2019年初三数学上期末模拟试卷(含答案)(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年初三数学上期末模拟试卷(含答案)(1)
一、选择题
1.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )
A .32°
B .31°
C .29°
D .61° 2.把抛物线y =﹣2x 2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A .y =﹣2(x +1)2+1
B .y =﹣2(x ﹣1)2+1
C .y =﹣2(x ﹣1)2﹣1
D .y =﹣2(x +1)2﹣1 3.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )
A .
B .
C .
D .
4.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )
A .400(1)640x +=
B .2400(1)640x +=
C .2400(1)400(1)640x x +++=
D .2400400(1)400(1)640x x ++++=
5.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根
B .有两个相等的实数根
C .有一个根是x =1
D .不存在实数根
6.抛物线2y x 2=-+的对称轴为
A .x 2=
B .x 0=
C .y 2=
D .y 0= 7.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )
A .4m 或10m
B .4m
C .10m
D .8m 8.方程x 2=4x 的解是( )
A .x =0
B .x 1=4,x 2=0
C .x =4
D .x =2 9.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )
A .
B .
C .
D .
10.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )
A .m≥1
B .m≤1
C .m >1
D .m <1 11.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论
abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;
()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )
A .①②③
B .②③⑤
C .②③④
D .③④⑤
12.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形 AEFG ,AE ,FG 分别交射线CD 于点 PH ,连结 AH ,若 P 是 CH 的中点,则△APH 的周长为( )
A .15
B .18
C .20
D .24
二、填空题
13.如图,已知抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,顶点C 的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a 1x 2+b 1x+c 1,则下列结论正确的是
_________.(写出所有正确结论的序号)
①b >0;②a ﹣b+c <0;③阴影部分的面积为4;④若c=﹣1,则b 2=4a .
14.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.
15.一个不透明的口袋中有5个完全相同的小球,分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号是偶数的概率为 .
16.抛物线y=﹣x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是_____.
17.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:_______.
18.对于实数,a b ,定义运算“◎”如下:a ◎b 22
()()a b a b =+--.若()2m +◎()3m -24=,则m =_____.
19.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为_____.
20.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.
三、解答题
21.在平面直角坐标系中,已知二次函数y =ax 2﹣2ax ﹣3a (a >0)图象与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,顶点为D .
(1)求点A ,B 的坐标;
(2)若M 为对称轴与x 轴交点,且DM =2AM .
①求二次函数解析式;
②当t ﹣2≤x ≤t 时,二次函数有最大值5,求t 值;
③若直线x =4与此抛物线交于点E ,将抛物线在C ,E 之间的部分记为图象记为图象P (含
C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.
22.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
23.解方程:
(1)x2-3x+1=0;
(2)x(x+3)-(2x+6)=0.
24.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.
25.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.
(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?
(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.
【详解】
根据题意连接OC.因为119A ∠=︒
所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=
因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=
由于COP ∆为直角三角形
所以可得905832P ︒︒︒∠=-=
故选A.
【点睛】
本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.
2.B
解析:B
【解析】
【详解】
∵函数y=-2x 2的顶点为(0,0),
∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),
∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,
故选B .
【点睛】
二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.
3.D
解析:D
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A 、是轴对称图形,不是中心对称图形,故此选项错误;
B 、不是轴对称图形,是中心对称图形,故此选项错误;
C 、是轴对称图形,不是中心对称图形,故此选项错误;
D 、既是轴对称图形,又是中心对称图形,故此选项正确.
故选D .
【点睛】
此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4.B
解析:B
【解析】
【分析】
根据平均年增长率即可解题.
【详解】
解:设这两年的年净利润平均增长率为x ,依题意得:
()2
4001640x +=
故选B.
【点睛】
本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 5.A
解析:A
【解析】
【分析】
直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.
【详解】
∵x =﹣1为方程x 2﹣8x ﹣c =0的根,
1+8﹣c =0,解得c =9,
∴原方程为x 2-8x +9=0,
∵24b ac ∆=-=(﹣8)2-4×
9>0, ∴方程有两个不相等的实数根.
故选:A .
【点睛】
本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()2
00++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.
6.B
解析:B
【解析】
【分析】
根据顶点式的坐标特点,直接写出对称轴即可.
【详解】
解∵:抛物线y=-x2+2是顶点式,
∴对称轴是直线x=0,即为y轴.
故选:B.
【点睛】
此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.
7.C
解析:C
【解析】
【分析】
设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.
【详解】
设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,
根据题意列出方程x(28-2x)=80,
解得x1=4,x2=10
因为8≤x<14
∴与墙垂直的边x为10m
故答案为C.
