福建省南安市柳城中学必修3物理 全册全单元精选试卷检测题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省南安市柳城中学必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示,把一个倾角为θ的绝缘斜面固定在匀强电场中,电场方向水平向右,电场强度大小为E ,有一质量为m 、带电荷量为+q 的物体,以初速度v 0从A 端滑上斜面恰好能沿斜面匀速运动,求物体与斜面间的动摩擦因数.
【答案】cos sin cos sin qE mg mg qE θθ
θθ
-+
【解析】 【分析】 【详解】
物体做匀速直线运动,由平衡条件得:
在垂直于斜面方向上:N=mgcosθ+qEsinθ…① 在平行与斜面方向上:f+mgsinθ=qEcosθ…② 滑动摩擦力:f=μN…③ 由①②③可得:f qEcos mgsin N mgcos qEsin θθμθθ
-=+= . 【点睛】
本题考查了学生受力分析及力的合成以及摩擦定律的相关知识,正确的受力分析是正确解题的关键,学会用正交分解法处理多力合成问题.
2.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
一带负电小球,以速度v 0从A 点沿水平轨道向右运动,接着进入半圆轨道后,恰能通过最高点D 点。
已知小球的质量为
22.010m kg -=⨯,所带电荷量52.010q C -=⨯,g 取10 m/s 2(水平轨道足够长,小球可视
为质点,整个运动过程无电荷转移),求:
(1)带电小球在从D 点飞出后,首次在水平轨道上的落点与B 点的距离; (2)小球的初速度v 0。
【答案】(1)0.4m ;(2)2.5m /s 【解析】 【详解】
(1)对小球,在D 点,有:
2D
v mg qE m R
-=
得:
1m/s D v =
从D 点飞出后,做平抛运动,有:
mg qE ma -=
得:
25.0m/s a =
2122
R at =
得:
0.4t s =
0.4m D x v t ==
(2)对小球,从A 点到D 点,有:
22011()2222
D mg q
E L mg R qE R mv mv μ---⋅+⋅=
- 解得:
0 2.5m/s v =
3.如图所示,在绝缘水平面上,相距L 的A 、B 两点处分别固定着两个带电荷量相等的正点电荷,a 、b 是AB 连线上的两点,其中4
L
Aa Bb ==
,O 为AB 连线的中点,一质量为m 、带电荷量为+q 的小滑块(可以看作质点)以初动能E 从a 点出发,沿直线AB 向b 点运动,其中小滑块第一次经过O 点时的动能为初动能的n 倍(1)n >,到达b 点时动能恰好为零,小滑块最终停在O 点重力加速度为g ,求: (1)小滑块与水平面间的动摩擦因数;
(2)O 、b 两点间的电势差; (3)小滑块运动的总路程.
【答案】(1)k02E mgL μ= (2)k0(21)2Ob n E U q -=- (3)21
4
n s L +=
【解析】 【详解】 (1)由4
L
Aa Bb ==,0为AB 连线的中点知a 、b 关于O 点对称,则a 、b 两点间的电势差0ab U =;
设小滑块与水平面间的摩擦力大小为f ,在滑块从a 点运动到b 点的过程中,由动能定理得
k002
ab L
qU f E -⋅
=- 又摩擦力
f m
g μ=
解得
2k E mgL μ=
. (2)在滑块从O 点运动到b 点的过程中,由动能定理得
004
ob k L
qU f nE -⋅
=- 解得
ko
(21)2ob n E U q
-=-
. (3)对于小滑块从a 开始运动到最终在O 点停下的整个过程,由动能定理得
000a x k qU f E -=-
又
(21)2kO
aO Ob n E U U q
-=-=
解得
21
4
n s L +=
.
4.如图所示,在O 点处放置一个正电荷.在过O 点的竖直平面内的A 点,由静止释放一个带正电的小球,小球的质量为m 、电荷量为q .小球落下的轨迹如图所示,轨迹与以O
为圆心、R 为半径的圆相交于B 、C 两点,O 、C 在同一水平线上,∠BOC=30°,A 距离OC 的竖直高度为h ,已知小球通过B 点的速度为v ,重力加速度为g ,求: (1)小球通过C 点的速度大小;
(2)小球由A 运动到C 的过程中电场力做的功.
