2022届湖北省大冶市金湖街办重点达标名校中考数学考试模拟冲刺卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.下列事件中是必然事件的是( )
A .早晨的太阳一定从东方升起
B .中秋节的晚上一定能看到月亮
C .打开电视机,正在播少儿节目
D .小红今年14岁,她一定是初中学生
2.如图是二次函数2
y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )
A .①②
B .①②③
C . ①③④
D . ①②④
3.下列计算正确的是( )
A .a 3﹣a 2=a
B .a 2•a 3=a 6
C .(a ﹣b )2=a 2﹣b 2
D .(﹣a 2)3=﹣a 6
4.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )
A .6π
B .12π
C .18π
D .24π
5.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点
的人原地休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系
如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()
A.①②③B.仅有①②C.仅有①③D.仅有②③
6.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()
A.B.
C.D.
7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()
A.球不会过网B.球会过球网但不会出界
C.球会过球网并会出界D.无法确定
8.如果向北走6km记作+6km,那么向南走8km记作()
A.+8km B.﹣8km C.+14km D.﹣2km
9.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()
A.DC=DE B.AB=2DE C.S△CDE=1
4
S△ABC D.DE∥AB
10.下列图形中,哪一个是圆锥的侧面展开图?()
A.B.C.D.
二、填空题(共7小题,每小题3分,满分21分)
11.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.
12.若关于x的方程
2x m
2
x22x
+
+=
--
有增根,则m的值是▲
13.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.
14.若|a|=20160,则a=___________.
15.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝.如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_________袋
16.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.
17.已知点P(a,b)在反比例函数y=2
x
的图象上,则ab=_____.
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.
求:(1)求∠CDB的度数;
(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.
19.(5分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过点D作DE⊥AC,
垂足为E.
(1)证明:DE为⊙O的切线;
(2)连接DC,若BC=4,求弧DC与弦DC所围成的图形的面积.
20.(8分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
21.(10分). 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M 落在如图所示的正方形网格内(包括边界)的概率.
22.(10分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向
的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由
点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30
米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个
小亭A、B之间的距离.
23.(12分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.
24.(14分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.
解:B 、C 、D 选项为不确定事件,即随机事件.故错误;
一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.
故选A .
【点睛】
该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.
2、D
【解析】
根据抛物线开口方向得到a 0>,根据对称轴02b x a
=-
>得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.
【详解】
①根据抛物线开口方向得到0a >,根据对称轴02b x a
=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.
②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确. ③由对称轴123
b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b
c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.
故答案选D.
【点睛】
本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

