八年级上学期1月月考期末复习学情检测数学试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上学期1月月考期末复习学情检测数学试题(含答案)
一、选择题
1.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )
A .
36
2
B .
33
2
C .6
D .3
2.我们定义:如果一个等腰三角形有一条边长是3,那么这个三角形称作帅气等腰三角形.已知ABC ∆中,32AB =,5AC =,7BC =,在ABC ∆所在平面内画一条直线,将
ABC ∆分割成两个三角形,若其中一个三角形是帅气等腰三角形,则这样的直线最多可画( ) A .0条 B .1条 C .2条 D .3条 3.下列图案属于轴对称图形的是( )
A .
B .
C .
D .
4.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3
B .k >3
C .k <2
D .k >2
6.已知一次函数y=kx+b ,函数值y 随自变置x 的增大而减小,且kb <0,则函数y=kx+b
的图象大致是( )
A .
B .
C .
D .
7.已知:如图,在△AOB 中,∠AOB =90°,AO =3cm ,BO =4cm ,将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D 的长度为( )
A .
12
cm B .1cm C .2cm D .
32
cm 8.函数111y k x b =+与222y k x b =+的部分自变量和对应函数值如下: x -4 -3 -2 -1 y
-1
-2
-3
-4
x -4 -3 -2 -1 y
-9
-6
-3
当12y y >时,自变量x 的取值范围是( ) A .2x >-
B .2x <-
C .1x >-
D .1x <-
9.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )
A .9cm
B .12cm
C .15cm
D .18cm 10.估算x 5 ) A .0<x <1
B .1<x <2
C .2<x <3
D .3<x <4
二、填空题
11.如图,在平面直角坐标系中,长方形OABC 的顶点O 在坐标原点,顶点A 、C 分别在x 、y 轴的正半轴上:OA =3,OC =4,D 为OC 边的中点,E 是OA 边上的一个动点,当△BDE 的周长最小时,E 点坐标为_____.
12.在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是_____. 13.9的平方根是_________.
14.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,
OF BC ⊥,则OD OE OF ++=__________.
15.如图,已知函数y =x +b 和y =ax +3的图象交点为P ,则不等式x +b <ax +3的解集为_____.
16.3.145精确到百分位的近似数是____.
17.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.
18.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)
19.如图,在△ABC 中,PH 是AC 的垂直平分线,AH =3,△ABP 的周长为11,则△ABC 的周长为_____.
20.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°
三、解答题
21.已知BC =5,AB =1,AB ⊥BC ,射线CM ⊥BC ,动点P 在线段BC 上(不与点B ,C 重合),过点P 作DP ⊥AP 交射线CM 于点D ,连接AD . (1)如图1,若BP =4,判断△ADP 的形状,并加以证明. (2)如图2,若BP =1,作点C 关于直线DP 的对称点C ′,连接AC ′. ①依题意补全图2;
②请直接写出线段AC ′的长度.
22.(1)计算:3168--;
(2)求x 的值:2
(2)
90x .
23.如图,在四边形ABCD 中,AB=DC ,延长线段CB 到E ,使BE=AD ,连接AE 、AC ,且
AE=AC ,
求证:(1)△ABE ≌△CDA ; (2)AD ∥EC .
24.快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x 小时,快车行驶的路程为y 1千米,慢车行驶的路程为y 2千米,图中折线OAEC 表示y 1与x 之间的函数关系,线段OD 表示y 2与x 之间的函数关系,请解答下列问题:
(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是
千米/时;
(2)求图中线段EC所表示的y1与x之间的函数表达式;