【点睛】
本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.
8.B
解析:B
【解析】
【分析】
移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.
【详解】
x2=4x,
x2﹣4x=0,
x(x﹣4)=0,
x﹣4=0,x=0,
x1=4,x2=0,
故选B.
【点睛】
本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.D
解析:D
【解析】
【分析】
【详解】
∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过
一、二、三象限,没有图象符合要求;
当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求.
故选B .
10.D
解析:D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.
详解:∵方程2x 2x m 0-+=有两个不相同的实数根,
∴()2
240m =-->V ,
解得:m <1.
故选D .
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 11.B
解析:B
【解析】
【分析】
由抛物线对称轴的位置判断ab 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所给结论进行判断即可.
【详解】
Q ①对称轴在y 轴的右侧,
ab 0∴<,
由图象可知:c 0>,
abc 0∴<,故①不正确;
②当x 1=-时,y a b c 0=-+<,
b a
c ∴->,故②正确;
③由对称知,当x 2=时,函数值大于0,即y 4a 2b c 0=++>,故③正确; b x 12a
=-=Q ④, b 2a ∴=-,
a b c 0-+<Q ,
a 2a c 0∴++<,
3a c <-,故④不正确;
⑤当x 1=时,y 的值最大.此时,y a b c =++,
而当x m =时,2
y am bm c =++,
所以()2a b c am bm c m 1++>++≠, 故2a b am bm +>+,即()a b m am b +>+,故⑤正确,
故②③⑤正确,
故选B .
【点睛】
本题考查了图象与二次函数系数之间的关系,二次函数2
y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,熟练掌握二次函数的性质是关键. 12.C
解析:C
【解析】
【分析】
连结AC ,先由△AGH ≌△ADH 得到∠GHA =∠AHD ,进而得到∠AHD =∠HAP ,所以△AHP 是等腰三角形,所以PH =PA =PC ,所以∠HAC 是直角,再在Rt △ABC 中由勾股定理求出AC 的长,然后由△HAC ∽△ADC ,根据=求出AH 的长,再根据△HAC ∽△HDA 求出DH 的长,进而求得HP 和AP 的长,最后得到△APH 的周长.
【详解】
∵P 是CH 的中点,PH =PC ,∵AH =AH ,AG =AD ,且AGH 与ADH 都是直角,∴△AGH ≌△ADH ,∴∠GHA =∠AHD ,又∵GHA =HAP ,∴∠AHD =∠HAP ,∴△AHP 是等腰三角形,∴PH =PA =PC ,∴∠HAC 是直角,在Rt △ABC 中,AC =
=10,∵△HAC ∽△ADC ,∴=,∴AH ===7.5,又∵△HAC ∽△HAD ,=,∴DH =4.5,∴HP ==6.25,AP =HP =6.25,∴△APH 的周长=AP +PH +AH =6.25+6.25+7.5=20.
【点睛】
本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.
二、填空题
13.③④【解析】【分析】①首先根据抛物线开口向上可得a >0;然后根据对称轴为x=﹣>0可得b <0据此判断即可②根据抛物线y=ax2+bx+c 的图象可得x=﹣1时y >0即a ﹣b+c >0据此判断即可③首先判
解析:③④
【解析】
【分析】
①首先根据抛物线开口向上,可得a >0;然后根据对称轴为x=﹣
2b a
>0,可得b <0,据此判断即可.
②根据抛物线y=ax 2+bx+c 的图象,可得x=﹣1时,y >0,即a ﹣b+c >0,据此判断即可. ③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可. ④根据函数的最小值是2
424ac b a
-=-,判断出c=﹣1时,a 、b 的关系即可. 【详解】
解:∵抛物线开口向上,
∴a >0,又∵对称轴为x=﹣
2b a
>0,∴b <0,∴结论①不正确; ∵x=﹣1时,y >0,∴a ﹣b+c >0,∴结论②不正确; ∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax 2+bx+c 的最小值是y=﹣2,
∴平行四边形的高是2,∴阴影部分的面积是:2×
2=4,∴结论③正确; ∵2
424ac b a
-=-,c=﹣1,∴b 2=4a ,∴结论④正确. 故答案为:③④.
【点睛】
本题考查二次函数图象与几何变换;二次函数图象与系数的关系.
14.24π【解析】【分析】根据整体思想可知S 阴影=S 半圆AB′+S 扇形
ABB′﹣S 半圆AB =S 扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S 阴影=S 半圆AB′+S 扇形ABB′﹣S 半圆AB 而根据旋
解析:24π
【解析】
【分析】
根据整体思想,可知S 阴影=S 半圆AB′+S 扇形ABB′﹣S 半圆AB =S 扇形ABB′,再利用扇形面积公式计算即可.
