浙江省宁波地区中考数学复习专题讲座一:选择题解题方法(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题讲座一:选择题解题方法
一、中考专题诠释
选择题是各地中考必考题型之一,各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.
选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.
二、解题策略与解法精讲
选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.
三、中考典例剖析
考点一:直接法
从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础.
例1 (•白银)方程的解是()
A.x=±1B.x=1 C.x=﹣1 D.x=0
思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.
解:方程的两边同乘(x+1),得
x2﹣1=0,
即(x+1)(x﹣1)=0,
解得:x1=﹣1,x2=1.
检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B .
点评: 此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练
1.(•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( ) A .7队 B .6队
C .5队
D .4队
考点二:特例法
运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

用特例法解选择题时,特例取得愈简单、愈特殊愈好.
例2 (•常州)已知a 、b 、c 、d 都是正实数,且 a c
b d
<,给出下列四个不等式: ①a c a b c d <++;②c a c d a b <++;③ d b c d a b <++;④b d
a b c d
<++。

其中不等式正确的是( ) A .①③
B .①④
C .②④
D .②③
思路分析:由已知a 、b 、c 、d 都是正实数,且 a c
b d
<,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。

解:由已知a 、b 、c 、d 都是正实数,且
a c
b d
<,取a=1,b=3,c=1,d=2,则 1111,134123a c a b c d ====++++,所以a c
a b c d <++,故①正确; 2233,123134d b c d a b ====++++,所以d b
c d a b
<++,故③正确。

故选A 。

点评:本题考查了不等式的性质,用特殊值法来解,更为简单. 对应训练
2.(•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长
为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( ) A .3
B .1
C .1,3
D .±1,±3
考点三:筛选法(也叫排除法、淘汰法)
分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。

使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确. 例3 (•东营)方程(k-1)x 2
-1k -x+1
4
=0有两个实数根,则k 的取值范围是( ) A .k≥1
B .k≤1
C .k >1
D .k <1
思路分析:原方程有两个实数根,故为二次方程,二次项系数不能为0,可排除A 、B ;又因为被开方数非负,可排除C 。

故选D . 解:方程(k-1)x 2
-1k -x+
1
4
=0有两个实数根,故为二次方程,二次项系数10k -≠,1k ≠,可排除A 、B ;又因为10,1k
k
-,可排除C 。

故选D .
点评:此题考查了一元二次方程根的判别式与解的情况,用排除法较为简单. 对应训练
3. (•临沂)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ∥y 轴,分别交函数 y=
1k x (x >0)和y=2k
x
(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )
A .∠POQ 不可能等于90°
B .
1
2
k PM QM k = C .这两个函数的图象一定关于x 轴对称 D .△POQ 的面积是
1
2
(|k 1|+|k 2|)
考点四:逆推代入法
将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.
例4 (•贵港)下列各点中在反比例函数y=6
x
的图象上的是()
A.(-2,-3)B.(-3,2)C.(3,-2)D.(6,-1)
思路分析:根据反比例函数y=6
x
中xy=6对各选项进行逐一判断即可.
解:A、∵(-2)×(-3)=6,∴此点在反比例函数的图象上,故本选项正确;
B、∵(-3)×2=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;
C、∵3×(-2)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;
D、∵6×(-1)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误.
故选A.
点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.
对应训练
4.(•贵港)从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k值,则所得的直线不经过第三象限的概率是()
A.B.C.D.1
考点五:直观选择法
利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。

这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.
例5(•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()
A.有最小值-5、最大值0 B.有最小值-3、最大值6
C.有最小值0、最大值6 D.有最小值2、最大值6
解:由二次函数的图象可知,
∵-5≤x≤0,
∴当x=-2时函数有最大值,y最大=6;
当x=-5时函数值最小,y最小=-3.
故选B.
点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.
对应训练
5.(•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()
A.k=n B.h=m C.k<n D.h<0,k<0
考点六:特征分析法
对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结
构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 (•威海)下列选项中,阴影部分面积最小的是()
A. B.
C. D.
分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可.
解:A、∵M、N两点均在反比例函数y=2
x
的图象上,∴S阴影=2;
B、∵M、N两点均在反比例函数y=2
x
的图象上,∴S阴影=2;
C、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,则S阴影=S△OAM+S阴影梯形ABNM-
S△OBN=1
2
×2+
1
2
(2+1)×1-
1
2
×2=
3
2