(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.25.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示
(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟;(2)求出线段AB所表示的函数表达式
(3)甲、乙两人何时相距400米?
四、压轴题
26.在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:--+-=.
222110
a b a b
(1)直接写出A 、B 两点的坐标;
(2)将线段AB平移到CD,点A的对应点为C(-3,m),如图(1)所示.若SΔABC=16,求点D 的坐标;
(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.
求证:∠BCD=3(∠CEP-∠OPE).
27.如图,已知等腰△ABC 中,AB=AC,∠A<90°,CD 是△ABC 的高,BE 是△ABC 的角平分线,CD 与BE 交于点P.当∠A 的大小变化时,△EPC 的形状也随之改变.
(1)当∠A=44°时,求∠BPD 的度数;
(2)设∠A=x°,∠EPC=y°,求变量y 与x 的关系式;
(3)当△EPC 是等腰三角形时,请直接写出∠A 的度数.
28.如图,在平面直角坐标系中,直线y=2x+4与x轴交于点A,与y轴交于点B,过点B的另一条直线交x轴正半轴于点C,且OC=3.
图1 图2
(1)求直线BC的解析式;
(2)如图1,若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;
(3)如图2,设点F为线段AB中点,点G为y轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求点G的坐标;29.(1)填空
①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在
1B M 或1B M 的延长线上,那么EMF ∠的度数是________;
②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.
(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设
ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.
30.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠; (2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作
//EF AC ,求证:BE AD =;
(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
分析:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,利用轴对称的性质得
MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,所以
∠COD=2∠AOB=120°,利用两点之间线段最短判断此时△PMN周长最小,作OH⊥CD于H,则CH=DH,然后利用含30度的直角三角形三边的关系计算出CD即可.
详解:作P点分别关于OA、OB的对称点C、D,连接CD分别交OA、OB于M、N,如图,
则MP=MC,NP=ND,OP=OD=OC=3,∠BOP=∠BOD,∠AOP=∠AOC,
∴PN+PM+MN=ND+MN+MC=DC,∠COD=∠BOP+∠BOD+∠AOP+∠AOC=2∠AOB=120°,∴此时△PMN周长最小,
作OH⊥CD于H,则CH=DH,
∵∠OCH=30°,
∴OH=1
2
OC=
3,
CH=3OH=3 2 ,
∴CD=2CH=3.
故选D.
点睛:本题考查了轴对称﹣最短路线问题:熟练掌握轴对称的性质,会利用两点之间线段最短解决路径最短问题.
2.B
解析:B
【解析】
【分析】
先根据各边的长度画出三角形ABC,作AD⊥BC,根据勾股定理求出AD,BD,结合图形可分析出结果.
【详解】
已知如图,所做三角形是钝角三角形,作AD⊥BC,
根据勾股定理可得:AC2-CD2=AB2-BD2
所以设CD=x,则BD=7-x
所以52-x2=(32)2-(7-x)2
解得x=4
所以CD=4,BD=3,
所以,在直角三角形ADC中
AD=2222
-=-=
543
AC CD
所以AD=BD=3
所以三角形ABD是帅气等腰三角形
假如从点C或B作直线,不能作出含有边长为3的等腰三角形
故符合条件的直线只有直线AD
故选:B
【点睛】
本题考查设计与作图、等腰三角形的定义、正确的理解题意是解决问题的关键;并注意第二问的分类讨论的思想,不要丢解.
3.D
解析:D
【解析】
分析:根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有D有一条对称轴,由此即可得出结论.
