清新区三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
清新区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )
A .2
B .4
C .
D .
2. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);④.其中符号为
负的是( ) A .① B .②
C .③
D .④
3. 若双曲线﹣
=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )
A .
B .
C .
D .2
4. 已知条件p :|x+1|≤2,条件q :x ≤a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣3
5.
某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为( ) A .80+20π B .40+20π C .60+10π D .80+10π
6. 函数f (x )=e ln|x|+的大致图象为( )
A.B.C.D.
7.抛物线y=x2的焦点坐标为()
A.(0,)B.(,0)C.(0,4) D.(0,2)
8.设F1,F2是双曲线的两个焦点,P是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于()
A. B. C.24 D.48
9.已知M是△ABC内的一点,且=2,∠BAC=30°,若△MBC,△MCA和△MAB的面积分别为
,x,y,则+的最小值是()
A.20 B.18 C.16 D.9
10.在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是()
A.<,乙比甲成绩稳定B.<,甲比乙成绩稳定
C.>,甲比乙成绩稳定D.>,乙比甲成绩稳定
11.若某程序框图如图所示,则输出的n的值是()
A.3 B.4 C.5 D.6
x-=表示的曲线是()
12.方程1
A.一个圆B.两个半圆C.两个圆D.半圆二、填空题
13.如图:直三棱柱ABC﹣A′B′C′的体积为V,点P、Q分别在侧棱AA′和CC′上,AP=C′Q,则四棱锥B﹣APQC的体积为.
14.若与共线,则y=.
15.函数的单调递增区间是.
16.在极坐标系中,点(2,)到直线ρ(cosθ+sinθ)=6的距离为.
17.抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=.18.如图为长方体积木块堆成的几何体的三视图,此几何体共由块木块堆成.
三、解答题
19.已知数列{a n }的首项为1,前n 项和S n 满足=+1(n ≥2).
(Ⅰ)求S n 与数列{a n }的通项公式;
(Ⅱ)设b n =(n ∈N *
),求使不等式b 1+b 2+…+b n >
成立的最小正整数n .
20.已知矩阵A =,向量=.求向量
,使得A 2=.
21.(本小题满分10分)选修4-1:几何证明选讲
如图,直线PA 与圆O 相切于点A ,PBC 是过点O 的割线,CPE APE ∠=∠,点H 是线段ED 的中 点.
(1)证明:D F E A 、、、四点共圆; (2)证明:PC PB PF ⋅=2
.
22.已知函数f(x)=ax2﹣2lnx.
(Ⅰ)若f(x)在x=e处取得极值,求a的值;
(Ⅱ)若x∈(0,e],求f(x)的单调区间;
(Ⅲ)设a>,g(x)=﹣5+ln,∃x1,x2∈(0,e],使得|f(x1)﹣g(x2)|<9成立,求a的取值范围.
23.已知函数f(x)=log a(x2+2),若f(5)=3;
(1)求a的值;
(2)求的值;
(3)解不等式f(x)<f(x+2).
24.设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
清新区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题
1.【答案】C
【解析】解:由于q=2,
∴
∴;
故选:C.
2.【答案】B
【解析】解::①sin100°>0,②cos(﹣100°)=cos100°<0,③tan(﹣100°)=﹣tan100>0,
④∵sin>0,cosπ=﹣1,tan<0,
∴>0,
其中符号为负的是②,
故选:B.
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.3.【答案】B
【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,
圆(x﹣2)2
+y2=2的圆心(2,0),半径为,
双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,
可得:,
可得a2
=b2,c=a,
e==.
故选:B.
【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.
4.【答案】A
【解析】解:由|x+1|≤2得﹣3≤x≤1,即p:﹣3≤x≤1,
若p是q的充分不必要条件,
则a≥1,
故选:A.
【点评】本题主要考查充分条件和必要条件的判断,比较基础.
5.【答案】
【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.
依题意得(2r×2r+1
2)×2+5×2r×2+5×2r+πr×5=92+14π,
2πr
即(8+π)r2+(30+5π)r-(92+14π)=0,
即(r-2)[(8+π)r+46+7π]=0,
∴r=2,
∴该几何体的体积为(4×4+1
2)×5=80+10π.
2π×2
6.【答案】C
【解析】解:∵f(x)=e ln|x|+
∴f(﹣x)=e ln|x|﹣
f(﹣x)与f(x)即不恒等,也不恒反,
故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,
可排除A,D,
当x→0+时,y→+∞,故排除B
故选:C.
7.【答案】D
【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,
∴焦点坐标为(0,2).
故选:D.
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.8.【答案】C
【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,
∵3|PF1|=4|PF2|,∴设|PF2|=x,则,
由双曲线的性质知,解得x=6.
∴|PF1|=8,|PF2|=6,
∴∠F1PF2=90°,
∴△PF1F2的面积=.
故选C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.
9.【答案】B
【解析】解:由已知得=bccos∠BAC=2⇒bc=4,
故S△ABC=x+y+=bcsinA=1⇒x+y=,
而+=2(+)×(x+y)
=2(5++)≥2(5+2)=18,
故选B.
【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.
10.【答案】A
【解析】解:由茎叶图可知=(77+76+88+90+94)=,
=(75+86+88+88+93)==86,则<,
乙的成绩主要集中在88附近,乙比甲成绩稳定,
故选:A
【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键.
11.【答案】C
【解析】解:由程序框图知:算法的功能是求满足P=1+3+…+(2n﹣1)>20的最小n值,
∵P=1+3+…+(2n﹣1)=×n=n2>20,∴n≥5,
故输出的n=5.