【答案】(1) 2c gR =+v v (2) 21()2
W m gR mgh =+-v 【解析】
试题分析:(1)小球下落过程中,受到重力和电场力,由于B 、C 两点处于同一等势面上,故从B 到C 过程电场力做功为零,只有重重力做功,根据动能这定理求解到达C 点的速度;(2)小球从A 至C 的过程中只有重力和电场力做功,根据动能定理即可求解电场力做功.
(1)小球从B 点到C 点的过程中,电场力不做功,而重力做正功 由动能定理得:22
11222
C R mg mv mv ⨯
=- 解得:2C v v gR =+
(2)小球从A 至C 的过程中只有重力和电场力做功 由动能定理得:2
12
C mgh W mv +=电 解得:()
21
2
W m v gR mgh 电=
+- 【试题分析】本题关键是明确几种功能关系的具体形式:总功是动能变化的量度;电场力做功是电势能变化的量度;除重力外其余力做的功是机械能变化的量度.
5.如图所示,AB 为固定在竖直平面内粗糙倾斜轨道,BC 为光滑水平轨道,CD 为固定在竖直平面内的光滑圆弧轨道,且AB 与BC 通过一小段光滑弧形轨道相连,BC 与弧CD 相切。
已知AB 长为L =10m ,倾角θ=37︒,BC 长s =4m ,CD 弧的半径为R =2m ,O 为其圆心,∠COD =143︒。
整个装置处在水平向左的匀强电场中,电场强度大小为E =1×103N/C 。
一质量为m =0.4kg 、电荷量为q =+3×10 -3C 的物体从A 点以初速度v A =15m/s 沿AB 轨道开始运动。
若物体与轨道AB 间的动摩擦因数为μ=0.2,sin 37︒=0.6,cos 37︒=0.8,g =10m/s 2,物体运动过程中电荷量不变。
求:
(1)物体在AB 轨道上运动时,重力和电场力的合力对物体所做的总功; (2)物体在C 点对轨道的压力大小为多少;
(3)用物理知识计算物体能否到达D 点,若能算出通过D 点的速度;若不能说明理由。
【答案】(1)W =0(2)27N(3)物体能到达D 点 【解析】 【详解】
(1)物体所受重力和电场力的合力大小为
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
设合力F 与竖直方向的夹角为α,则
3
tan 4
qE mg α=
= 即
37α︒=
所以物体在轨道AB 上运动时,重力和电场力的合力与轨道AB 垂直,对物体做的总功为W =0;
(2) 从A →B 过程,根据受力分析可知,物体下滑过程受到的滑动摩擦力为:
f =μF N =μ(m
g cos 37︒+qE sin 37︒)
代入数据解得:
f =1N
A →C 过程,由动能定理得:
221122
C A W fL qEs mv mv --=
- 可得:222
115m /s C v =
在C 点,由重力和轨道支持力的合力提供向心力,由牛顿第二定律得:
2C
mv N mg R
-= 代入数据解得:
N =27N
(3)重力和电场力的合力为:
222332()()(0.410)(31010)N 5N F mg qE -=+=⨯+⨯⨯=
方向与竖直方向成37︒斜向左下方,所以D 点即为圆周运动中的等效最高点,物体到达D 点的最小速度设为v D ,则:
2D
v F m R
=
解得:
5m /s D v =
要到达D 点,在C 点速度至少为v ,从C →D ,由动能定理得
2211(cos37)cos3722
D mg R R qER mv mv ︒︒-+-=
-
解得:
222115m /s v =
则知v =v C ,所以物体恰能到达D 点
6.如图所示,将带正电的中心穿孔小球A 套在倾角为θ的固定光滑绝缘杆上某处,在小球A 的正下方固定着另外一只带电小球B ,此时小球A 恰好静止,且与绝缘杆无挤压.若A 的电荷量为q ,质量为m ;A 与B 的距离为h ;重力加速度为g ,静电力常量为k ;A 与B 均可视为质点.