3、D
【解析】
各项计算得到结果,即可作出判断.
解:A 、原式不能合并,不符合题意;
B 、原式=a 5,不符合题意;
C 、原式=a 2﹣2ab+b 2,不符合题意;
D 、原式=﹣a 6,符合题意,
4、A
【解析】
根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.
【详解】
∵AB BC CD ==,
∴∠AOB=∠BOC=∠COD=60°.
∴阴影部分面积=2606=6360
⨯ππ. 故答案为:A.
【点睛】
本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°
. 5、A
【解析】
解:∵乙出发时甲行了2秒,相距8m ,∴甲的速度为8/2=4m/ s .
∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s .
∵a 秒后甲乙相遇,∴a =8/(5-4)=8秒.因此①正确.
∵100秒时乙到达终点,甲走了4×(100+2)=408 m ,∴b =500-408=92 m . 因此②正确.
∵甲走到终点一共需耗时500/4=125 s ,,∴c =125-2=1 s . 因此③正确.
终上所述,①②③结论皆正确.故选A .
6、A
【解析】
设身高GE=h ,CF=l ,AF=a ,
当x≤a 时,
在△OEG 和△OFC 中,
∠GOE=∠COF (公共角),∠AEG=∠AFC=90°,
∴△OEG ∽△OFC ,OE/OF GE/CF =,
∴()y h h ah y x a x y l l h l h
=∴=-+----,, ∵a 、h 、l 都是固定的常数,
∴自变量x 的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大. 故选A .
7、C
【解析】
分析:(1)将点A (0,2)代入2(6) 2.6y a x =-+求出a 的值;分别求出x =9和x =18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A (0,2)代入2(6) 2.6y a x =-+,
得:36a +2.6=2, 解得:160
a ,=- ∴y 与x 的关系式为21(6) 2.660y x =-
-+; 当x =9时,()2196 2.6 2.45 2.4360
y =--+=>, ∴球能过球网, 当x =18时,()21186 2.60.2060y =-
-+=>, ∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
8、B
【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
【详解】
解:向北和向南互为相反意义的量.
若向北走6km 记作+6km ,
那么向南走8km 记作﹣8km .
故选:B .
【点睛】
本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
9、A
【解析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=1
2
BC,DE=
1
2
AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;
S△CDE=1
4
S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10、B
【解析】
根据圆锥的侧面展开图的特点作答.
【详解】
A选项:是长方体展开图.
B选项:是圆锥展开图.
C选项:是棱锥展开图.
D选项:是正方体展开图.
故选B.
【点睛】
考查了几何体的展开图,注意圆锥的侧面展开图是扇形.
二、填空题(共7小题,每小题3分,满分21分)
11、4或1
【解析】
∵两圆内切,一个圆的半径是6,圆心距是2,
∴另一个圆的半径=6-2=4;
或另一个圆的半径=6+2=1,
故答案为4或1.
【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.
12、1.
【解析】
方程两边都乘以最简公分母(x -2),把分式方程化为整式方程,再根据分式方程的增根就是使
最简公分母等于1的未知数的值求出x 的值,然后代入进行计算即可求出m 的值:
方程两边都乘以(x -2)得,2-x -m=2(x -2).
∵分式方程有增根,∴x -2=1,解得x=2.
∴2-2-m=2(2-2),解得m=1.
13、
【解析】
根据概率的公式进行计算即可.
【详解】
从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是. 故答案为:.
【点睛】
考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.
14、±
1 【解析】
试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±
1. 15、33.
【解析】
试题分析:设品尝孔明菜的朋友有x 人,依题意得,5x +3=6x -3,解得x =6,所以孔明菜有5x +3=33袋. 考点:一元一次方程的应用.
16、51
【解析】
E 、
F 分别是BC 、AC 的中点.
1
2
EF
AB ∴ , ∠CAB=26°
26EFC ∴∠=︒

