2020-2021全国中考数学平行四边形的综合中考模拟和真题分类汇总含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021全国中考数学平行四边形的综合中考模拟和真题分类汇总含答案解析
一、平行四边形
1.问题发现:
(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.
问题探究:
(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.
问题解决:
(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点
(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.
【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F .
【解析】
试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.
(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
试题解析:(1)作图如下:
(2)∵(6,7)P ,(4,3)O ',
∴设:6PO y kx =+',
67{43k b k b +=+=,2{5
k b ==-, ∴25y x =-,
交x 轴于5,02N ⎛⎫ ⎪⎝⎭
, 交BC 于11,62M ⎛⎫ ⎪⎝⎭, 2
211563522MN ⎛⎫=+-= ⎪⎝⎭.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
∵(1052,102)P --在直线y x =上,
∴连OP 交OA 、BC 于点E 、F ,
设:BC y kx b =+,(8,2)(2,8)B C ,
82{28k b k +=+=,1{10
k b =-=, ∴直线:10BC y x =-+,
联立10{y x y x =-+=,得55x y =⎧⎨=⎩
, ∴(0,0)E ,(5,5)F .
2.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】
试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF (ASA);
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.
试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)当∠DOE=90°时,四边形BFDE为菱形,
理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,
∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.
考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.
3.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;
(2)当∠B =70°时,求∠AEC 的度数;
(3)当△ACE 为直角三角形时,求边BC 的长.
【答案】(1)()22303y x x x =
-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】
试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.
(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,
∠AET =∠B =70°.
又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.
②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-, 则()22303y x x x =-++<<
(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,
∴∠AET =∠B =70°.
又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.
(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.
②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =-- 则2241174AD CA x x AC CB x -±=⇒=⇒=-(舍负)
易知∠ACE<90°,所以边BC的长为117
2
+
.
综上所述:边BC的长为2或117
+
.
点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.
4.如图,ABCD是正方形,点G是BC上的任意一点,DE⊥AG于E,BF∥DE,交AG于F.
求证:AF=BF+EF.
【答案】详见解析.
【解析】
【分析】
由四边形ABCD为正方形,可得出∠BAD为90°,AB=AD,进而得到∠BAG与∠EAD互余,又DE垂直于AG,得到∠EAD与∠ADE互余,根据同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出△ABF≌△DAE;利用全等三角的对应边相等可得出BF=AE,由AF-AE=EF,等量代换可得证.
【详解】
∵ABCD是正方形,
∴AD=AB,∠BAD=90°
∵DE⊥AG,
∴∠DEG=∠AED=90°
∴∠ADE+∠DAE=90°
又∵∠BAF+∠DAE=∠BAD=90°,
∴∠ADE=∠BAF .
∵BF ∥DE ,
∴∠AFB=∠DEG=∠AED .
在△ABF 与△DAE 中,
AFB AED ADE BAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△ABF ≌△DAE (AAS ).
∴BF=AE .
∵AF=AE+EF ,
∴AF=BF+EF .
点睛:此题考查了正方形的性质,全等三角形的判定与性质,矩形的判定与性质,熟练掌握判定与性质是解本题的关键.
5.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,
40),直线AB :y =
13
x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作EF ⊥x 轴交直线AB 于点F ,以EF 为一边向右作正方形EFGH .
(1)求边EF 的长; (2)将正方形EFGH 沿射线FB 的方向以每秒10个单位的速度匀速平移,得到正方形E 1F 1G 1H 1,在平移过程中边F 1G 1始终与y 轴垂直,设平移的时间为t 秒(t >0). ①当点F 1移动到点B 时,求t 的值;
②当G 1,H 1两点中有一点移动到直线DE 上时,请直接写出此时正方形E 1F 1G 1H 1与△APE 重叠部分的面积.