(1)试确定小球B 的带电性质; (2)求小球B 的电荷量;
(3)若出于某种原因,小球B 在某时刻突然不带电,求小球A 下滑到与小球B 在同一水平线的杆上某处时,重力对小球做功的功率.
【答案】(1)带正电 (2)2
B mgh q kq
= (3)sin 2P mg gh =
【解析】 【分析】
(1)由题意A 静止且与杆无摩擦,说明A 只受重力和库仑力,故AB 之相互排斥,A 的受力才能平衡,可知B 的电性
(2)由库仑定律可得AB 间的库仑力,在对A 列平衡方程可得B 的电量
(3)B 不带电后A 只受重力,故由机械能守恒,可得A 的速度,进而得到重力功率 【详解】
(1)根据题意:小球A 受到B 的库仑力必与A 受到的重力平衡,即A 、B 之间相互排斥,所以B 带正电.
(2)由库仑定律,B 对A 的库仑力为F =
2
B
kqq h ,
由平衡条件有mg =
2
B
kqq h 解得q B =
2
mgh kq
. (3)B 不带电后,小球A 受到重力、支持力作用沿杆向下做匀加速直线运动,设到达题中所述位置时速度为v ,由机械能守恒定律有mgh =12
mv 2, 解得v =2gh
所以重力的瞬时功率为P =mgv sin θ=mg sin θ2gh .
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图所示,水平面上有相距02m L =的两物体A 和B ,滑块A 的质量为2m ,电荷量为+q ,B 是质量为m 的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为
0.4mg
E q
=
.已知A 与水平面间的动摩擦因数10.1μ=,B 与水平面间的动摩擦因数20.4μ=,A 与B 的碰撞为弹性正碰,且总电荷量始终不变(g 取10m/s 2).试求:
(1)A 第一次与B 碰前的速度0v 的大小; (2)A 第二次与B 碰前的速度大小; (3)A 、B 停止运动时,B 的总位移x . 【答案】(1)2m/s (2)2
m/s 3
(3)2m 【解析】 【分析】 【详解】
(1)从A 开始运动到与B 碰撞过程,由动能定理:
201001222
EqL mgL mv μ-⋅=
⋅ 解得:v 0=2m/s
(2)AB 碰撞过程,由动量守恒和能量守恒可得:
01222mv mv mv =+
22201211122222
mv mv mv ⋅=⋅+ 解得:12m/s 3v =
28
m/s 3
v =(另一组解舍掉) 两物体碰撞后电量均分,均为q/2,则B 的加速度:
22
21
22m/s 2B E q mg
qE a g m m
μμ⋅-==-=- , A 的加速度:
111
220
24A E q mg
qE a g m m
μμ⋅-⋅==-= 即B 做匀减速运动,A 做匀速运动;A 第二次与B 碰前的速度大小为12
m/s 3
v =; (3)B 做减速运动直到停止的位移:
2
21216m 23
B v x a ==
AB 第二次碰撞时:
1122222mv mv mv =+
22211222111
22222
mv mv mv ⋅=⋅+ 解得:
12112m/s 39v v == ,2212488
m/s=m/s 393
v v ==
B 再次停止时的位移22224
16m 23B v x a =
= 同理可得,第三次碰撞时,
12132322mv mv mv =+
222121323111
22222
mv mv mv ⋅=⋅+ 可得131212m/s 327v v =
=,23123488
m/s m/s 3273
v v === B 第3次停止时的位移2223616
m 23
B v x a =
= 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:
11n-112m/s 33n n v v ==(),2n 1n-1)
48m/s 33n
v v ==( B 第n 次停止时的位移:
2
2
n2
16
m
23
n
n
B
v
x
a
==
则A 、B停止运动时,B的总位移
123
2462
2
++
16161616
m m+m+m
3333
1
=2(1-)m
3
n
n
n
x x x x x
=+⋅⋅⋅+
=+⋅⋅⋅+
当n取无穷大时, A、B停止运动时,B的总位移2m
x=.
