人教版八年级第二学期 第一次段考数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =
; ②∠A=∠BHE ;
③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )
A .①②③
B .①②④
C .②③④
D .①②③④
2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判
断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )
A .1个
B .2个
C .3个
D .4个 3.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③D
E 2+BG 2=2a 2+2b 2,其中正确结论有( )
A .0个
B .1个
C .2个
D .3个 4.在ΔABC 中,
211a b c =+,则∠A( ) A .一定是锐角
B .一定是直角
C .一定是钝角
D .非上述答案 5.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )
A .6
B .12
C .62
D .36.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )
A .5.3尺
B .6.8尺
C .4.7尺
D .3.2尺
7.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )
A.5B.51
+D.51
-+
-C.51
8.《九章算术》是我国古代第一部数学专著,它的出现标志中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》中:“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()
A.3 B.5 C.4.2 D.4
9.下列四组线段中,可以构成直角三角形的是()
A.1、2、3B.2、3、4 C.1、2、3 D.4、5、6
10.一个直角三角形的两条边的长度分别为3和4,则它的斜边长为()
A.5 B.4 C.7D.4或5
二、填空题
11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.
12.如图,在Rt△ABC中,∠B=90°,以AC为斜边向外作等腰直角三角形COA,已知
BC=8,OB=102,则另一直角边AB 的长为__________.
13.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.
14.如图,长方体纸箱的长、宽、高分别为50cm 、30cm 、60cm ,一只蚂蚁从点A 处沿着纸箱的表面爬到点B 处.蚂蚁爬行的最短路程为_______cm.
15.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5.
①线段OA 的取值范围是______________;
②若BD -AC =1,则AC •BD = _________.
16.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.
17.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若12315S S S ++=,则2S 的值是__________.
18.如图,把平面内一条数轴x 绕点O 逆时针旋转角θ(0°<θ<90°)得到另一条数轴y ,x 轴和y 轴构成一个平面斜坐标系.规定:已知点P 是平面斜坐标系中任意一点,过点P 作y 轴的平行线交x 轴于点A ,过点P 作x 轴的平行线交y 轴于点B ,若点A 在x 轴上对应的实数为a ,点B 在y 轴上对应的实数为b ,则称有序实数对(a ,b )为点P 的斜坐标.在平面斜坐标系中,若θ=45°,点P 的斜坐标为(1,22),点G 的斜坐标为(7,﹣22),连接PG ,则线段PG 的长度是_____.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.如图,在ABC 中,AB AC =,点D 在ABC 内,AD 平分BAC ∠,连结CD ,把ADC 沿CD 折叠,AC 落在CE 处,交AB 于F ,恰有CE AB ⊥.若10BC =,7AD =,则EF =__________.
三、解答题
21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒
∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)出发2秒后,求线段PQ 的长;
(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;
(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)当2t =秒时,求PQ 的长;
(2)求出发时间为几秒时,PQB ∆是等腰三角形?
(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
24.如图所示,已知ABC ∆中,90B ∠=︒,16AB cm =,20AC cm =,P 、Q 是ABC ∆的边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C A →→方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为ts .
(1)则BC =____________cm ;
(2)当t 为何值时,点P 在边AC 的垂直平分线上?此时CQ =_________?
(3)当点Q 在边CA 上运动时,直接写出使BCQ ∆成为等腰三角形的运动时间.
25.Rt ABC ∆中,90CAB ∠=,4AC =,8AB =,M N 、分别是边AB 和CB 上的动点,在图中画出AN MN +值最小时的图形,并直接写出AN MN +的最小值为 .
26.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .
(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.
27.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .
(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .
①求证:BE EF =;
②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.
28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM .
(1)请直接写出CM 和EM 的数量关系和位置关系.
(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.
29.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD
()1如图1,若2BD =,4DC =,求AD 的长;
()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法
想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.
想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.
请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)
②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.
30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).
(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度;
(2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ;
(3)点E 在边AC 上运动时,求∠EDF 的度数;
(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出
BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明
△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.