详解:A、不能找出对称轴,故A不是轴对称图形;
B、不能找出对称轴,故B不是轴对称图形;
C、不能找出对称轴,故C不是轴对称图形;
D 、能找出一条对称轴,故D 是轴对称图形. 故选D .
点睛:本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.
4.B
解析:B 【解析】 【分析】
根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答. 【详解】
解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】
本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
5.A
解析:A 【解析】 【分析】
将点A ,点B 坐标代入解析式可求k−3=b d
a c
--,即可求解. 【详解】
∵A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点, ∴b =ka ﹣3a +2,d =kc ﹣3c +2,且a ≠c , ∴k ﹣3=
b d
a c
--. ∵m =(a ﹣c )(b ﹣d )<0, ∴k <3. 故选:A . 【点睛】
本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c
--是关键,是一道基础题.
解析:A
【解析】
试题分析:根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴是方.
解:∵一次函数y=kx+b,y随着x的增大而减小,
∴k<0,
∴一次函数y=kx+b的图象经过第二、四象限;
∵kb<0,
∴b>0,
∴图象与y轴的交点在x轴上方,
∴一次函数y=kx+b的图象经过第一、二、四象限.
故选A.
考点:一次函数的图象.
7.D
解析:D
【解析】
【分析】
先在直角△AOB中利用勾股定理求出AB=5cm,再利用直角三角形斜边上的中线等于斜边
的一半得出OD=1
2
AB=2.5cm.然后根据旋转的性质得到OB1=OB=4cm,那么B1D=OB1
﹣OD=1.5cm.
【详解】
∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,
∴AB=5cm,
∵点D为AB的中点,
∴OD=1
2
AB=2.5cm.
∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,
∴OB1=OB=4cm,
∴B1D=OB1﹣OD=1.5cm.
故选:D.
【点睛】
本题主要考查勾股定理和直角三角形的性质以及图形旋转的性质,掌握“直角三角形斜边上的中线等于斜边的一半”是解题的关键.
8.B
解析:B
【解析】
根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.
【详解】
解:根据表格可得y 1=k 2x+b 1中y 随x 的增大而减小,y 2=k 2x+b 2中y 随x 的增大而增大. 且两个函数的交点坐标是(-2,-3).
则当x <-2时,y 1>y 2.
故选:B .
【点睛】
本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.
9.D
解析:D
【解析】
【分析】
首先根据题意画出图形,利用勾股定理计算出AC 的长.
【详解】
根据题意可得图形:
AB=12cm ,BC=9cm ,
在Rt △ABC 中:2222=129AB BC ++(cm ),
则这只铅笔的长度大于15cm .
故选D .
【点睛】
此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.
10.C
解析:C
【解析】
【分析】
549.
【详解】
459<<
∴253<<,
故选:C .
【点睛】
此题主要考查无理数的估值,熟练掌握,即可解题.
二、填空题
11.(1,0)
【解析】
【分析】
本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x 轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD
解析:(1,0)
【解析】
【分析】
本题是典型的“将军饮马”问题,只需作D关于x轴的对称点D′,连接D′B交x轴于点E,如图,则此时△BDE的周长最小,易得点B和D′坐标,故可利用待定系数法求出直线BD'的解析式,然后求直线BD'与x轴的交点即得答案.
【详解】
解:如图,作D关于x轴的对称点D′,连接D′B交x轴于点E,连接DE,则DE= D′E,此时△BDE的周长最小,
∵D为CO的中点,∴CD=OD=2,
∵D和D′关于x轴对称,∴D′(0,﹣2),
由题意知:点B(3,4),∴设直线BD'的解析式为y=kx+b,
把B(3,4),D′(0,﹣2)代入解析式,得:
34
2
k b
b
+=