8.如图所示,A为粒子源,在A和极板B间的加速电压为U1,在两水平放置的平行带电板C、D间的电压为U2,现设有质量为m,电荷量为q的质子初速度为零,从A被加速电压U1加速后水平进入竖直方向的匀强电场,平行带电板的极板的长度为L,两板间的距离为d,不计带电粒子的重力,求:
(1)带电粒子在射出B板时的速度;
(2)带电粒子在C、D极板间运动的时间;
(3)带电粒子飞出C、D电场时在竖直方向上发生的位移y.
【答案】(1)1
2qU
m
(2)
1
2
m
L
qU
(3)
2
2
1
4
U L
U d
【解析】
试题分析:(1)由动能定理得:W=qU1 =
则
(2)离子在偏转电场中运动的时间t
L =
(3)设粒子在离开偏转电场时纵向偏移量为y
综合解得
考点:带电粒子在电场中的运动
【名师点睛】本题关键明确粒子的运动性质,对应直线加速过程,根据动能定理列式;对于类似平抛运动过程,根据类似平抛运动的分运动公式列式求解;不难.
9.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:
(1)小球所受的电场力大小;
(2)小球经过A 点时对轨道的最小压力。
【答案】(1)4
3
mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】
(1)由题意可知 :
tan 37mg
F
︒= 所以:
43
F mg =
(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:
2sin 37B v mg
m r
︒
= 小球由B 运动到A 的过程根据动能定理有:
()
22
111sin 37cos3722
B A mgr Fr mv mv ︒︒--+=-
小球在A 点时根据牛顿第二定律有:
2A
N v F mg m r
+=
联立以上各式得:
2N F mg =
由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.
10.如图所示,竖直面内的光滑绝缘轨道,处于竖直向下的匀强电场中.一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道滑下,已知小球的质量为m ,电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α,圆轨道半径为R ,斜轨道与圆轨道平滑连接,小球的重力大于所受的电场力.
(1) 求小球沿轨道滑下的加速度的大小;
(2) 若使小球通过圆轨道顶端的B 点,求A 点距圆轨道最低点的竖直高度h 1至少为多大; (3) 若小球从距圆轨道最低点的竖直高度h 2=5R 处由静止释放,假设其能通过圆轨道顶端B 点,求从释放到B 点的过程中小球机械能的改变量. 【答案】(1)-mg qE sin m α
()(2)52
R (3)减少3qER .
【解析】 【详解】
(1)由牛顿第二定律有
(mg -qE )sin α=ma
解得
a =
-mg qE sin m
α
()
(2)球恰能过B 点有:
mg -qE =m 2B
v R
①
由动能定理,从A 点到B 点过程,则有:
2
112()()02
B mg qE h R mv ---=②
由①②解得
h 1=
52
R . (3)从释放到B 的过程中,因电场力做的总功为负功,电势能增加,则增加量:
ΔE =qE (h 2-2R )=qE (5R -2R )=3qER .
由能量守恒定律得机械能减少,且减少量为3qER . 答案:(1)
-mg qE sin m α
()(2)52
R (3)减少3qER .
