大体积混凝土裂缝的成因与预防
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第11卷第4期中国水运V ol.11
N o.4
2011年4月Chi na W at er Trans port A pri l 2011
收稿日期:作者简介:张
宽,宁波中交水运设计研究有限公司。
大体积混凝土裂缝的成因与预防
张
宽
(宁波中交水运设计研究有限公司,浙江宁波315000)
摘
要:混凝土裂缝问题是一个普遍存在而又不易解决的工程问题,而大体积混凝土又是其中最难解决的问题,大
体积混凝土开裂后,其性能与原状混凝土性能相差很大,尤其是对耐久性的影响更大,而混凝土渗透反过来又会加速和促使混凝土的进一步恶化,严重影响结构的长期安全和耐久。
而裂缝大多又是在早期产生的,因此,探讨裂缝产生的原因和防止裂缝的出现就显得格外重要。
通过对大体积混凝土裂缝产生的原因和类型的论述,从各个环节提出了预防裂缝的措施。
关键词:大体积混凝土;裂缝;预防中图分类号:U 441.6
文献标识码:A
文章编号:1006-7973(2011)04-0244-02
大体积混凝土,一般理解为尺寸较大的混凝土,美国混凝土学会给出了大体积混凝土的定义:任何现浇混凝土,其尺寸达到必须解决水化热及随之引起的体积变形问题,以最
大限度的减少开裂影响的,即称为大体积混凝土。
这就提出
了大体积混凝土开裂的问题,开裂问题是在工程建设中带有一定普遍性的技术问题,裂缝一旦形成,特别是基础贯穿裂缝出现在重要的结构部位,危害极大,它会降低结构的耐久性,削弱构件的承载力,同时会可能危害到建筑物的安全使用。
所以如何采取有效措施防止大体积混凝土的开裂,是一个值得关注的问题。
一、大体积混凝土裂缝的原因和主要类型
产生裂缝风险的原因很多,归纳起来主要包括三类:结构设计不合理引起的裂缝;混凝土自身性能(力学、变形及热学性能)引起的裂缝;外部环境因素和约束条件引起的裂缝,三者既相互关联又相互影响。
混凝土早期开裂是极其关键的,因为后期开裂是在早期开裂或早期潜在开裂的基础上,受外力(荷载、外环境侵蚀等)作用而使混凝土的耐久性遭受破坏后发展和演变而来。
混凝土早期开裂分为早期沉降裂缝、早期表面干缩裂缝和早期热裂缝。
早期沉降裂缝是在泌水和沉陷较大且沉降物受到约束的情况下产生的,可通过配合比优化设计,减少泌水,降低沉陷趋势和复振等方法消除或避免。
早期表面干缩裂缝主要是在高温、低湿度和高风速等恶劣气候条件下,骨料和模板吸水、水分蒸发损失以及水泥—水系统体积减少引起混凝土表面开裂。
它可以通过加湿骨料与模板,设置临时屏风减小混凝土表面的风速,设置临时遮阳篷降低混凝土表面的温度,降低混凝土初始温度,用聚乙烯薄膜或麻袋临时覆盖混凝土表面以最大限度的减少水分蒸发,抹面后进行喷雾或涂抹养护剂等消除或避免。
可见前两种早期开裂是可以消除或避免的,只有早期热裂缝是较难预测和控制的。
二、裂缝的防治措施1.优选混凝土各种原材料
在选择大体积混凝土用水泥时,在条件许可的情况下,应优先选用收缩性小的或具有微膨胀性的水泥。
因为这种水泥在水化膨胀期(1~5d )可产生一定的预压应力,而在水化后期预压应力可部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。
为此,水泥熟料中的碱含量应低且适宜[3],熟料中MgO 含量在3.0%~5.0%,石膏与C3A 的比值尽量大些,C3A 、C3S 和C2S 含量应分别控制在5.0%以内、50.0%左右和20.0%左右,这种熟料比例的水泥具有长期稳定的微膨胀抗裂性能[2]。
骨料在大体积混凝土中所占比例一般为混凝土绝对体积的80%~83%,因此,在选择骨料时,应选择线膨胀系数小、岩石弹模较低、表面清洁无弱包裹层、级配良好的骨料。
砂除满足骨料规范要求外,应适当放宽石粉或细粉含量,这样不仅有利于提高混凝土的工作性,而且可提高混凝土的密实性、耐久性和抗裂性。
有研究表明,砂子中石粉比例一般在15%~18%之间为宜。
粉煤灰只要细度与水泥颗粒相当,烧失量小,含硫量和含碱量低,需水量比小,均可掺用在混凝土中使用。
混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱骨料反应,减少新拌混凝土的泌水等。
这些诸多好处均将有利于提高混凝土的抗裂性能。
高效减水剂和引气剂复合使用对减少大体积混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形、耐久性等性能起着极为重要的作用,也是混凝土向高性能化发展的不可或缺的重要组分。
2.设计措施
(1)精心设计混凝土配合比。
在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。