【详解】
解:∵∠DBC=45°,DE ⊥BC 于E ,
∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,

BE ,故①正确;
∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,
∴∠BHE=∠C ,
又∵在▱ABCD 中,∠A=∠C ,
∴∠A=∠BHE ,故②正确;
在△BEH 和△DEC 中,
BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△BEH ≌△DEC ,
∴BH=CD ,
∵四边形ABCD 为平行四边形,
∴AB=CD ,
∴AB=BH ,故③正确;
利用已知条件不能得到△BCF ≌△DCE ,故④错误,
故选A.
【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.
2.C
解析:C
【分析】
根据AC=2AB ,点D 是AC 的中点求出AB=CD ,再根据△ADE 是等腰直角三角形求出AE=DE ,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE 和△DCE 全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC ,从而判断出②小题正确;根据全
等三角形对应角相等可得∠AEB=∠DEC ,然后推出∠BEC=∠AED ,从而判断出③小题正确;
倍,用DE 表示出AD ,然后得到AB 、AC ,再根据勾股定理用DE 与EC 表示出BC ,整理即可得解,从而判断出④小题错误.
【详解】
解:∵AC=2AB ,点D 是AC 的中点,
∴CD=12
AC=AB , ∵△ADE 是等腰直角三角形,
∴AE=DE ,
∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,
∴∠BAE=∠CDE ,
在△ABE 和△DCE 中,
AB CD BAE CDE AE DE =⎧⎪∠=∠⎨⎪=⎩

∴△ABE ≌△DCE (SAS ),故①小题正确;
∴BE=EC ,∠AEB=∠DEC ,故②小题正确;
∵∠AEB+∠BED=90°,
∴∠DEC+∠BED=90°,
∴BE ⊥EC ,故③小题正确;
∵△ADE 是等腰直角三角形,

DE ,
∵AC=2AB ,点D 是AC 的中点,

DE ,
DE ,
在Rt △ABC 中,BC 2=AB 2+AC 2=
DE )2+(
DE )2=10DE 2,
∵BE=EC ,BE ⊥EC ,
∴BC 2=BE 2+EC 2=2EC 2,
∴2EC 2=10DE 2,
解得
,故④小题错误,
综上所述,判断正确的有①②③共3个.
故选:C .
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE 是等腰直角三角形推出AE=DE ,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.
3.D
解析:D
【解析】
分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS
得到三角形BCE与三角形DCG全等,利用全等三角形对应边相等即可得到BE=DG,利用全等三角形对应角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定义得到∠BOD为直角,利用勾股定理求出所求式子的值即可.
详解:①∵四边形ABCD和EFGC都为正方形,
∴CB=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,CB=CD,∠BCE=∠DCG,CE=CG,
∴△BCE≌△DCG,
∴BE=DG,
故结论①正确.
②如图所示,设BE交DC于点M,交DG于点O.
由①可知,△BCE≌△DCG,
∴∠CBE=∠CDG,即∠CBM=∠MDO.
又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,
∴∠DOM=∠MCB=90°,
∴BE⊥DG.
故②结论正确.
③如图所示,连接BD、EG,
由②知,BE⊥DG,
则在Rt△ODE中,DE2=OD2+OE2,
在Rt△BOG中,BG2=OG2+OB2,
在Rt△OBD中,BD2=OD2+OB2,
在Rt△OEG中,EG2=OE2+OG2,
∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.
在Rt△BCD中,BD2=BC2+CD2=2a2,
在Rt△CEG中,EG2=CG2+CE2=2b2,
∴BG2+DE2=2a2+2b2.
故③结论正确.
故选:D.
点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.
4.A
解析:A
【解析】
【分析】根据211
a b c
=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.
【详解】∵211
a b c =+,
∴2b c
a bc
+ =,
∴2bc=a(b+c),
∵a、b、c是三角形的三条边,
∴b+c>a,
∴2bc>a·a,
即2bc>a 2,
∵(b-c)2≥0,
∴b 2 +c 2 -2bc≥0,
b 2 +
c 2≥2bc,
∴b 2 +c 2>a 2,
∴一定为锐角,
故选A.