【详解】
解:∵S 阴影=S 半圆AB′+S 扇形ABB′﹣S 半圆AB
而根据旋转的性质可知S 半圆AB′=S 半圆AB
∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°
即:S阴影=
2 6012
360
π⋅⋅
=24π
故答案为24π.
【点睛】
本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.
15.【解析】试题分析:确定出偶数有2个然后根据概率公式列式计算即可得解∵标号为12345的5个小球中偶数有2个∴P=考点:概率公式
解析:
【解析】
试题分析:确定出偶数有2个,然后根据概率公式列式计算即可得解.∵标号为1,2,3,4,5的5个小球中偶数有2个,∴P=.
考点:概率公式
16.-3<x<1【解析】试题分析:根据抛物线的对称轴为x=﹣1一个交点为(10)可推出另一交点为(﹣30)结合图象求出y>0时x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1已知一个交点为(1
解析:-3<x<1
【解析】
试题分析:根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.
解:根据抛物线的图象可知:
抛物线的对称轴为x=﹣1,已知一个交点为(1,0),
根据对称性,则另一交点为(﹣3,0),
所以y>0时,x的取值范围是﹣3<x<1.
故答案为﹣3<x<1.
考点:二次函数的图象.
17.(x+1)2=25【解析】【分析】此图形的面积等于两个正方形面积的差据此即可列出方程【详解】根据题意得:(x+1)2-1=24即:(x+1)2=25故答案为(x+1)2=25【点睛】本题考查了一元二
解析:(x+1)2=25
【解析】
【分析】
此图形的面积等于两个正方形面积的差,据此即可列出方程.
【详解】
根据题意得:(x+1) 2 -1=24,
即:(x+1) 2 =25.
故答案为(x+1) 2 =25.
【点睛】
本题考查了一元二次方程的应用——图形问题,解题的关键是明确图中不规则图形的面积计算方法.
18.-
3或4【解析】【分析】利用新定义得到整理得到然后利用因式分解法解方程【详解】根据题意得或所以故答案为:或【点睛】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法这
解析:-3或4
【解析】
【分析】
利用新定义得到22
[(2)(3)][(2)(3)]24m m m m ++--+--=,整理得到2(21)490m --=,然后利用因式分解法解方程.
【详解】
根据题意得,22
[(2)(3)][(2)(3)]24m m m m ++--+--=, 2(21)490m --=,
(2 m-1+7)(2 m-1-7)=0,
2 m-1+7=0或2 m-1-7=0,
所以123,
4m m =-=. 故答案为:3-或4.
【点睛】
本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法. 19.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x
解析:﹣3
【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.
【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,
整理得k 2+3k=0,解得k 1=0,k 2=﹣3,
因为k≠0,
所以k 的值为﹣3.
故答案为:﹣3.
【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右
两边相等的未知数的值是一元二次方程的解.
20.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=
解析:3
【解析】
【分析】
将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】
如图将圆锥侧面展开,得到扇形ABB′,
则线段BF为所求的最短路线.
设∠BAB′=n°.
∵
6
4 180
nπ
π
⋅
=,
∴n=120,即∠BAB′=120°.
∵E为弧BB′中点,
∴∠AFB=90°,∠BAF=60°,
Rt△AFB中,∠ABF=30°,AB=6
∴AF=3,BF22
63
-=3,
∴最短路线长为3.
故答案为:3
【点睛】
本题考查“化曲面为平面”求最短路径问题,属中档题.
三、解答题
21.(1)A(﹣1,0)、B(3,0);(2)①y=x2﹣2x﹣3;②t值为0或4;③﹣1≤b<11或b=﹣4.
【解析】
【分析】
(1)令y=0,即:ax2﹣2ax﹣3a=0,解得:x=﹣1或3,即可求解;
(2)①DM =2AM =4,即点D 的坐标为(1,﹣4),将点D 的坐标代入二次函数表达式,即可求解;
②分x =t 和x =t ﹣2在对称轴右侧、左侧或两侧三种情况,讨论求解即可;
③如下图所示,直线m 、l 、n 都是直线y =kx +b 与图象P 、Q 都相交,且只有两个交点的临界点,即可求解.