(2)增配构造筋提高抗裂性能。
配筋应采用小直径、小间距。
全截面的配筋率应在0.3-0.5%之间。
2011-02-18
第4期张宽:大体积混凝土裂缝的成因与预防245
(3)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。
(4)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。
(5)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,保留时间一般不小于60天。
如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。
3.采用合理的施工方法
(1)混凝土的拌制
1)在混凝土拌制过程中,要严格控制原材料计量准确,同时严格控制混凝土出机塌落度。
2)要尽量降低混凝土拌合物出机口温度,拌合物可采取以下两种降温措施:一是送冷风对拌和物进行冷却,二是加冰拌合,一般使新拌混凝土的温度控制在6℃左右。
(2)混凝土浇注、拆模
1)混凝土浇注过程质量控制
浇注过程中要进行振捣方可密实,振捣时间应均匀一致以表面泛浆为宜,间距要均匀,以振捣力波及范围重叠二分之一为宜,浇注完毕后,表面要压实、抹平,以防止表面裂缝。
另外,浇注混凝土要求分层浇注,分层流水振捣,同时要保证上层混凝土在下层初凝前结合紧密。
避免纵向施工缝、提高结构整体性和抗剪性能。
2)浇注时间控制
尽量避开在太阳辐射较高的时间浇注,若由于工程需要在夏季施工,则尽量避开正午高温时段,浇注尽量安排在夜间进行。
3)混凝土拆模时间控制
混凝土在实际温度养护的条件下,强度达到设计强度的75%以上,混凝土中心与表面最低温度控制在25℃以内,预计拆模后混凝土表面温降不超过9℃以上允许拆模。
(3)做好表面隔热保护
大体积混凝土的温度裂缝,主要是由内外温差过大引起的。
混凝土浇注后,由于内部较表面散热快,会形成内外温差,表面收缩受内部约束产生拉应力,但是这种拉应力通常很小,不至于超过混凝土的抗拉强度而产生裂缝。
但是如果此时受到冷空气的袭击,或者过分通风散热,使表面温度降温过大就很容易导致裂缝的产生,所以在混凝土在拆模后,特别是低温季节,在拆模后立即采取表面保护。
防止表面降温过大,引起裂缝。
另外,当日平均气温在2~3d内连续下降不小于6~8℃时,28d龄期内混凝土表面必须进行表面保护。
(4)养护
混凝土浇注完毕后,应及时洒水养护以保持混凝土表面经常湿润,这样既减少外界高温倒罐,又防止干缩裂缝的发生,促进混凝土强度的稳定增长。
一般在浇注完毕后12~18h内立即开始养护,连续养护时间不少于28d或设计龄期。
(5)通水冷却
若是在高温季节施工,则要在初期采用通制冷水来降低混凝土最高温度峰值,但注意,通水时间不能过长,因为时间过长会造成降温幅度过大而引起较大的温度应力。
为了削减内外温差,还应在夏末秋初进行中期通水冷却,中期通水一般采用河水,通水历时两个月左右。
后期通水是使混凝土柱状块达到接缝灌浆的必要措施,一般采用通河水和通制冷水相结合的方案。
三、结语
通过以上分析可知,大体积混凝土的材料型裂缝主要是由温度应力和混凝土的收缩引起的,笔者认为精心选择原材料,并在施工中采用合理的方法,能有效的防止裂缝的发生。
参考文献
[1]迟陪云.大体积混凝土开裂的起因及防裂措施.混凝土,
2001,(12).
[2]徐洪良.浅谈混凝土的施工温度与裂缝[J].民营科技,2009
(12).
[3]熊韬.浅谈大体积混凝土的施工温度与裂缝处理[J].商情,
2009,(11).
(上接第243页)
(1)根据检测结果,除去桩头松散体外,碎石桩桩体动探击数均不小于6。
(2)碎石桩桩体随着深度变化的密实度呈中密状态,说明桩体密实度较高。
碎石桩桩间土分层密实度呈稍密状态。
(3)根据检测结果推求的复合地基承载力较估算值大,可满足本工程对地基承载力的要求。
参考文献
[1]JTS167-2-2009,重力式码头设计与施工规范[S].
[2]余震等.振冲碎石桩加固软土地基试验研究[J].重庆建筑
大学学报,2007,06:57-61.[3]赵进坤.振冲碎石桩在软土地基处理中的应用[J].水运工
程,2001,07:58-62.
[4]江正荣.建筑地基与基础施工手册[M].北京:中国建筑工
业出版社,2005.
[5]J TJ254-98,港口工程桩基规范[S].
[6]J TS144-1-2010,港口工程荷载规范[S].
[7]J TJ246-2004,港口工程碎石桩复合地基设计与施工规程
[S].
[8]J TS147-1-2010,港口工程地基规范[S].
[9]地基处理手册编写委员会.地基处理手册[M].北京:中国
建筑工业出版社,2000.。