11.如图,带电荷量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度0v =10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电荷量始终不变,重力加速度g 取10m/s 2求: (1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)第三次碰撞的位置
【答案】25.(1)5m/s ;15m/s (2)6.25J ;(3)第三次碰撞的位置是在第一次碰撞点右方5m 、下方20m 处. 【解析】 【分析】 【详解】
(1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv 1+mv 2
机械能守恒,即
22201211133222
mv mv mv ⋅=⋅+ 解得碰后A 的速度v 1=5m/s ,B 的速度v 2=15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动;水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小a B =
qE
m
=20m/s 2 设经过t 时间两小球再次相碰,则有v 1t =v 2t -1
2
a B t 2 解得t =1s
此时,B 的水平速度为v x =v 2-a B t =-5 m/s (负号表明方向向左) 竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能22211() 6.2522
KB B x y E mv m v v J =
=+= (3)第二次碰撞时,AB 小球水平方向上动量守恒'
'
1133x x mv mv mv mv +=+ 机械能守恒,即
2222'2'2'2
'21111113()()3()()2222
y x y y x y m v v m v v m v v m v v ⋅++⋅+=⋅++⋅+ 解得第二次碰后水平方向A 的速度'10v =,B 的速度'
x v =10m/s
故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动,
设又经过t '时间两小球第三次相碰,则有 '
2
1'02
x B v t a t -= 解得t '=1s
因此,第三次相碰的位置在第一次碰撞点右方x =v 1t =5m 下方y =
1
2
g (t +t ')2=20m
12.如图所示,在竖直直角坐标系xOy 内,x 轴下方区域I 存在场强大小为E 、方向沿y 轴正方向的匀强电场,x 轴上方区域Ⅱ存在方向沿x 轴正方向的匀强电场。
已知图中点D 的坐标为(27
,2
L L -
-),虚线GD x ⊥轴。
两固定平行绝缘挡板AB 、DC 间距为3L ,OC 在x 轴上,AB 、OC 板平面垂直纸面,点B 在y 轴上。
一质量为m 、电荷量为q 的带电粒子(不计重力)从D 点由静止开始向上运动,通过x 轴后不与AB 碰撞,恰好到达B 点,已知
AB =14L ,OC =13L 。
(1)求区域Ⅱ的场强大小E '以及粒子从D 点运动到B 点所用的时间0t ;
(2)改变该粒子的初位置,粒子从GD 上某点M 由静止开始向上运动,通过x 轴后第一次与AB 相碰前瞬间动能恰好最大。
①求此最大动能km E 以及M 点与x 轴间的距离1y ;
②若粒子与AB 、OC 碰撞前后均无动能损失(碰后水平方向速度不变,竖直方向速度大小不变,方向相反),求粒子通过y 轴时的位置与O 点的距离y 2。
【答案】(1)6E ;52mL
qE
(2)①18qEL ,9L ;②3L 【解析】 【详解】
(1)该粒子带正电,从D 点运动到x 轴所用的时间设为1t ,则
21112
L a t =
11a t υ=
根据牛顿第二定律有
1qE ma =
粒子在区域II 中做类平抛运动,所用的时间设为2t ,则
2
2227122L a t = 23L t υ=
根据牛顿第二定律有
2qE ma '=
粒子从D 点运动到B 点所用的时间
012t t t =+
解得
6E E '=,0t =(2)①设粒子通过x 轴时的速度大小为0υ,碰到AB 前做类平抛运动的时间为t ,则
03L t
υ=
粒子第一次碰到AB 前瞬间的x 轴分速度大小
2x a t υ=
碰前瞬间动能
()22012
k x E m υυ=
+ 即
2222292k m L E a t t ⎛⎫=+ ⎪⎝⎭
由于22222