D、∵M、N两点均在反比例函数y=2
x
的图象上,∴
1
2
×1×4=2.
∵3
2
<2,
∴C中阴影部分的面积最小.
故选C.
点评:本题考查的是反比例函数系数k的几何意义,即在反比例函数的图象上任意一点象
坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是||
2
k
,且保持不变.
对应训练
6.(•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()
A.﹣1 B.1 C.2 D.﹣2
考点七:动手操作法
与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.
例7 (•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()
A.角的平分线上的点到角的两边的距离相等
B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半
D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形
思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.
解:如图②,∵△CDE由△ADE翻折而成,∴AD=CD,
如图③,∵△DCF由△DBF翻折而成,
∴BD=CD,
∴AD=BD=CD,点D是AB的中点,
∴CD=1
2
AB,即直角三角形斜边上的中线等于斜边的一半.
故选C.
点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.
对应训练
7.(•宁德)将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()
A.B.
C.D.
四、中考真题演练
1.(•衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为()
A.30πcm2B.25πcm2C.50πcm2D.100πcm2 2.(•福州)⊙O1和⊙O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是()
A.内含B.相交C.外切D.外离
3.(•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()
A.2a2B.3a2C.4a2D.5a2
4.(•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O过A 点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()
A.B.
C.D.
5.(•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(•长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()
A.B.
C.D.
7.(•荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为
()
A.2 B.3 C.4 D.5
8.(•河池)若a>b>0,则下列不等式不一定成立的是()
A.ac>bc B.a+c>b+c C.D.ab>b2 9.(•南通)已知x2+16x+k是完全平方式,则常数k等于()
A.64 B.48 C.32 D.16
10.(•六盘水)下列计算正确的是()
A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x
11.(•郴州)抛物线y=(x﹣1)2+2的顶点坐标是()
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)12.(•莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()
A.甲队B.乙队C.丙队D.丁队
13.(•怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()
A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐
C.甲、乙出苗一样整齐D.无法确定
14.(•长春)如图是伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()
A.27 B.29 C.30 D.31
15.(•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()
A.正三角形B.正方形C.正五边形D.正六边形16.(•江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()
A.a户最长B.b户最长C.c户最长D.三户一样长17.(•大庆)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()
A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(•长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()
A.B.
C.D.
19.(•凉山州)已知,则的值是()
A.B.C.D.
20.(•南充)下列几何体中,俯视图相同的是()
A.①②B.①③C.②③D.②④
21.(•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()
A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆22.(•河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()
A.30°B.25°C.20°D.15°
23.(•长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()
A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1 24.(•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()
A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°
25.(•河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()
A.一组邻边相等的四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.每条对角线平分一组对角的平行四边形是菱形
26.(•随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()
A.35°B.55°C.70°D.110°27.(•攀枝花)下列四个命题:
①等边三角形是中心对称图形;
②在同圆或等圆中,相等的弦所对的圆周角相等;
③三角形有且只有一个外接圆;
④垂直于弦的直径平分弦所对的两条弧.
其中真命题的个数有()
A.1个B.2个C.3个D.4个
28.(•莱芜)以下说法正确的有()
①正八边形的每个内角都是135°
②与是同类二次根式
③长度等于半径的弦所对的圆周角为30°
④反比例函数y=﹣,当x<0时,y随x的增大而增大.
A.1个B.2个C.3个D.4个29.(•东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:
①△CEF与△DEF的面积相等;
②△AOB∽△FOE;
③△DCE≌△CDF;
④AC=BD.
其中正确的结论是()
A.①②B.①②③C.①②③④D.②③④
专题一选择题解题方法参考答案
三、中考典例剖析
对应训练
1.C
解:设邀请x个球队参加比赛,
依题意得1+2+3+…+x-1=10,