=-

,解得,
2
2
k
b
=


=-


∴直线BD'的解析式为y=2x﹣2,
当y=0时,x=1,故E点坐标为(1,0).
故答案为:(1,0).
【点睛】
本题考查的是利用待定系数法求直线的解析式和两线段之和最小问题,属于常考题型,熟练掌握求解的方法是解题关键.
12.(3,﹣2).
【分析】
根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.
【详解】
设P(x ,y),
∵点P 到x 轴的距离为2,到y 轴的距离为3,
∴,
∵点P
解析:(3,﹣2).
【解析】
【分析】
根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,可得答案.
【详解】
设P(x ,y),
∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴32x y ==,
, ∵点P 在第四象限内,即:00x y ><,
∴点P 的坐标为(3,﹣2),
故答案为:(3,﹣2).
【点睛】
本题主要考查平面直角坐标系中,点的坐标,掌握“点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值”,是解题的关键.
13.±3
【解析】
分析:根据平方根的定义解答即可.
详解:∵(±3)2=9,
∴9的平方根是±3.
故答案为±3.
点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是
解析:±3
【解析】
分析:根据平方根的定义解答即可.
详解:∵(±3)2=9,
∴9的平方根是±3.
点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
14.【解析】
【分析】
过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.
【详解】
解:过点A作AG⊥BC
解析:3
【解析】
【分析】
过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.
【详解】
解:过点A作AG⊥BC于点G,连接OA,OB,OC,
∵AB=AC=BC=2,
∴BG=1
2
BC=1,
∴22
21
3
∵S△ABC=S△ABO+S△BOC+S△AOC,
∴1
2
AB×(OD+OE+OF)=
1
2
BC•AG,
∴3.
3
【点睛】
本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.
15.x<1
【解析】
【分析】
当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
【详解】
由于两直线的交点横坐标为:x=1,
观察图象可知,当x<1时,x+b<ax+3;
解析:x<1
【解析】
【分析】
当直线y=x+b的图象在直线y=ax+3的上方时,不等式x+b>ax+3成立;
【详解】
由于两直线的交点横坐标为:x=1,
观察图象可知,当x<1时,x+b<ax+3;
故答案为x<1.
考点:一次函数与一元一次不等式.
16.15.
【解析】
【分析】
根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.
【详解】
解:3.145≈3.15(精确到百分位).
故答案为3.15.
解析:15.
【解析】
【分析】
根据近似数的精确度求解.3.145精确到百分位就是精确到数字4这一位,后一位数字5四舍五入即可.
【详解】
解:3.145≈3.15(精确到百分位).
故答案为3.15.
【点睛】
本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.
17.60
【解析】
【分析】
根据近似数的精确度把千分位上的数字5进行四舍五入即可.
解:3.5952≈3.60(精确到0.01).
故答案为3.60.
【点睛】
本题考查近似数和有效数字:经
解析:60
【解析】
【分析】
根据近似数的精确度把千分位上的数字5进行四舍五入即可.
【详解】
解:3.5952≈3.60(精确到0.01).
故答案为3.60.
【点睛】
本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
18.∠D=∠B
【解析】
【分析】
要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.
【详解】
∵AD=BC, D
解析:∠D=∠B
【解析】
【分析】
要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.
【详解】
∵AD=BC, DF=BE,
∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.
故答案为∠D=∠B.
【点睛】
本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).
19.17
【分析】
根据线段垂直平分线的性质得到,,根据三角形的周长公式计算,得到答案.
【详解】
解:是的垂直平分线,
,,
的周长为11,

的周长,
故答案为:17.
【点睛】
本题考
解析:17
【解析】
【分析】
根据线段垂直平分线的性质得到PA PC =,26AC AH ==,根据三角形的周长公式计算,得到答案.
【详解】
解:PH 是AC 的垂直平分线,
PA PC ∴=,26AC AH ==,
ABP ∆的周长为11, 11AB BP PA AB BP BC AB BC ∴++=++=+=,
ABC ∆∴的周长17AB BC AC =++=,
故答案为:17.
【点睛】
本题考查了线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
20.75
【解析】
【分析】
根据等腰三角形两个底角相等可得解.
【详解】
依题意知,等腰三角形两个底角相等.
当顶角=30°时,两底角的和=180°-30°=150°.
所以每个底角=75°.
故答案
解析:75
【解析】
【分析】
根据等腰三角形两个底角相等可得解.
【详解】
依题意知,等腰三角形两个底角相等.
当顶角=30°时,两底角的和=180°-30°=150°.
所以每个底角=75°.
故答案为75.
考点:三角形内角和与等腰三角形性质.
点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.
三、解答题
21.(1)△ADP是等腰直角三角形.证明见解析;(2)①补图见解析;
【解析】
【分析】
(1)先判断出PC=AB,再用同角的余角相等判断出∠APB=∠PDC,得出△ABP≌△PCD (AAS),即可得出结论;
(2)①利用对称的性质画出图形;
②过点C'作C'Q⊥BA交BA的延长线于Q,先求出CP=4,AB=AP,∠CPD=45°,进而得出C'P=CP=4,∠C'PD=∠CPD=45°,再判断出四边形BQC'P是矩形,进而求出AQ=BQ﹣
AB=3,最后用勾股定理即可得出结论.
【详解】
(1)△ADP是等腰直角三角形.证明如下:
∵BC=5,BP=4,∴PC=1.
∵AB=1,∴PC=AB.
∵AB⊥BC,CM⊥BC,DP⊥AP,∴∠B=∠C=90°,∠APB+∠DPC=90°,
∠PDC+∠DPC=90°,∴∠APB=∠PDC.
在△ABP和△PCD中,∵
B C
APB PDC
AB PC
∠=∠