22299L a t L a t
⋅=为定值,当222229L a t t =即t =k E 有最大值 由(1)得
26qE a m
=
最大动能
18km E qEL =
对应的
0υ=
粒子在区域I 中做初速度为零的匀加速直线运动,则
20112a y υ=
解得
19y L =
②粒子在区域II 中的运动可等效为粒子以大小为0υ的初速度在场强大小为6E 的匀强电场中做类平抛运动直接到达y 轴的K 点,如图所示,则时间仍然为2t
02OK t υ=
得
9OK L =
由于933OK L
OB L
==,粒子与AB 碰撞一次后,再与CD 碰撞一次,最后到达B 处 则
23y L =
三、必修第3册 电路及其应用实验题易错题培优(难)
13.如图所示,是测量小灯泡电功率的实物元件图,其中电源是蓄电池组(电动势为6V ,内阻很小不计),小灯泡额定电压是3.8V ,其灯丝电阻约为10Ω,滑动变阻器标有“10Ω、1A”字样,电流表(0~0.6A 、0~3A ),电压表(0~3V 、0~15V )。
(1)本实验的原理是:_____;
(2)请用笔画线代替导线,把图中的电路元件连接成实验电路_____。
(要求:滑片P 向左移时灯变亮,且连线不得交叉)
(3)小刚合理地连接好电路,并按正确的顺序操作,闭合开关后灯不亮,聪明的小刚猜想: A .可能灯丝断了 B .可能是变阻器开路 C .可能是小灯泡短路
D.可能是电流表开路
请你借助已连好电路中的电流表和电压表验证小刚的猜想,并将电流表、电压表相应示数填入下表。
猜想电流表示数/A电压表示数/V
如果A成立
如果B成立
A:_____,_____;B:_____,_____;
(4)排除故障后,在测量小灯泡的额定功率时,应先调节_____,使小灯泡两端电压为
_____V,再测出电路中的_____,即可计算出额定功率;若小灯泡两端实际电压为额定电压的1.2倍,则实际功率为额定功率的_____倍。
(假设电阻值不变)
(5)实际测量过程中小刚才发现电压表0~15V量程已损坏(另一量程完好),但他仍想利用现有器材测出小灯泡的额定功率,请你帮他重新设计新电路图并画在下面的方框内
_____。
(6)小刚按重新设计的电路图继续实验,调节滑动变阻器滑片,使电压表示数为_____V时,小灯泡正常发光,此时电流表示数如图所示,则小灯泡的额定功率是_____W。
(7)实验时,若发现电流表指针摆动分别出现了如下图甲、乙所示的两种情况。
请分析在使用电流表时分别存在什么问题,并写在下面的横线上。
甲现象存在的问题:_____;乙现象存在的问题:_____。
【答案】P=UI 0 6 0 0 变阻器滑片 3.8
电流 1.44 2.2 1.52 电流表指针反转,所以电流表正
负接线柱接反电流表指针偏转角度太小,所以电流表所选量程过大
【解析】
【分析】
【详解】
,只要根据电路能测量(1)根据电功率计算公式和电路元件可以知道该实验原理为P UI
出灯泡两端的电压和流过灯泡的电流就可以测量出灯泡的功率。
(2)伏安法测灯泡功率的电路图如图所示。
(3)若灯丝断路,则整个回路不通电流,在实验中电流表A的示数为0,电压表测量电源电动势所以示数为6V
如变阻器开路,则整个回路不通电流,在实验中电流表A的示数为0,此时电压表的示数也为0
(4)排除故障后,在测量小灯泡的额定功率时,应先调节滑动变阻器,使小灯泡两端电压为3.8V,再测出电路中的电流,即可计算出额定功率;若小灯泡两端实际电压为额定电压的
1.2倍,根据2
U P R
=则实际功率为额定功率的1.44倍。
(5)设计电路如图所示:
(6)小刚按重新设计的电路图继续实验,调节滑动变阻器滑片,使电压表示数为2.2V 时,此时灯泡两端的电压能达到3.8V ,小灯泡正常发光,此时电流表读数为0.4A ,则小灯泡的功率为 3.80.4 1.52P UI W ==⨯=
(7)甲的问题:电流表指针反转,所以电流表正负接线柱接反;乙的问题:电流表指针偏转角度太小,所以电流表所选量程过大。
14.某实验小组要测量电阻R x 的阻值.
(1)首先,选用欧姆表“×10”挡进行粗测,正确操作后,表盘指针如图甲所示.
(2)接着,用伏安法测量该电阻的阻值,可选用的实验器材有:电压表V (3V ,内阻约3kΩ);电流表A (50mA ,内阻约5Ω);待测电阻R x ;滑动变阻器R (0﹣200Ω);干电池2节;开关、导线若干.
在图乙、图丙电路中,应选用图____(选填“乙”或“丙”)作为测量电路,测量结果________真实值(填“大于”“等于”或“小于”),产生误差的原因是________ .