【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.
5.D
解析:D
【分析】
根据直角三角形的性质求出BC,根据勾股定理计算,得到答案.
【详解】
解:∵∠C=90°,∠A=30°,
∴BC=1
2
AB=6,
由勾股定理得,=
故选:D.
【点睛】
本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.
6.D
解析:D
【分析】
根据题意结合勾股定理得出折断处离地面的长度即可.
【详解】
解:设折断处离地面的高度OA 是x 尺,根据题意可得:
x 2+62=(10-x )2,
解得:x=3.2,
答:折断处离地面的高度OA 是3.2尺.
故选D .
【点睛】
此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.
7.B
解析:B
【分析】
由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB 而即可得到答案.
【详解】
∵数轴上点P 表示的数为1-,点A 表示的数为1,
∴PA=2,
又∵l ⊥PA ,1AB =, ∴225PB PA AB +=
∵5
∴数轴上点C 51.
故选B .
【点睛】
本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.
8.C
解析:C
【分析】
根据题意可设折断处离地面的高度OA 是x 尺,折断处离竹梢AB 是(10-x )尺,结合勾股定理即可得出折断处离地面的高度.
【详解】
设折断处离地面的高度OA 是x 尺,则折断处离竹梢AB 是(10-x )尺,
由勾股定理可得:222=OA OB AB +
即:()2
224=10x x +-,
解得:x=4.2
故折断处离地面的高度OA是4.2尺.
故答案选:C.
【点睛】
本题主要考查直角三角形勾股定理的应用,解题的关键是熟练运用勾股定理.
9.A
解析:A
【分析】
求出两小边的平方和、最长边的平方,看看是否相等即可.
【详解】
A、12+2)2=32
∴以123,故本选项正确;
B、22+32≠42
∴以2、3、4为边组成的三角形不是直角三角形,故本选项错误;
C、12+22≠32
∴以1、2、3为边组成的三角形不是直角三角形,故本选项错误;
D、42+52≠62
∴以4、5、6为边组成的三角形不是直角三角形,故本选项错误;
故选A..
【点睛】
本题考查了勾股定理的逆定理应用,掌握勾股定理逆定理的内容就解答本题的关键. 10.D
解析:D
【分析】
根据题意,可分为已知的两条边的长度为两直角边,或一直角边一斜边两种情况,根据勾股定理求斜边即可.
【详解】
当3和4为两直角边时,由勾股定理,得:
22
+=;
345
当3和4为一直角边和一斜边时,可知4为斜边.
∴斜边长为4或5.
故选:D.
【点睛】
本题考查了勾股定理,关键是根据题目条件进行分类讨论,利用勾股定理求解.
二、填空题
11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,
∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,
x+4y=103
, 所以S 2=x+4y=
103. 考点:勾股定理的证明.
12.12
【分析】
延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=
+=,可得AB=BE-AE.
【详解】
如图,延长BA 至E ,使AE=BC ,并连接OE.
因为三角形COA 是等腰直角三角形
所以CO=AO,∠AOC=∠BOC+∠AOB=90°
因为∠ABC=90°,∠AOC=90°,
所以∠BAO+∠BCO=180°,
又∠BAO+∠OAE=180°
所以∠BCO=∠OAE
所以∆BCO ≅∠EAO
所以BO=EO, ∠BOC=∠EOA
所以,∠BOE=∠EOA+∠AOB=90°
所以三角形BOE 是等腰直角三角形
所以()()222210210220BO EO +=+=
所以AB=BE-AE=20-8=12
故答案为:12
【点睛】
考核知识点:全等三角形,勾股定理.构造全等三角形是关键.
13.6
5
【分析】
由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.
【详解】
解:如图,连接EF ,过点A 作AG BC ⊥于点G ,
AE AD ⊥,
DAE DAC 290∠∠∠∴=+=,

BAC DAC 190∠∠∠=+=,
12∠∠∴=,
在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩

ABD ∴≌()ACE SAS .
