答案.【解答】解:原式===.【点评】此题主要考查了二次根式的乘除运算以及零指数幂的性质,正确掌握相关运算法则是解题关键.16.(8分)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.【点评】本题考查二次根式,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.四、(本大题共2小题,每小题8分,共16分)17.(8分)如图所示,在四边形ABCD中,AB=2,BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.【分析】连接BD,根据已知条件运用勾股定理可求BD,再运用勾股定理逆定理可证△ABD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.【解答】解:连接BD,∵∠C=90°,∴△BCD为直角三角形,∵BD2=BC2+CD2=22+12=()2,∵BD>0,∴BD=,在△ABD中,∵AB2+BD2=20+5=25,AD2=52=25,∴AB2+BD2=AD2,∴△ABD为直角三角形,且∠ABD=90°,∴S四边形ABCD=S△ABD+S△BCD=×2×+×2×1=6.故四边形ABCD的面积是6.【点评】考查了勾股定理和勾股定理逆定理,通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过程变得简单.18.(8分)如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.求证:AE=CF.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,∠ABC=∠ADC,根据平行线的性质得出∠BAC=∠DCF,根据角平分线定义得出∠ABE=∠CDF,那么利用AAS证明△ABE≌△CDF,推出AE=CF.【解答】证明:因为四边形ABCD是平行四边形,所以AB=CD,AB∥CD,∠ABC=∠ADC,所以∠BAC=∠DCF,又因为BE、DF分别是∠ABC、∠ADC的平分线,所以∠ABE=∠ABC,∠CDF=∠ADC,所以∠ABE=∠CDF,所以△ABE≌△CDF(ASA),所以AE=CF.【点评】本题考查了平行四边形的性质,全等三角形的判定和性质,解答本题的关键寻找两条线段所在的三角形,然后证明两三角形全等.五、(本大题共2小题,每小题10分,共20分)19.(10分)在5×5的正方形网格中,每个小正方形的边长均为1.以格点为顶点.(1)在图1中画一个边长分别为、2、的三角形;(2)在图2中画出一个两边长都为,面积都为2的三角形.【分析】(1)利用网格根据勾股定理即可在图1中画一个边长分别为、2、的三角形;(2)利用网格根据勾股定理和三角形的面积公式即可在图2中画出一个两边长都为,面积都为2的三角形.【解答】解:(1)如图,△ABC即为所求;(2)如图,△DEF,△MNQ即为所求.【点评】本题考查了作图﹣应用与设计作图,二次根式的应用,勾股定理,解决本题的关键是利用网格准确画图.20.(10分)图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.(1)在Rt△ABC中,AC=m,BC=n,∠ACB=90°,若图①中大正方形的面积为61,小正方形的面积为1,求(m+n)2;(2)若将图①中的四个直角三角形中较长的直角边分别向外延长一倍,得到图②所示的“数学风车”,求这个风车的外围周长(图中实线部分).【分析】(1)由题意(n﹣m)2=1,m2+n2=61,推出2mn=60,可得(m+n)2=m2+n2+2mn =121.(2)由(1)可知,求出m,n的值,再利用勾股定理求解即可.【解答】解:(1)由题意(n﹣m)2=1,m2+n2=61,∴2mn=60,∴(m+n)2=m2+n2+2mn=61+60=121;(2)由(1)可知,∴,∴AC=5,BC=6,∵∠ACB=90°,AC=5,CD=12,∴AD===13,∴这个风车的外围周长=4(13+6)=76.【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.六、(本题满分12分)21.(12分)如图,四边形ABCD是平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.【分析】(1)根据平行四边形的性质得出AD∥BC,AB=CD,根据平行线的性质得出∠DAE=∠AEB,求出∠BAE=∠AEB,根据等腰三角形的判定得出即可;(2)根据等腰三角形的性质得出AF=EF,求出△ADF≌△ECF,根据全等三角形的性质得出DF=CF,再根据平行四边形的判定得出即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,∴BE=CD;(2)∵BE=AB,BF平分∠ABE,∴AF=EF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴DF=CF,又∵AF=EF,∴四边形ACED是平行四边形.【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定,等腰三角形的判定和平行线的性质等知识点,能综合运用定理进行推理是解此题的关键.七、(本题满分12分)22.(12分)观察下列各式:请利用你所发现的规律,解决下列问题:(1)第4个算式为:;(2)求的值;(3)请直接写出的结果.【分析】根据题目的规律进行计算即可.不难发现由根号形式转化为积的形式.因此(1)可以猜想到接下来的第4个算式为:,(2)题中可以根据题目进行每一项的转化.从而计算出结果;(3)第(2)题进一步扩展到n项即可.详见解答过程.【解答】解:(1)依题意:接下来的第4个算式为:故答案为(2)原式====(3)原式====【点评】此题考查的是二次根式的化简,要观察到的转化.此类题即可解决八、(本题满分14分)23.(14分)如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD 上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DP A'=10°时,∠A'PB=85度;(2)如图2所示,当P A'⊥BC时,求线段P A的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.【分析】(1)求出∠AP A′,利用翻折不变性解决问题即可.(2)如图2中,作BH⊥AD于H.解直角三角形AH,PH即可解决问题.