(3)为更准确测量该电阻的阻值,可采用图丁所示的电路,G为灵敏电流计(量程很小),R0为定值电阻,R、R1、R2为滑动变阻器.操作过程如下:
①闭合开关S,调节R2,减小R1的阻值,多次操作使得G表的示数为零,读出此时电压表V和电流表A的示数U1、I1;
②改变滑动变阻器R滑片的位置,重复①过程,分别记下U2、I2,…,U n、I n;
③描点作出U﹣I图象,根据图线斜率求出R x的值.下列说法中正确的有_________.A.图丁中的实验方法避免了电压表的分流对测量结果的影响
B.闭合S前,为保护G表,R1的滑片应移至最右端
C.G表示数为零时,电压表测量的是R x两端电压
D.调节G表的示数为零时,R1的滑片应位于最左端
【答案】乙小于电压表分流 AC
【解析】
【详解】
(2)[1][2][3]由于待测电阻的电阻值比较小比电压表的内阻小得多 , 所以电流表使用外接法 ; 所以选择图乙作为测量电路,测量结果小于真实值,产生误差的原因是电压表的分流导致测量的电流偏大,所以电阻偏小.
(3)[4]A.该电路能够准确的计算出流过待测电阻的电流值,所以该实验方法避免了电压表的分流对测量结果的影响,A正确;
B.闭合S前,为保护G表,开始时R1的电阻值要最大,所以滑片应移至最左端,B错误;C.G表示数为零时,电压表直接和待测电阻并联所以电压表测量的是R x两端电压,C正确;
D.调节G表的示数为零时, 与R1的滑片的位置无关,D错误;
故选AC。
15.国标(GB/T)规定自来水在15℃时电阻率应大于13Ω·m。
某同学利用图甲电路测量15℃自来水的电阻率,其中内径均匀的圆柱形玻璃管侧壁连接一细管,细管上加有阀门K 以控制管内自来水的水量,玻璃管两端接有导电活塞(活塞电阻可忽略),右活塞固定,左活塞可自由移动。
实验器材还有:
电源(电动势约为3 V,内阻可忽略);电压表V1(量程为3 V,内阻很大);
电压表V2(量程为3 V,内阻很大);定值电阻R1(阻值4 kΩ);
定值电阻R2(阻值2 kΩ);电阻箱R(最大阻值9 999 Ω);
单刀双掷开关S;导线若干;游标卡尺;刻度尺。
实验步骤如下:
A .用游标卡尺测量玻璃管的内径d ;
B .向玻璃管内注满自来水,并用刻度尺测量水柱长度L ;
C .把S 拨到1位置,记录电压表V 1示数;
D .把S 拨到2位置,调整电阻箱阻值,使电压表V 2示数与电压表V 1示数相同,记录电阻箱的阻值R ;
E .改变玻璃管内水柱长度,重复实验步骤C 、D ,记录每一次水柱长度L 和电阻箱阻值R ;
F .断开S ,整理好器材。
(1)测玻璃管内径d 时游标卡尺示数如图乙,则d =_______mm ;
(2)玻璃管内水柱的电阻值R x 的表达式为:R x =_______(用R 1、R 2、R 表示); (3)利用记录的多组水柱长度L 和对应的电阻箱阻值R 的数据,绘制出如图丙所示的
1
R L
-
关系图象。
则自来水的电阻率ρ=_______Ω·m (保留两位有效数字); (4)本实验中若电压表V 1内阻不是很大,则自来水电阻率测量结果将_____(填“偏大”“不变”或“偏小”)。
【答案】30.00 12
R R R
14 偏大 【解析】 【分析】 【详解】
(1)[1]游标卡尺的主尺读数为:3.0cm=30mm ,游标尺上第0个刻度和主尺上刻度对齐,所以最终读数为:30.00mm ,所以玻璃管内径:
d =30.00mm
(2)[2]设把S 拨到1位置时,电压表V 1示数为U ,则电路电流为:
1
U I R =
总电压:
1
x U
E R U R =
+ 当把S 拨到2位置,调整电阻箱阻值,使电压表V 2示数与电压表V 1示数相同也为U ,则此时电路中的电流为