BD CE ∴=,4B ∠∠=
BAC 90∠=,AB AC =,
∴B 345∠∠==
4B 45∠∠∴==,
ECF 3490∠∠∠∴=+=,
222CE CF EF ∴+=,
222BD FC EF ∴+=,
AF 平分DAE ∠,
DAF EAF ∠∠∴=,
在DAF 和EAF 中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩

EAF SAS.
∴≌()
DAF
∴=.
DF EF
222
∴+=.
BD FC DF
22222
∴=+=+=,
DF BD FC68100
=
∴DF10
∴=++=++=,
BC BD DF FC610824
⊥,
AB AC
=,AG BC
1
∴===,
BG AG BC12
2
∴=-=-=,
DG BG BD1266
∴22
=+=
AD AG DG65
故答案为65
【点睛】
考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
14.100
【解析】
蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:
第一种情况:如图1,把我们所看到的前面和上面组成一个平面,
则这个长方形的长和宽分别是90cm和50cm,
则所走的最短线段AB==10cm;
第二种情况:如图2,把我们看到的左面与上面组成一个长方形,
则这个长方形的长和宽分别是110cm 和30cm ,
所以走的最短线段AB==10cm ;
第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,
则这个长方形的长和宽分别是80cm 和60cm ,
所以走的最短线段AB=
=100cm ; 三种情况比较而言,第三种情况最短. 故答案为100cm .
点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.
15.①1<OA <4. ②
672
. 【解析】
(1)由三角形边的性质
5-3<2OA <5+3,
1<OA <4.
(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,
由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()22
2225AC DE BC CE DE CE ∴=+-=+-,
2AC ∴+ 2BD
=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,
BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1,
∴AC •BD =672
.
16.6
【解析】
∵AB=AC ,AD 是角平分线,
∴AD ⊥BC ,BD=CD ,
∴B 点,C 点关于AD 对称,
如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,
则CQ=BP+PQ 的最小值,
根据勾股定理得,AD=8,
利用等面积法得:AB ⋅CQ=BC ⋅AD ,
∴CQ=BC AD AB ⋅=12810
⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.
17.5
【分析】
根据图形的特征得出四边形MNKT 的面积设为x ,将其余八个全等的三角形面积一个设为y ,从而用x ,y 表示出1S ,2S ,3S ,得出答案即可.
【详解】
解:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , 正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,12310S S S ++=,
∴得出1
8S y x ,24S y x ,3S x =, 12331215S S S x y ,故31215x y
, 154=53
x y ,
所以2
45S x y , 故答案为:5.
【点睛】 此题主要考查了图形面积关系,根据已知得出用x ,y 表示出1S ,2S ,3S ,再利用12315S S S ++=求出是解决问题的关键.
18.25
【分析】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N ,先证明△ANP ≌△MNG (AAS ),再根据勾股定理求出PN 的值,即可得到线段PG 的长度.
【详解】
如图,作PA ∥y 轴交X 轴于A ,PH ⊥x 轴于H .GM ∥y 轴交x 轴于M ,连接PG 交x 轴于N .
∵P (1,2),G (7.﹣2),
∴OA =1,PA =GM =2,OM =7,AM =6,
∵PA ∥GM ,
∴∠PAN =∠GMN ,
∵∠ANP =∠MNG ,
∴△ANP ≌△MNG (AAS ),
∴AN =MN =3,PN =NG ,
∵∠PAH =45°,
∴PH =AH =2,
∴HN =1,
∴2222215PN PH NH =+=+=
∴PG =2PN =5.
故答案为5
【点睛】
本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理、勾股定理是解
19.22- 【分析】 根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2,
由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.4913
【分析】
如图(见解析),延长AD ,交BC 于点G ,先根据等腰三角形的三线合一性得出AG BC ⊥,再根据折叠的性质、等腰三角形的性质(等边对等角)得出2345∠+∠=︒,从而得出CDG ∆是等腰直角三角形,然后根据勾股定理、面积公式可求出AC 、CE 、CF 的长,最后根据线段的和差即可得.