∠=∠

⎪=

,∴△ABP≌△PCD(AAS),∴AP=PD.
∵∠APD=90°,∴△ADP是等腰直角三角形.(2)①依题意补全图2;
②过点C'作C'Q⊥BA交BA的延长线于Q.
∵BP=1,AB=1,BC=5,∴CP=4,AB=AP.
∵∠ABP=90°,∴∠APB=45°.
∵∠APD=90°,∴∠CPD=45°,连接C'P.
∵点C与C'关于DP对称,∴C'P=CP=4,∠C'PD=∠CPD=45°,∴∠CPC'=90°,
∴∠BPC'=90°,∴∠Q=∠ABP=∠BPC'=90°,∴四边形BQC'P是矩形,∴C'Q=BP=1,BQ=C'P=4,∴AQ=BQ﹣AB=3.在Rt△AC'Q中,AC′10
=.
【点睛】
本题考查了矩形的判定与性质以及全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理,构造出直角三角形是解答本题的关键.
-.
22.(1)6;(2)x=1或x=5
【解析】
【分析】
(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.
【详解】
(1)原式=4-(-2)=4+2=6;
(2)x+2=±3.
x+2=3,x+2=-3.
x=1或x=-5.
【点睛】
本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.
23.(1)证明见解析;(2)证明见解析.
【解析】
【分析】
试题分析:(1)直接根据SSS就可以证明△ABE≌△CDA;
(2)由△ABE≌△CDA可以得出∠E=∠CAD,就可以得出∠ACE=∠CAD,从而得出结论.试题解析:(1)在△ABE和△CDA中
{AE AC
AB CD BE AD
===
∵△ABE ≌△CDA (SSS );
(2)∵△ABE ≌△CDA ,
∴∠E=∠CAD .
∵AE=AC ,
∴∠E=∠ACE
∴∠ACE=∠CAD ,
∴AD ∥EC .
考点:全等三角形的判定与性质.
【详解】
请在此输入详解!
24.(1)300,75,60;(2)y 1=100x ﹣150(3≤x ≤4.5);(3)点F 的坐标为(3.75,225),点F 代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等
【解析】
【分析】
(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A 、B 两点坐标,然后利用速度=路程÷时间求解即可;
(2)根据快车休息1小时可得点E 坐标,根据快车比慢车提前0.5小时到达目的地可得点C 坐标,然后利用待定系数法求解即可;
(3)易得y 2与x 之间的函数关系式,然后只要求直线EC 与直线OD 的交点即得点F 坐标,为此只要解由直线EC 与直线OD 的的解析式组成的方程组即可,进而可得点F 的实际意义.
【详解】
解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.
故答案为:300,75,60;
(2)由题意可得,
点E 的横坐标为:2+1=3,则点E 的坐标为(3,150),
快车从点E 到点C 用的时间为:300÷60﹣0.5=4.5(小时),则点C 的坐标为(4.5,300),
设线段EC 所表示的y 1与x 之间的函数表达式是y 1=kx +b ,把E 、C 两点代入,得:4.53003150k b k b +=⎧⎨+=⎩,解得:100150k b =⎧⎨=-⎩
, 即线段EC 所表示的y 1与x 之间的函数表达式是y 1=100x ﹣150(3≤x ≤4.5);
(3)y 2与x 之间的函数关系式为:260y x =,设点F 的横坐标为a ,则60a =100a ﹣150,解得:a =3.75,则60a =225,
即点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.
【点睛】
本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.
25.(1)24,40;(2)y=40t(40≤t≤60);(3)出发20分钟或28分钟后,甲、乙两人何时相距400米
【解析】
【分析】
(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度=路程÷时间可得甲的速度;
(2)由t=24分钟时甲乙两人相遇,可得甲、乙两人的速度和为2400÷24=100米/分钟,减去甲的速度得出乙的速度,再求出乙从图书馆回学校的时间即A点的横坐标,用A点的横坐标乘以甲的速度得出A点的纵坐标,再将A、B两点的坐标代入,利用待定系数法即可求出线段AB所表示的函数表达式;
(3)分相遇前后两种情况列方程解答即可.
【详解】
解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).
故答案为24,40;
(2)∵甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,t=24分钟时甲乙两人相遇,
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100﹣40=60(米/分钟).
乙从图书馆回学校的时间为2400÷60=40分钟,
40×40=1600,
∴A点的坐标为(40,1600).
设线段AB所表示的函数表达式为y=kt+b,
∵A(40,1600),B(60,2400),