(3)△BF A′的周长=F A′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,推出当BA′的长度最小时,△BF A′的周长最小,由此即可解决问题.【解答】解:(1)如图1中,∵∠DP A′=10°,∴∠AP A′=180°﹣∠DP A′=180°﹣10°=170°,由翻折的性质可知:∠A′PB=∠APB=×170°=85°.故答案为85.(2)如图2中,作BH⊥AD于H.在Rt△ABH中,∵∠AHB=90°,AB=10,∠A=60°,∴AH=AB•cos60°=5,BH=AB•sin60°=5,∵四边形ABCD是平行四边形,∴AD∥BC,∵P A′⊥BC,∴P A′⊥AD,∴∠AP A′=90°,∴∠HPB=∠BP A′=45°,∴PH=BH=5,∴P A=AH+PH=5+5.(3)如图3中,作BH⊥AD于H,连接BP.∵P A=8,AH=5,∴PH=8﹣5=3,∵BH=5,∴PB===2,由翻折可知:P A=P A′=8,F A=F A′,∴△BF A′的周长=F A′+BF+BA′=AF+BF+BA′=AB+BA′=10+BA′,∴当BA′的长度最小时,△BF A′的周长最小,∵BA′≥PB﹣P A′,∴BA′≥2﹣8,∴BA′的最小值为2﹣8,∴△BF A′的周长的最小值为10+2﹣8=2+2.【点评】本题考查翻折变换,平行四边形的性质,解直角三角形,两点之间线段最短等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
皖南名校2020-2021学年上期期中考试
高二数学试题
(考试时间:120分钟 试卷满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1.已知集合A ={x|2<x<4},B ={x|x 2-4x +3<0},则A ∩B =
A.{x|1<x<4}
B.{x|2<x<4}
C.{x|3<x<4}
D.{x|2<x<3}
2.直线3x +3y +1=0的倾斜角是
A.30°
B.60°
C.120°
D.135°
3.已知m ,n 是空间中两条不同直线,α是平面,则
A.若m//α,n ⊂α,则m//n
B.若m//α,n//α,则m ⊥n
C.若m ⊥α,n ⊥α,则m//n
D.若m ⊥α,n ⊥α,则m ⊥n
4.下列函数既是奇函数又是增函数的是
A.y =cos(2x +2
π) B.y =x 3 C.y =lnx 3 D.y =23x 5.设a =30.7,b =(13
)-0.8,c =logo 0.70.8,则a ,b ,c 的大小关系为 A.a<b<c B.b<a<c C.b<c<a D.c<a<b
6.已知直线l 过圆x 2+y 2-2x =0的圆心,且与直线2x -y -1=0平行,则l 的方程是
A.2x +y -2=0
B.2x -y +2=0
C.2x -y -3=0
D.2x -y -2=0
7.函数f(x)=3cos x x x x
-+在[-2π,2π]上的图像大致为
8.已知sin(α+3π)+sin α43,则sin(α+6
π)的值是 A.45 B.-45
C.35
D.-235
9.已知数列{a n }中,a 1=1,a n +1-a n =()
1n n 1+,则a 2020等于 A.20192020 B.40392020 C.20202021 D.40412021
10.中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式:
C =Wlog 2(1+
S N
)。
它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中S N 叫做信噪比。
当信噪比比较大时,公式中真数中的1可以忽略不计。
按照香农公式,若不改变带宽W ,而将信噪比S N
从1000提升至4000,则C 大约增加了 附:lg2≈0.3010
A.10%
B.20%
C.50%
D.100%
11.设a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,已知D 是BC 边的中点,且a 2-b 2-c 2=1,则()
AB DA DB ⋅+等于
C.12
D.
12.设f(x)=()
2x 1(x 0)4xcos x 1x 0π⎧+≥⎪⎨-<⎪⎩,g(x)=kx -1(x ∈R),若函数y =f(x)-g(x)在x ∈[-2,3]
内有4个零点,则实数k 的取值范围是
,4)
4]
,113)
113
] 二、填空题(本大题共4小题,每小题5分,共20分)
13.设f(x)=()()x 1232e ,x 2log x 1(x 2)-⎧<⎪⎨-≥⎪⎩,
,则f(f(1))= 。
14.若变量x ,y 满足约束条件x y 1y x 1x 1+≥⎧⎪-≤⎨⎪≤⎩
,则z =2x -y +3的最小值为 。
15.已知x>0,y>0,且21x y
+=1,若x +2y>m 2+2m 恒成立,则实数m 的取值范围是 。
16.已知三棱锥P -ABC 的各顶点都在同一球面上,且PA ⊥平面ABC ,若该棱锥的体积为1,AB =2,AC =1,∠BAC =60°,则此球的表面积等于 。
三、解答题(本题共6个小题,共70分。
解答应写出文字说明、证明过程或演算过程)
17.(本小题满分10分)
已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n。
若a1=b1=3,a4=b2,S4-T2=12。
(1)求数列{a n}与{b n}的通项公式;
(2)求数列{a n+b n}的前n项和。
18.(本小题满分12分)
已知点P(3,1),Q(cosx,sinx),O为坐标原点,函数f(x)=OP QP。
(1)求函数f(x)的解析式及最小正周期;
(2)若A为△ABC的内角,f(A)=4,BC=3,△ABC的面积为33
,求△ABC的周长。
19.(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=120°,侧面PAB⊥底面ABCD,PB=26,AB=AC=PA=23。
(1)求证:BD⊥平面PAC;
(2)过AC的平面交PD于点M,若V M-PAC=1
2
V P-ACD,求三棱锥P-AMB的体积。
20.(本小题满分12分)
如图,OM,ON是某景区的两条道路(宽度忽略不计,OM为东西方向),Q为景区内一景点,A为道路OM上一游客休息区,已知tan∠MON=-3,OA=6(百米),Q到直线OM,ON的
距离分别为3(百米),10
5
(百米),现新修一条自A经过Q的有轨观光直路并延伸至道路ON
于点B,并在B处修建一游客休息区。