【详解】
如图,延长AD ,交BC 于点G AD 平分BAC ∠,,10AB AC BC ==
,B ACB AG BC ∴∠=∠⊥,且AG 是BC 边上的中线 1123,52B CG BC ∴∠=∠+∠+∠== 由折叠的性质得12,CE AC ∠=∠=
123223B ∠=∠+∠+∠=∠+∠∴
CE AB ⊥,即90BFC ∠=︒
390B ∴∠+∠=︒
230239+∴∠∠=∠+︒,即2345∠+∠=︒
CDG ∴∆是等腰直角三角形,且5DG CG ==
7512AG AD DG ∴=+=+=
在Rt ACG ∆中,222251213AC CG AG =+=+=
13CE AB AC ==∴=
由三角形的面积公式得1122ABC S BC AG AB CF ∆=
⋅=⋅ 即1110121322CF ⨯⨯=⨯⋅,解得12013
CF = 12049131313EF CE CF ∴=-=-
= 故答案为:4913

本题是一道较难的综合题,考查了等腰三角形的判定与性质、勾股定理等知识点,通过作辅助线,构造一个等腰直角三角形是解题关键.
三、解答题
21.(1)出发2秒后,线段PQ 的长为213;(2)当点Q 在边BC 上运动时,出发83
秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.
【分析】
(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.
【详解】
(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,
∵∠B=90°,
由勾股定理得:PQ=22224652213BQ BP +=+==
∴出发2秒后,线段PQ 的长为213;
(2)BQ=2t ,BP=8−t
由题意得:2t=8−t
解得:t=83
∴当点Q 在边BC 上运动时,出发
83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴AC=2268+=10.
①当CQ=BQ 时(图1),则∠C=∠CBQ ,
∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,
∴BC+CQ=11,∴t=11÷2=5.5秒;
②当CQ=BC 时(如图2),则BC+CQ=12
∴t=12÷2=6秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
∴BE=
6824
105 AB BC
AC
⋅⨯
==,
所以CE=22
BC BE
-=18
5
=3.6,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【点睛】
本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.
22.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度22
257
-米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22CD CE -222520-,
∴DE=15﹣7=8(米),即下端滑行了8米.
答:梯子底端将向左滑动了8米.
23.(1)132)83;(3)5.5秒或6秒或6.6秒
【分析】
(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;
(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;
②当CQ BC =时(图2),则12BC CQ +=,易求得t ;
③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .
【详解】
(1)解:(1)224BQ cm =⨯=,
8216BP AB AP cm =-=-⨯=,
90B ∠=︒,
222246213()PQ BQ BP cm +=+=;
(2)解:根据题意得:BQ BP =,
即28t t =-, 解得:83
t =; 即出发时间为8
3秒时,PQB ∆是等腰三角形;
(3)解:分三种情况:
①当CQ BQ =时,如图1所示:
则C CBQ ∠=∠,
90ABC ∠=︒,
90CBQ ABQ ∴∠+∠=︒,
90A C ∠+∠=︒,
A ABQ ∴∠=∠
BQ AQ ∴=,
5CQ AQ ∴==,
11BC CQ ∴+=,
112 5.5t ∴=÷=秒.
②当CQ BC =时,如图2所示:
则12BC CQ +=
1226t ∴=÷=秒.
③当BC BQ =时,如图3所示:
过B 点作BE AC ⊥于点E , 则68 4.8()10
AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,
27.2CQ CE cm ∴==,
13.2BC CQ cm ∴+=,
13.22 6.6t ∴=÷=秒.
由上可知,当t 为5.5秒或6秒或6.6秒时,
BCQ ∆为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
24.(1)12;(2)t=12.5s 时,13 cm ;(3)11s 或12s 或13.2s
【分析】
(1)由勾股定理即可得出结论;
(2)由线段垂直平分线的性质得到PC = PA =t ,则PB =16-t .在Rt △BPC 中,由勾股定理可求得t 的值,判断出此时,点Q 在边AC 上,根据CQ =2t -BC 计算即可;
(3)用t 分别表示出BQ 和CQ ,利用等腰三角形的性质可分BQ =BC 、CQ =BC 和BQ =CQ 三种情况,分别得到关于t 的方程,可求得t 的值.