U I R
=
总电压
2U
E R U R
=
+ 由于两次总电压等于电源电压E ,可得:
2
1x R R R R
= 解得:
12
x R R R R
=
(3)[3]从图丙中可知,R =2×103Ω时,
-11
5.0m L
=,此时玻璃管内水柱的电阻: 12
4000x R R R R
=Ω=
水柱横截面积:
2
2
d S π=()
由电阻定律L
R S
ρ
=得: 2
330104000 3.145142x R S
m m L ρ-⎛⎫⨯=⨯⨯⨯Ω⋅≈Ω⋅ ⎪⎝⎭
=
(4)[4]若电压表V 1内阻不是很大,则把S 拨到1位置时,此时电路中实际电流大于
1U I R =
,根据
1
x U
E R U R =+可知测量的R x 将偏大,因此自来水电阻率测量结果将偏大。
16.用对温度敏感的半导体材料制成的某热敏电阻T R ,在给定温度范围内,其阻值随温度的变化是非线性的.某同学将T R 和两个适当的固定电阻1R 、2R 连成图1虚线框内所示的电路,以使该电路的等效电阻L R 的阻值随T R 所处环境温度的变化近似为线性的,且具有合适的阻值范围.为了验证这个设计,他采用伏安法测量在不同温度下L R 的阻值,测量电路如图1所示,图中的电压表内阻很大.L R 的测量结果如表所示.
.温度t (℃) 30.0 40.0 50.0 60.0 70.0 80.0 90.0 RL 阻值(Ω)
54.3
51.5
48.3
44.7
41.4
37.9
34.7
回答下列问题:
(1)根据图1所示的电路,在图2所示的实物图上连线_______________.
(2)为了检验L R 与f 之间近似为线性关系,在坐标纸上作L R -t 关系图线___________.
(3)在某一温度下,电路中的电流表、电压表的示数如图3、4所示.电流表的读数为____,电压表的读数为___.此时等效电阻L R 的阻值为___:热敏电阻所处环境的温度约为____.
【答案】
115mA 5.00V
43.5Ω 64.0℃
【解析】
【分析】
【详解】
根据电路图按照顺序可以将实物电路连接,如图2所示;
根据表1的数据可以在R L-t图象上进行描点作图,图象如图所示
图3的表盘分度值为5mA,电流表读数为115 mA;图4的表盘分度值为0.01V,电压表读数为5.00V;根据部分电路欧姆定律R L=43.5Ω,根据第2题的图象可以查出热敏电阻所处环境的温度为64.0℃.
17.某小组设计实验对电流表内阻进行测量,电路如图甲,其中 A1是标准电流表(量程100mA,内阻约15Ω),电流表A2(量程略小于 100mA,内阻约18Ω)表刻度盘刻度完整但缺少刻度值。
R1、R2为电阻箱,实验步骤如下:
①使用螺丝刀,调整A2机械调零旋钮,使指针指向“0”刻度;
②分别将R1和R2的阻值调至最大
③断开S2,合上开关 S1,调节R1使A2的指针达到满偏刻度,记下此时A1的示数I0
④开关S2接到1,反复调节R1和R2,使A1的示数仍为I0,记录不同R2阻值和对应电流表A2示数为I0的 n 倍(n<1)即 n I0。
⑤做出n-1—R-1 图象,如图乙所示。
(1)根据图甲和题给条件,将图丙中的实物连线补充完整;
(____)
(2)电流表A2的量程为______(用所测物理量表示);根据图象可计算电流表A2内阻为
_____Ω;(保留两位有效数字)
(3)一同学认为该电路可以进一步测量电流表A1内阻,他把单刀双掷开关接到2,调整电阻箱R1和R2阻值,使电流表A1和电流表A2示数恰当,并分别记下电流表示数I1,I2,请用R1、R2、I1和I2表示电流表 A1内阻R=_____________________________________ 。