90ADC ∠=︒
1
2
DF AC AF ∴=
= ∠CAD =26°
52CFD ∴∠=︒ 78EFD ∴∠=︒ AB AC =
EF FD ∴=
18078512
EDF ︒-︒
∴∠==︒
! 17、2 【解析】
【分析】接把点P (a ,b )代入反比例函数y=2
x
即可得出结论. 【详解】∵点P (a ,b )在反比例函数y=
2
x
的图象上, ∴b=
2a
, ∴ab=2, 故答案为:2.
【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.
三、解答题(共7小题,满分69分)
18、:(1) 30º;(2)ABCD S 梯形= 【解析】 分析:
(1)由已知条件易得∠ABC=∠A=60°,结合BD 平分∠ABC 和CD ∥AB 即可求得∠CDB=30°;
(2)过点D 作DH ⊥AB 于点H ,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,
∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,,这样即可由梯形的面积公式求出梯形ABCD 的面积
了. 详解:
(1) ∵在梯形ABCD 中,DC ∥AB ,AD =BC ,∠A =60°, ∴∠CBA=∠A=60º, ∵BD 平分∠ABC , ∴∠CDB=∠ABD=
1
2
∠CBA=30º, (2)在△ACD 中,∵∠ADB=180º–∠A –∠ABD=90º. ∴BD=AD tan ⋅A=2tan60º=23. 过点D 作DH ⊥AB ,垂足为H , ∴AH=AD sin ⋅A=2sin60º=3.
∵∠CDB=∠CBD=1
2
∠CBD=30º, ∴DC=BC=AD=2 ∵AB=2AD=4 ∴()()ABCD 11
S AB CD DH 4233322
=
+⋅=+=梯形.
点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键. 19、(1)详见解析;(2)2
33
π. 【解析】
(1)连接OD ,由平行线的判定定理可得OD ∥AC ,利用平行线的性质得∠ODE=∠DEA=90°,可得DE 为⊙O 的切线;
(2)连接CD ,求弧DC 与弦DC 所围成的图形的面积利用扇形DOC 面积-三角形DOC 的面积计算即可. 【详解】 解:
(1)证明:连接OD,
∵OD=OB,
∴∠ODB=∠B,
∵AC=BC,
∴∠A=∠B,
∴∠ODB=∠A,
∴OD∥AC,
∴∠ODE=∠DEA=90°,
∴DE为⊙O的切线;
(2)连接CD,
∵∠A=30°,AC=BC,
∴∠BCA=120°,
∵BC为直径,
∴∠ADC=90°,
∴CD⊥AB,
∴∠BCD=60°,
∵OD=OC,
∴∠DOC=60°,
∴△DOC是等边三角形,
∵BC=4,
∴OC=DC=2,
∴S△DOC=DC×=,
∴弧DC与弦DC所围成的图形的面积=﹣=﹣.
【点睛】
本题考查的知识点是等腰三角形的性质、切线的判定与性质以及扇形面积的计算,解题的关键是熟练的掌握等腰三角
形的性质、切线的判定与性质以及扇形面积的计算.
20、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE =,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
21、(1);(2)列表见解析,.
【解析】
试题分析:(1)一共有3种等可能的结果总数,摸出标有数字2的小球有1种可能,因此摸出的球为标有数字2的小球的概率为;(2)利用列表得出共有9种等可能的结果数,再找出点M落在如图所示的正方形网格内(包括边界)的结果数,可求得结果.
试题解析:(1)P(摸出的球为标有数字2的小球)=;(2)列表如下:
小华
-1 0 2
小丽
-1 (-1,-1)(-1,0)(-1,2)
0 (0,-1)(0,0)(0,2)
2 (2,-1)(2,0)(2,2)
共有9种等可能的结果数,其中点M落在如图所示的正方形网格内(包括边界)的结果数为6,
∴P(点M落在如图所示的正方形网格内)==.
考点:1列表或树状图求概率;2平面直角坐标系.
22、1m
【解析】
连接AN、BQ,过B作BE⊥AN于点E.在Rt△AMN和在Rt△BMQ中,根据三角函数就可以求得AN,BQ,求得NQ,AE的长,在直角△ABE中,依据勾股定理即可求得AB的长.
【详解】
连接AN、BQ,
∵点A在点N的正北方向,点B在点Q的正北方向,
∴AN⊥l,BQ⊥l,
在Rt△AMN中:tan∠AMN=AN MN

∴3
在Rt△BMQ中:tan∠BMQ=BQ MQ

∴3
过B作BE⊥AN于点E,则BE=NQ=30,
∴3
在Rt△ABE中,
AB2=AE2+BE2,
AB2=(303)2+302,
∴AB=1.
答:湖中两个小亭A、B之间的距离为1米.
【点睛】
本题考查勾股定理、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23、证明见解析.
【解析】
由∠1=∠2可得∠CAB =∠DAE,再根据ASA证明△ABC≌△AED,即可得出答案.
【详解】
∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,
∴∠CAB=∠DAE,
在△ABC与△AED中,B=∠E,AB=AE,∠CAB=∠DAE,
∴△ABC≌△AED,
∴BC=ED.
24、(1);(2)20分钟.
【解析】
(1)材料加热时,设y=ax+15(a≠0),
由题意得60=5a+15,
解得a=9,
则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).
停止加热时,设y=(k≠0),
由题意得60=,
解得k=300,
则停止加热进行操作时y与x的函数关系式为y=(x≥5);
(2)把y=15代入y=,得x=20,
因此从开始加热到停止操作,共经历了20分钟.
答:从开始加热到停止操作,共经历了20分钟.。

相关文档
最新文档