401600
602400
k b
k b
+=


+=

,解得
k40
b0
=


=


∴线段AB所表示的函数表达式为y=40t(40≤t≤60);
(3)设出发t分钟后两人相距400米,根据题意得
(40+60)t=2400﹣400或(40+60)t=2400+400,
解得t=20或t=28,
答:出发20分钟或28分钟后,甲、乙两人何时相距400米.
【点睛】
本题考查了一次函数的应用,路程、速度、时间的关系,用待定系数法确定函数的解析
式,属于中考常考题型.读懂题目信息,从图象中获取有关信息是解题的关键. 四、压轴题 26.(1)A (0,3),B (4,0);(2)D (1,-265
);(3)见解析 【解析】
【分析】
(1)根据非负数的性质求解;
(2)如图1中,设直线CD 交y 轴于E .首先求出点E 的坐标,再求出直线CD 的解析式以及点C 坐标,利用平移的性质得到点D 坐标;
(3)如图2中,延长AB 交CE 的延长线于M .利用平行线的性质以及三角形的外角的性质求证;
【详解】
(1)∵222110a b a b --++-=,
∴220,2110a b a b --=+-=, ∴2202110a b a b --=⎧⎨+-=⎩
, ∴34a b =⎧⎨=⎩
, ∴A (0,3),B (4,0);
(2)如图1中,设直线CD 交y 轴于E .
∵CD//AB ,
∴S △ACB =S △ABE ,