【答案】(1)EF =15;(2)①10;②120;
【解析】
【分析】
(1)根据已知点E (30,0),点D (0,40),求出直线DE 的直线解析式y=-43
x+40,可求出P 点坐标,进而求出F 点坐标即可;
(2)①易求B (0,5),当点F 1移动到点B 时,1010=10;
②F点移动到F'的距离是10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE
上时,在Rt△F'NF
中,
NF
NF'
=
1
3
,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,
4
3
MH
EM
'
=,
t=4,S=1
2
×(12+
45
4
)×11=
1023
8
;当点G运动到直线DE上时,在Rt△F'PK中,
PK
F K'
=
1
3
,
PK=t-3,F'K=3t-9,在Rt△PKG'中,PK
KG'
=
3
1539
t
t
-
-+
=
4
3
,t=7,S=15×(15-7)=120.
【详解】
(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),
∴
300
40
k b
b
+=
⎧
⎨
=
⎩
,
∴
4
3
40
k
b
⎧
=-
⎪
⎨
⎪=
⎩
,
∴y=﹣4
3
x+40,
直线AB与直线DE的交点P(21,12),
由题意知F(30,15),
∴EF=15;
(2)①易求B(0,5),
∴BF=1010,
∴当点F1移动到点B时,t=101010
÷=10;
②当点H运动到直线DE上时,
F点移动到F'10,
在Rt△F'NF中,NF
NF'
=
1
3
,
∴FN=t,F'N=3t,
∵MH'=FN=t,
EM=NG'=15﹣F'N=15﹣3t,
在Rt △DMH'中, 43MH EM '=, ∴
41533
t t =-, ∴t =4, ∴EM =3,MH'=4,
∴S =
1451023(12)11248
⨯+⨯=; 当点G 运动到直线DE 上时,
F 点移动到F'10,
∵PF =10
∴PF'10t ﹣10,
在Rt △F'PK 中,
13
PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,
在Rt △PKG'中,
PK KG '=31539t t --+=43
, ∴t =7,
∴S =15×(15﹣7)=120.
【点睛】
本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.
6.现有一张矩形纸片ABCD (如图),其中AB =4cm ,BC =6cm ,点E 是BC 的中点.将纸片沿直线AE 折叠,点B 落在四边形AECD 内,记为点B ′,过E 作EF 垂直B ′C ,交B ′C 于F .
(1)求AE 、EF 的位置关系;
(2)求线段B ′C 的长,并求△B ′EC 的面积.
【答案】(1)见解析;(2)S△B′EC=108 25
.
【解析】
【分析】
(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;
(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,
∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出.
【详解】
(1)由折线法及点E是BC的中点,
∴EB=EB′=EC,∠AEB=∠AEB′,
∴△B'EC是等腰三角形,
又∵EF⊥B′C
∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,
∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,
即AE⊥EF;
(2)连接BB'交AE于点O,由折线法及点E是BC的中点,
∴EB=EB′=EC,
∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;
又∵△BB'C三内角之和为180°,
∴∠BB'C=90°;
∵点B′是点B关于直线AE的对称点,
∴AE垂直平分BB′;
在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2
将AB=4cm,BE=3cm,AE=5cm,
∴AO=16
5
cm,
∴BO22
AB AO
12
5
cm,
∴BB′=2BO=24
5
cm,
∴在Rt △BB 'C 中,B ′C =22BC BB '-=
518cm , 由题意可知四边形OEFB ′是矩形,
∴EF =OB ′=
125, ∴S △B ′EC =*111812108225525
B C EF '
⨯=⨯⨯=.
【点睛】
考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.
7.(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG .
(拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .
(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)
【答案】见解析
【解析】
试题分析:探究:由四边形ABCD 、四边形CEFG 均为菱形,利用SAS 易证得
△BCE ≌△DCG ,则可得BE=DG ;
应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=3ED ,可求得△CDE 的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD 、四边形CEFG 均为菱形,
∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .
∵∠A=∠F ,
∴∠BCD=∠ECG .