故选:C .
【点评】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.
12.【答案】A 【解析】
试题分析:由方程()2
111x y -=-+,两边平方得()2
22
1(11)x y -=-+,即22(1)(1)1x y -++=,所
以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程.
二、填空题
13.【答案】V
【解析】
【分析】四棱锥B ﹣APQC 的体积,底面面积是侧面ACC ′A ′的一半,B 到侧面的距离是常数,求解即可. 【解答】解:由于四棱锥B ﹣APQC 的底面面积是侧面ACC ′A ′的一半,不妨把P 移到A ′,Q 移到C , 所求四棱锥B ﹣APQC 的体积,转化为三棱锥A ′﹣ABC 体积,就是:
故答案为:
14.【答案】 ﹣6 .
【解析】解:若与
共线,则2y ﹣3×(﹣4)=0
解得y=﹣6 故答案为:﹣6
【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,其中根据“两个向量若平行,交叉相乘差为零”的原则,构造关于y 的方程,是解答本题的关键.
15.【答案】 [2,3) .
【解析】解:令t=﹣3+4x ﹣x 2
>0,求得1<x <3,则y=
,
本题即求函数t 在(1,3)上的减区间.
利用二次函数的性质可得函数t 在(1,3)上的减区间为[2,3), 故答案为:[2,3).
16.【答案】 1 .
【解析】解:点P(2,)化为P.
直线ρ(cosθ+sinθ)=6化为.
∴点P到直线的距离d==1.
故答案为:1.
【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
17.【答案】3.
【解析】解:∵抛物线y2=4x=2px,
∴p=2,
由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,
∴|MF|=4=x+=4,
∴x=3,
故答案为:3.
【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.
18.【答案】4
【解析】解:由三视图可以看出此几何体由两排两列,前排有一个方块,后排左面一列有两个木块右面一列有一个,
故后排有三个,故此几何体共有4个木块组成.
故答案为:4.
三、解答题
19.【答案】
【解析】解:(Ⅰ)因为=+1(n≥2),
所以是首项为1,公差为1的等差数列,…
则=1+(n ﹣1)1=n ,…
从而S n =n 2
.…
当n=1时,a 1=S 1=1,
当n >1时,a n =S n ﹣S n ﹣1=n 2﹣(n ﹣1)2
=2n ﹣1.
因为a 1=1也符合上式, 所以a n =2n ﹣1.…
(Ⅱ)由(Ⅰ)知b n ==
=
,…
所以b 1+b 2+…+b n =
==
,…
由
,解得n >12.…
所以使不等式成立的最小正整数为13.…
【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想
20.【答案】=
【解析】A 2=.
设
=
.由A 2=,得
,从而
解得x =-1,y =2,所以= 21.【答案】(1)证明见解析;(2)证明见解析.
【
解
析
】
11
11]
试题解析:解:(1)∵PA 是切线,AB 是弦,∴C BAP ∠=∠,CPE APD ∠=∠, ∴CPE C APD BAP ∠+∠=∠+∠,
∵CPE C AED APD BAP ADE ∠+∠=∠∠+∠=∠, ∴AED ADE ∠=∠,即ADE ∆是等腰三角形
又点H 是线段ED 的中点,∴ AH 是线段ED 垂直平分线,即ED AH ⊥
又由CPE APE ∠=∠可知PH 是线段AF 的垂直平分线,∴AF 与ED 互相垂直且平分, ∴四边形AEFD 是正方形,则D F E A 、、、四点共圆. (5分) (2由割线定理得PC PB PA ⋅=2
,由(1)知PH 是线段AF 的垂直平分线,
∴PF PA =,从而PC PB PF ⋅=2
(10分)
考点:与圆有关的比例线段. 22.【答案】
【解析】解:(Ⅰ) f ′(x )=2ax ﹣= 由已知f ′(e )=2ae ﹣=0,解得a=
.
经检验,a=符合题意.
(Ⅱ)
1)当a ≤0时,f ′(x )<0,∴f (x )在(0,e]上是减函数.
2)当a >0时,
①若<e ,即,则f (x )在(0,
)上是减函数,在(
,e]上是增函数;
②若
≥e ,即0<a ≤
,则f (x )在[0,e]上是减函数.
综上所述,当a ≤时,f (x )的减区间是(0,e],
当a >时,f (x )的减区间是
,增区间是
.
(Ⅲ)当
时,由(Ⅱ)知f (x )的最小值是f (
)=1+lna ;
易知g (x )在(0,e]上的最大值是g (e )=﹣4﹣lna ; 注意到(1+lna )﹣(﹣4﹣lna )=5+2lna >0,
故由题设知,
解得
<a <e 2
.
故a的取值范围是(,e2)
23.【答案】
【解析】解:(1)∵f(5)=3,
∴,
即log a27=3
解锝:a=3…
(2)由(1)得函数,
则=…
(3)不等式f(x)<f(x+2),
即为
化简不等式得…
∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.
∴x2+2<x2+4x+6…
即4x>﹣4,
解得x>﹣1,
所以不等式的解集为:(﹣1,+∞)…
24.【答案】
【解析】解:(1)证明:f′(x)=m(e mx﹣1)+2x.
若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.
(2)由(1)知,对任意的m,f(x)在单调递减,在单调递增,故f(x)在x=0处取得最小值.
所以对于任意x1,x2∈,|f(x1)﹣f(x2)|≤e﹣1的充要条件是
即
设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.
当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.
又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈时,g(t)≤0.
当m∈时,g(m)≤0,g(﹣m)≤0,即合式成立;
当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.
当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.
综上,m的取值范围是。