【详解】
(1)在Rt △ABC 中,BC 2222212016AC AB =
-=-=(cm ).
故答案为:12;
(2)如图,点P 在边AC 的垂直平分线上时,连接PC ,
∴PC = PA =t ,PB =16-t . 在Rt △BPC 中,222BC BP CP +=,即2221216)t t +
-=(, 解得:t =252
. ∵Q 从B 到C 所需的时间为12÷2=6(s ),
252>6, ∴此时,点Q 在边AC 上,CQ =25212132
⨯-=(cm );
(3)分三种情况讨论:
①当CQ =BQ 时,如图1所示,
则∠C =∠CBQ .
∵∠ABC =90°,
∴∠CBQ +∠ABQ =90°,∠A +∠C =90°,
∴∠A =∠ABQ ,
∴BQ =AQ ,
∴CQ =AQ =10,
∴BC +CQ =22,
∴t =22÷2=11(s ).
②当CQ =BC 时,如图2所示,
则BC +CQ =24,
∴t =24÷2=12(s ).
③当BC =BQ 时,如图3所示,
过B 点作BE ⊥AC 于点E ,
则BE 121648205AB BC AC ⋅⨯=
==, ∴CE 2222483612()55
BC BE =-=-==7.2. ∵BC =BQ ,BE ⊥CQ ,
∴CQ =2CE =14.4,
∴BC +CQ =26.4,
∴t =26.4÷2=13.2(s ).
综上所述:当t 为11s 或12s 或13.2s 时,△BCQ 为等腰三角形.
【点睛】
本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t 表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.
25.作图见解析,
325
【分析】
作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,连接AN ,首先用等积法求出AH 的长,易证△ACH ≌△A'NH ,可得A'N=AC=4,然后设NM=x ,利用勾股定理建立方程求出NM 的长,A'M 的长即为AN+MN 的最小值.
【详解】
如图,作A 点关于BC 的对称点A',A'A 与BC 交于点H ,再作A'M ⊥AB 于点M ,与BC 交于点N ,此时AN+MN 最小,最小值为A'M 的长.
连接AN ,
在Rt △ABC 中,AC=4,AB=8,
∴2222AB AC =84=45++ ∵11AB AC=BC AH 22
⋅⋅ ∴8545
∵CA ⊥AB ,A 'M ⊥AB ,
∴CA ∥A 'M
∴∠C=∠A 'NH ,
由对称的性质可得AH=A 'H ,∠AHC=∠A'HN=90°,AN=A'N
在△ACH 和△A'NH 中,
∵∠C=∠A 'NH ,∠AHC=∠A'HN ,AH=A 'H ,
∴△ACH ≌△A'NH (AAS )
∴A'N=AC=4=AN ,
设NM=x ,
在Rt △AMN 中,AM 2=AN 2-NM 2=222416-=-x x
在Rt △AA'M 中,165,A 'M=A 'N+NM=4+x ∴AM 2=AA '2-A 'M 2=()221654-+⎝⎭
x ∴()2
221654=16-+-⎝⎭x x 解得125
x = 此时AN MN +的最小值=A'M=A'N+NM=4+
125=325 【点睛】
本题考查了最短路径问题,正确作出辅助线,利用勾股定理解直角三角形是解题的关键.
26.(1)CF FH =,证明见解析;(2)依然成立,点E 与点C 之间的距离为
333-.理由见解析.
【分析】
(1)做辅助线,通过已知条件证得ADG 与DEF 是等腰直角三角形.证出CEF FGH ≌,利用全等的性质即可得到CF FH =.