【详解】
解:(1)令y =0,即:ax 2﹣2ax ﹣3a =0,解得:x =﹣1或3,
即点A 、B 的坐标分别为(﹣1,0)、(3,0),函数的对称轴12b x a =-
=; (2)①DM =2AM =4,即点D 的坐标为(1,﹣4),
将点D 的坐标代入二次函数表达式得:
﹣4=a ﹣2a ﹣3a ,解得:a =1,即函数的表达式为:y =x 2﹣2x ﹣3;
②当x =t 和x =t ﹣2在对称轴右侧时,函数在x =t 处,取得最大值,
即:t 2﹣2t ﹣3=5,解得:t =﹣2或4(舍去t =﹣2),即t =4;
同理当x =t 和x =t ﹣2在对称轴左侧或两侧时,解得:t =0,
故:t 值为0或4;
③如下图所示,直线m 、l 、n 都是直线y =kx +b 与图象P 、Q 都相交,且只有两个交点的临界点,
点E 、R 、C '坐标分别为(4,5)、(10,﹣4)、(8,﹣3),直线l 的表达式:把点E 、R 的坐标代入直线y =kx +b 得:
54410,k b k b =+⎧⎨-=+⎩ 解得:3211,
k b ⎧=-⎪⎨⎪=⎩ 同理可得直线m 的表达式为:112
y x =--, 直线n 的表达式为:y =﹣4,故:b 的取值范围为:﹣1≤b <11或b =﹣4.
【点睛】
本题考查的是二次函数知识的综合运用,其中(2)③是本题的难点,主要通过作图的方式,通过数形结合的方法即可解决问题.
22.(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.
【解析】
【分析】
(1)待定系数法列方程组求一次函数解析式.
(2)列一元二次方程求解.
(3)总利润=单件利润⨯销售量:w =(x -20)(-2x +80),得到二次函数,先配方,在定义域上求最值.
【详解】
(1)设y 与x 的函数关系式为y =kx +b .
把(22,36)与(24,32)代入,得22362432.k b k b +=⎧⎨+=⎩
解得280.k b =-⎧⎨=⎩
∴y =-2x +80(20≤x≤28).
(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元,根据题意,得
(x -20)y =150,即(x -20)(-2x +80)=150.
解得x 1=25,x 2=35(舍去).
答:每本纪念册的销售单价是25元.
(3)由题意,可得w =(x -20)(-2x +80)=-2(x -30)2+200.
∵售价不低于20元且不高于28元,
当x <30时,y 随x 的增大而增大,
∴当x =28时,w 最大=-2×(28-30)2+200=192(元).
答:该纪念册销售单价定为28元时,能使文具店销售该纪念册所获利润最大,最大利润是192元.
23.(1)x 1x 22)x 1=-3,x 2=2. 【解析】
试题分析:(1)直接利用公式法求出x 的值即可;
(2)先把原方程进行因式分解,再求出x 的值即可.
试题解析:(1)∵一元二次方程x 2-3x+1=0中,a=1,b=-3,c=1,
∴△=b 2-4ac=(-3)2-4×1×1=5.
∴x=(3)32212b a -±--±±==⨯.
即x 1x 2 (2)∵因式分解得 (x+3)(x-2)=0,
∴x+3=0或x-2=0,
解得 x 1=-3,x 2=2.
考点:1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.
24.“树状图法”或“列表法”见解析,1 4
【解析】
【分析】
列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.
【详解】
解:解法一:
列树状图得:
共有16种结果,且每种结果的可能性相同,
因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,
所以小彦中奖的概率为
41 164
=.
解法二:
列表得:
共有16种结果,且每种结果的可能性相同,
因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,
所以小彦中奖的概率为
41 164
=.
【点睛】
此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
25.(1)50,25;(2)20
【解析】
【分析】
(1)先将10.5万元化为105000元,设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得一元一次方程,求解即可;
(2)以“2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元”为等量关系,列出方程,然后设a%=t ,化为关于t 的一元二次方程,求解出t ,再根据a%=t ,求得a 即可.
【详解】
(1)10.5万元=105000元
设该乡镇有x 名高中学生获得了资助,则该乡镇有2x 名初中学生受到资助,由题意得: 20023006105000x x ⨯+⨯=
解得:25x =
∴250x =
∴该乡镇分别有50名初中学生和25名高中学生获得了资助.
(2)由题意得:
5030%13%2001%2540%1%30012%10800a a a a ⨯⨯+⨯++⨯⨯+⨯+=
∴1013%1%101%12%36a a a a ⨯+⨯++⨯+⨯+=
设%a t =,则方程化为:22101431013236t t t t +++++=
∴2253580t t +=﹣
解得 1.6t =﹣(舍)或20%t =
∴20a =.
【点睛】
本题主要考查了由实际问题抽象出一元二次方程和一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。