∴∠BCD-∠ECD=∠ECG-∠ECD ,
即∠BCE=∠DCG .
在△BCE 和△DCG 中,
BC CD BCE DCG CE CG ⎧⎪∠∠⎨⎪⎩
=== ∴△BCE ≌△DCG (SAS ),
∴BE=DG .
应用:∵四边形ABCD 为菱形,
∴AD ∥BC ,
∵BE=DG ,
∴S △ABE +S △CDE =S △BEC =S △CDG =8,
∵AE=3ED ,
∴S △CDE =1824
⨯
= , ∴S △ECG =S △CDE +S △CDG =10
∴S 菱形CEFG =2S △ECG =20.
8.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.
性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.
理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD .
应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O .
(1)求证:△AOB 和△AOE 是“友好三角形”;
(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.
探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,请直接写出△ABC 的面积.
【答案】(1)见解析;(2)12;探究:2或2.
【解析】
试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;
(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、
△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.
探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.
试题解析:(1)∵四边形ABCD是矩形,
∴AD∥BC,
∵AE=BF,
∴四边形ABFE是平行四边形,
∴OE=OB,
∴△AOE和△AOB是友好三角形.
(2)∵△AOE和△DOE是友好三角形,
∴S△AOE=S△DOE,AE=ED=AD=3,
∵△AOB与△AOE是友好三角形,
∴S△AOB=S△AOE,
∵△AOE≌△FOB,
∴S△AOE=S△FOB,
∴S△AOD=S△ABF,
∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.
探究:
解:分为两种情况:①如图1,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OB,A′O=CO,
∴四边形A′DCB是平行四边形,
∴BC=A′D=2,
过B作BM⊥AC于M,
∵AB=4,∠BAC=30°,
∴BM=AB=2=BC,
即C和M重合,
∴∠ACB=90°,
由勾股定理得:AC=,
∴△ABC的面积是×BC×AC=×2×2=2;
②如图2,
∵S△ACD=S△BCD.
∴AD=BD=AB,
∵沿CD折叠A和A′重合,
∴AD=A′D=AB=×4=2,
∵△A′CD与△ABC重合部分的面积等于△ABC面积的,
∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,
∴DO=OA′,BO=CO,
∴四边形A′BDC是平行四边形,
∴A′C=BD=2,
过C作CQ⊥A′D于Q,
∵A′C=2,∠DA′C=∠BAC=30°,
∴CQ=A′C=1,
∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;
即△ABC的面积是2或2.
考点:四边形综合题.
9.如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC.
(1)请判断:FG与CE的关系是___;
(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.
【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立.
【解析】
试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;
(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;
(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.
试题解析:解:(1)FG=CE,FG∥CE;
(2)过点G作GH⊥CB的延长线于点H.∵EG⊥DE,
∴∠GEH+∠DEC=90°.∵∠GEH+∠HGE=90°,∴∠DEC=∠HE.在△HGE与△CED中,
∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,
HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH,
∴FG∥CE.∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;
(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°.在△CBF与△DCE中,
∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,
CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90°.∵∠CDE+∠DEC=90°,
∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.
10.猜想与证明:
如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.
【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.
【解析】
试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据
RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.
试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=DE,
∴DM=HM=ME,
∴DM=ME.
(1)、如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM
∴DM=HM=ME,
∴DM=ME,
(2)、如图2,连接AE,
∵四边形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE 和EC 在同一条直线上,
在RT △ADF 中,AM=MF ,
∴DM=AM=MF ,
在RT △AEF 中,AM=MF ,
∴AM=MF=ME ,
∴DM=ME .
考点:(1)、三角形全等的性质;(2)、矩形的性质.
11.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC
(1)求证:AC 是⊙O 的切线;
(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.
【答案】(1)见解析;(2)30.
【解析】
【分析】
(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.