12AE×BO=16, ∴12
×AE×4=16, ∴AE=8,
∴E (0,-5),
设直线AB 的解析式为y=kx+b ,将点A (
0,3),(4,0)代入解析式中得:
343
k b ⎧=-⎪⎨⎪=⎩ , ∴直线AB 的解析式为y=334
x -
+, ∵AB//CD , ∴直线CD 的解析式为y=34
x c -
+, 又∵点E (0,-5)在直线CD 上, ∴c=5,即直线CD 的解析式为y=354
x -
-, 又∵点C (-3,m )在直线CD 上, ∴m=115
, ∴C (-3, 115
), ∵点A (0,3)平移后的对应点为C (-3,
115), ∴直线AB 向下平移了265
个单位,向左平移了3个单位, 又∵B (4,0)的对应点为点D ,
∴点D 的坐标为(1,-265
); (3)如图2中,延长AB 交CE 的延长线于点M .
∵AM ∥CD ,
∴∠DCM=∠M ,
∵∠BCE=2∠ECD ,
∴∠BCD=3∠DCM=3∠M ,
∵∠M=∠PEC-∠MPE ,∠MPE=∠OPE ,
∴∠BCD=3(∠CEP-∠OPE ).
【点睛】
考查了非负数的性质、平行线的性质、三角形的外角的性质、一次函数的应用等知识,解题关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用平行线的性质解决问题.
27.(1)56°;(2)y=454x +
;(3)36°或1807
°. 【解析】
【分析】
(1)根据等边对等角求出等腰△ABC 的底角度数,再根据角平分线的定义得到∠ABE 的度数,再根据高的定义得到∠BDC=90°,从而可得∠BPD ;
(2)按照(1)中计算过程,即可得到∠A 与∠EPC 的关系,即可得到结果;
(3)分①若EP=EC ,②若PC=PE ,③若CP=CE ,三种情况,利用∠ABC+∠BCD=90°,以及y=454
x +
解出x 即可. 【详解】 解:(1)∵AB=AC ,∠A=44°,
∴∠ABC=∠ACB=(180-44)÷2=68°,
∵CD ⊥AB ,
∴∠BDC=90°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=34°,
∴∠BPD =90-34=56°;
(2)∵∠A =x °,
∴∠ABC=(180°-x°)÷2=(902x -
)°, 由(1)可得:∠ABP=12∠ABC=(454
x -)°,∠BDC=90°, ∴∠EPC =y °=∠BPD=90°-(454x -
)°=(454x +)°, 即y 与 x 的关系式为y=454x +
; (3)①若EP=EC ,
则∠ECP=∠EPC=y ,
而∠ABC=∠ACB=902x -
,∠ABC+∠BCD=90°, 则有:902x -
+(902x --y )=90°,又y=454x +, ∴902x -+902x --(454
x +)=90°,
解得:x=36°;
②若PC=PE ,
则∠PCE=∠PEC=(180-y )÷2=902y -
, 由①得:∠ABC+∠BCD=90°, ∴902x -+[902x --(902y -)]=90,又y=454
x +, 解得:x=
1807
°; ③若CP=CE , 则∠EPC=∠PEC=y ,∠PCE=180-2y ,
由①得:∠ABC+∠BCD=90°, ∴902x -+902x --(180-2y )=90,又y=454
x +, 解得:x=0,不符合, 综上:当△EPC 是等腰三角形时,∠A 的度数为36°或
1807°. 【点睛】
本题考查了等腰三角形的性质,二元一次方程组的应用,高与角平分线的定义,有一定难度,关键是找到角之间的等量关系.
28.(1)443y x =-
+;(2)612(,)55M ;(3)23(0,)7
G 或(0,-1)G 【解析】
【分析】
(1)求出点B ,C 坐标,再利用待定系数法即可解决问题;
(2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组求得交点M 的坐标;
(3)分两种情形:①当n >2时,如图2-1中,点Q 落在BC 上时,过G 作直线平行于x 轴,过点F ,Q 作该直线的垂线,垂足分别为M ,N .求出Q (n-2,n-1).②当n <2时,如图2-2中,同法可得Q (2-n ,n+1),代入直线BC 的解析式解方程即可解决问题.
【详解】
解:(1)∵直线y=2x+4与x 轴交于点A ,与y 轴交于点B ,
∴A (-2,0),B (0,4),,
又∵OC=3,
∴C (3,0),
设直线BC 的解析式为y=kx+b ,将B 、C 的坐标代入得: 304
k b b +=⎧⎨=⎩,
解得:
4
3
4
k
b

=-


⎪=


∴直线BC的解析式为
4
4
3
y x
=-+;
(2)连接OM,
∵S△AMB=S△AOB,
∴直线OM平行于直线AB,故设直线OM解析式为:2
y x
=,
将直线OM的解析式与直线BC的解析式联立得方程组
2
4
4
3
y x
y x
=



=-+
⎪⎩

解得:
6
5
12
5
x
y

=
⎪⎪

⎪=
⎪⎩
故点
612
(,)
55
M;
(3)∵FA=FB,A(-2,0),B(0,4),
∴F(-1,2),设G(0,n),
①当n>2时,如图2-1中,点Q落在BC上时,过G作直线平行于x轴,过点F,Q作该直线的垂线,垂足分别为M,N.
∵四边形FGQP是正方形,易证△FMG≌△GNQ,。

相关文档
最新文档