(2)设AH ,DF 交于点G ,可根据ASA 证明△FCE ≌△HFG ,从而得到CF FH =,当ABC △和CFH △均为等腰直角三角形当他们面积相等时,6CF AC ==.利用勾股定理可以求DE 、CE 的长,即可求出CE 的长,即可求得点E 与点C 之间的距离.
【详解】
(1)CF FH =
证明:延长DF 交AB 于点G
∵在ABC △中,90ACB ∠=︒,6AC BC ==,
∴45A B ∠=∠=︒
∵DF DE ⊥于点D ,且DE DF =,
∴90EDF ∠=︒,ADG 与DEF 是等腰直角三角形.
∴45AGD DEF ∠=∠=︒,AD DG =,90DCF CFD ∠+∠=︒,
∴135CEF FGH ∠=∠=︒,
∵点D 是AC 的中点,∴132
CD AD AC ===,∴CD DG = ∴CE FG =
∵FH CF ⊥于点F ,∴90CFG ∠=︒,∴90GFH CFD ∠+∠=︒
∴DCF GFH ∠=∠
∴CEF FGH ≌
∴CF FH =;
(2)依然成立
理由:设AH ,DF 交于点G ,
由题意可得出:DF=DE ,
∴∠DFE=∠DEF=45°,
∵AC=BC ,
∴∠A=∠CBA=45°,
∵DF ∥BC ,
∴∠CBA=∠FGB=45°,
∴∠FGH=∠CEF=45°,
∵点D为AC的中点,DF∥BC,
∴DG=1
2
BC,DC=
1
2
AC,
∴DG=DC,
∴EC=GF,
∵∠DFC=∠FCB,
∴∠GFH=∠FCE,
在△FCE和△HFG中
CEF FGH
EC GF
ECF GFH
∠=∠


=

⎪∠=∠


∴△FCE≌△HFG(ASA),
∴HF=FC.
由(1)可知ABC
△和CFH
△均为等腰直角三角形
当他们面积相等时,6
CF AC
==.
∴2233
DE DF CF CD
==-=
∴333
CE DE DC
=-=-
∴点E与点C之间的距离为333
-.
【点睛】
本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及勾股定理,学会利用全等和等腰三角形的性质,借助勾股定理解决问题.
27.(1)①见解析;②()
22
01
2
x
y x
x
-
=<<
-
;(2)见解析
【解析】
【分析】
(1)①连接DE,如图1,先用SAS证明△CBE≌△CDE,得EB=ED,∠CBE=∠1,再用四边形的内角和可证明∠EBC=∠2,从而可得∠1=∠2,进一步即可证得结论;
②将△BAE绕点B顺时针旋转90°,点E落在点P处,如图2,用SAS可证
△PBG≌△EBG,所以PG=EG=2-x-y,在直角三角形PCG中,根据勾股定理整理即得y与
x的函数关系式,再根据题意写出x的取值范围即可.
(2)由(1)题已得EB=ED,根据正方形的对称性只需再确定点E关于点O的对称点即可,考虑到只有直尺,可延长BE交AD于点M,再连接MO并延长交BC于点N,再连接DN交AC于点Q,问题即得解决.
【详解】
(1)①证明:如图1,连接DE,∵四边形ABCD是正方形,
∴CB=CD,∠BCE=∠DCE=45°,
又∵CE=CE,∴△CBE≌△CDE(SAS),
∴EB=ED,∠CBE=∠1,
∵∠BEC=90°,∠BCF=90°,
∴∠EBC+∠EFC=180°,
∵∠EFC+∠2=180°,
∴∠EBC=∠2,
∴∠1=∠2.
∴ED=EF,
∴BE=EF.
②解:∵正方形ABCD的边长为2,∴对角线AC=2.
将△BAE绕点B顺时针旋转90°,点A与点C重合,点E落在点P处,如图2,
则△BAE≌△BCP,
∴BE=BP,AE=CP=x,∠BAE=∠BCP=45°,∠EBP=90°,
由①可得,∠EBF=45°,∴∠PBG=45°=∠EBG,。

相关文档
最新文档