(1)
2
x x
=10,
∴x 2-x-20=0,
∴x=5或x=-4(不合题意,舍去).
故选C .
2.D
解:当两个圆外切时,圆心距d=1+2=3,即P 到O 的距离是3,则a=±3.
当两圆相内切时,圆心距d=2-1=1,即P 到O 的距离是1,则a=±1.
故a=±1或±3.
故选D .
3.D
解:A .∵P 点坐标不知道,当PM=MO=MQ 时,∠POQ=90°,故此选项错误;
B .根据图形可得:k 1>0,k 2<0,而PM ,QM 为线段一定为正值,故
12
k PM QM k ,故此选项错误;
C .根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; 故选:
D .
4.C
5.A
6.D
解:∵点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,
∴四边形ABCD 是矩形,
∵四边形ABCD 的面积是8,
∴4×|﹣k|=8,
解得|k|=2,
又∵双曲线位于第二、四象限,
∴k <0,
∴k=﹣2.
故选D .
7. B .
四、中考真题演练
1.B
2.C
3.A
解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,
∴AB=a,且∠CAB=∠CBA=45°,
∴sin45°===,
∴AC=BC=a,
∴S△ABC=×a×a=,
∴正八边形周围是四个全等三角形,面积和为:×4=a2.
正八边形中间是边长为a的正方形,
∴阴影部分的面积为:a2+a2=2a2,
故选:A.
4.D
解:当P与O重合,
∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,
∴AO=2,OP=x,则AP=2﹣x,
∴tan60°==,
解得:AB=(2﹣x)=﹣x+2,
∴S△ABP=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣6x+6,
故此函数为二次函数,
∵a=>0,
∴当x=﹣=﹣=2时,S取到最小值为:=0,
根据图象得出只有D符合要求.
故选:D.
5.B
解:根据题意得:7x+9y≤40,
则x≤,
∵40﹣9y≥0且y是非负整数,
∴y的值可以是:1或2或3或4.
当x的值最大时,废料最少,
当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;
当y=4时,x≤,则x=0(舍去).
则最小的是:x=3,y=2.
故选B.
6.A
7.D
解:设A的纵坐标是b,则B的纵坐标也是b.
把y=b代入y=得,b=,则x=,,即A的横坐标是,;
同理可得:B的横坐标是:﹣.
则AB=﹣(﹣)=.
则S□ABCD=×b=5.
故选D.
8.A
9.A
10.D
11.D
12.A
13.A
14.C
15.D
16.D
17.A
解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A的坐标为(,1),
∴AC=1,OC=,
∴OA==2,
∴∠AOC=30°,
∵OA绕原点按逆时针方向旋转30°得OB,
∴∠AOB=30°,OA=OB,
∴∠BOD=30°,
∴Rt△OAC≌Rt△OBD,
∴DB=AC=1,OD=OC=,
∴B点坐标为(1,).
故选A.
18.D
19.D
20.C
21.B
22.C
解:∵△GEF是含45°角的直角三角板,
∴∠GFE=45°,
∵∠1=25°,
∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,
∵AB∥CD,
∴∠2=∠AFE=20°.
故选C.
23.B
解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,
∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,
即m﹣2n=1.
故选:B.
24.A
25.B
26.B
27.B
解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;
如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;
三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;
垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.
故选B.
28.C
解:①正八边形的每个内角都是:=135°,故①正确;
②∵=3,=,
∴与是同类二次根式;故②正确;
③如图:∵OA=OB=AB,
∴∠AOB=60°,
∴∠C=∠AOB=30°,
∴∠D=180°﹣∠C=150°,
∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;
④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.
故正确的有①②④,共3个.
故选C.
29.C
解:①设D(x,),则F(x,0),
由图象可知x>0,
∴△DEF的面积是:×||×|x|=2,
设C(a,),则E(0,),
由图象可知:<0,a>0,
△CEF的面积是:×|a|×||=2,
∴△CEF的面积=△DEF的面积,
故①正确;
②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,
故EF∥CD,
∴FE∥AB,
∴△AOB∽△FOE,
故②正确;
③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,
解得:x=﹣4或1,
经检验:x=﹣4或1都是原分式方程的解,
∴D(1,4),C(﹣4,﹣1),
∴DF=4,CE=4,
∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,
∴A(﹣3,0),B(0,3),
∴∠ABO=∠BAO=45°,
∵DF∥BO,AO∥CE,
∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,
∴∠DCE=∠FDA=45°,
在△DCE和△CDF中,
∴△DCE≌△CDF(SAS),
故③正确;
④∵BD∥EF,DF∥BE,
∴四边形BDFE是平行四边形,∴BD=EF,
同理EF=AC,
∴AC=BD,
故④正确;
正确的有4个.
故选C.。

相关文档
最新文档