八年级数学下册 11.2 反比例函数的图象与性质 反比例函数的图像与性质错解“诊所”素材 苏科版(

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册11.2 反比例函数的图象与性质反比例函数的图像与性质错解“诊所”素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册11.2反比例函数的图象与性质反比例函数的图像与性质错解“诊所”素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册11.2 反比例函数的图象与性质反比例函数的图像与性质错解“诊所”素材(新版)苏科版的全部内容。

反比例函数的图像与性质错解“诊所”
处理反比例函数问题时最容易出现的错误主要有两点:
k中的k≠0这个条件;
一是忽略定义y=
x
二是在研究反比例函数的增减性时不分象限,将双曲线不同分支上的点混在一起.
例1.若y=(k-3)x102-k为反比例函数,则k= .
错解:因为是反比例函数,则k2-10=-1,所以3
k=±.
k(k≠0的常数)的函数叫反比例函数.忽略“k 会诊:反比例函数的定义是:一般地,形如y=
x
≠0”这个条件.
正解:由k2-10=—1,解得3
k=±;又因为k-3≠0,所以k=—3.
1中,y随着x的增大而增大.
例2.判断正误:反比例函数y=—
x
错解:正确.
k(k≠0的常数)的性质是,当k<0时在每一象限内,y随着x的增会诊:反比例函数y=
x
大而增大.忽略了在“每一象限内”这一条件.只有当x>0或x<0时y随着x的增大而增大.正解:错误.
a2(a≠0的常数)的图像上有三个点(—2,b)、(—1,c)、(3,d),则函数值例3.在函数y=-
x
的大小关系是()
A.b<c<d B.d<c<bC.c<d<bD.d<b<c.
错解:因为—a2<0,所以y随着x的增大而增大.又因为—2<-1<3, b<c<d.
所以选择A.
会诊:此题的错误是分析反比例函数的增减性时不分象限,将双曲线不同分支上的点混在一起.本题的(-2,b)、(-1,c)两点在双曲线的第二象限的分支上,由-2<-1,得0<b<c;而点(3,d)在双曲线的第四象限的分支上,d>0.所以它们的大小关系是d<b<c.
正解:选择D.
例4.已知反比例函数y=
x m
2
1 的图像上两点A(a,b)、B(c,d).当a<0<c时,有b<d,则m
的取值范围是( )
A.m<0ﻩﻩB.m>0
C.m<1/2ﻩD.m>1/2
错解:因为当a<0<c时,有b<d,即y随着x的增大而增大.所以1-2m<0,得m>1/2 ,因此选择D.
会诊:此题的错误是将双曲线不同分支上的点混在一起,来分析反比例函数的增减性.因为a<0<c,所以A、B两点分别位于二个象限内,点A在第二或三象限的分支上,则点B在第四或一象限的分支上.又因为b<d,点B只能在第一象限的分支上,则点A在第三象限的分支上.所以1-2m>0,解得m<1/2.
正解:选择C.
以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

Theabove is the whole content of this article,Gorky said: "thebookis the ladderof human progress." I hope you ca nmake progress with thehelp of thisladder. Material life isextremely rich, science and technology are developing rapidly, allofwhich gradually changetheway of people's studyand leisure. Many people are nolonger eager
to pursue a document, but aslong as youstill have suchasmall persistence, you will continue to grow and progress. When the complex world leadsus to chaseout, reading an art icle or doing a problem makes us calm down and return to ourselves. With learning,we can activate our imagination and thinking, establish ourbelief, keep our purespiritual world and resist the attack of the external world.。

相关文档
最新文档