【详解】
(1)证明:∵CD 与⊙O 相切于点E ,
∴OE CD ⊥,
∴90CEO ∠=︒,
又∵OC BE P ,
∴COE OEB ∠=∠,∠OBE=∠COA
∵OE=OB ,
∴OEB OBE ∠=∠,
∴COE COA ∠=∠,
又∵OC=OC ,OA=OE ,
∴OCA OCE SAS ∆∆≌()
, ∴90CAO CEO ∠=∠=︒,
又∵AB 为⊙O 的直径,
∴AC 为⊙O 的切线;
(2)解:∵四边形FOBE 是菱形,
∴OF=OB=BF=EF ,
∴OE=OB=BE ,
∴OBE ∆为等边三角形,
∴60BOE ∠=︒,
而OE CD ⊥,
∴30D ∠=︒.
故答案为30.
【点睛】
本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.
12.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.
(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.
【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.
【解析】
试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而
△ABC与△DFC的面积相等;
(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.
于是AP=DQ.又因为S△ABC=1
2 BC•AP,
S△DFC=
1
2
FC•DQ,所以S△ABC=S△DFC;
(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3×
1
2
×3×4=18.
(1)证明:在△ABC与△DFC中,
∵{
AC DC
ACB DCF
BC FC
∠∠
=
=
=
,
∴△ABC≌△DFC.
∴△ABC与△DFC的面积相等;
(2)解:成立.理由如下:
如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ.
∴{
APC DQC
ACP DCQ
AC CD
∠∠
∠∠
=
=
=
,
△APC≌△DQC(AAS),
∴AP=DQ.
又∵S△ABC=
1
2
BC•AP,S△DFC=
1
2
FC•DQ,
∴S△ABC=S△DFC;
(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,
若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.
∴S阴影部分面积和=3S△ABC=3×
1
2
×3×4=18.
考点:四边形综合题
13.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不须证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F 的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP 的最小值.
【答案】(1)AE=DF,AE⊥DF;
(2)是;
(3)成立,理由见解析;
(4)CP=QC﹣QP=.
【解析】
试题分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以
△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD 的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.
试题解析:(1)AE=DF,AE⊥DF.
理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.
在△ADE和△DCF中,,∴△ADE≌△DCF(SAS).
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,
设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,
在Rt△QDC中,QC=,
∴CP=QC﹣QP=.
考点:四边形的综合知识.
14.已知一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,以线段AB为直角边在第二象限内左等腰直角三角形ABC,∠BAC=90°,如图1所示.
(1)填空:AB= ,BC= .
(2)将△ABC绕点B逆时针旋转,
①当AC与x轴平行时,则点A的坐标是
②当旋转角为90°时,得到△BDE,如图2所示,求过B、D两点直线的函数关系式.
③在②的条件下,旋转过程中AC扫过的图形的面积是多少?
(3)将△ABC向右平移到△A′B′C′的位置,点C′为直线AB上的一点,请直接写出△ABC扫过的图形的面积.
【答案】(1):5;5;(2)①(0,﹣2);②直线BD的解析式为y=﹣x+3;③S=π;(3)△ABC扫过的面积为.
【解析】
试题分析:(1)根据坐标轴上的点的坐标特征,结合一次函数的解析式求出A、B两点的坐标,利用勾股定理即可解答;
(2)①因为B(0,3),所以OB=3,所以AB=5,所以AO=AB-BO=5-3=2,所以A(0,-2);
②过点C作CF⊥OA与点F,证明△AOB≌△CFA,得到点C的坐标,求出直线AC解析式,根据AC∥BD,所以直线BD的解析式的k值与直线AC的解析式k值相同,设出解析式,即可解答.
③利用旋转的性质进而得出A,B,C对应点位置进而得出答案,再利用以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积求出答案;
(3)利用平移的性质进而得出△ABC扫过的图形是平行四边形的面积.
试题解析:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,
∴A(-4,0),B(0,3),
∴AO=4,BO=3,
在Rt△AOB中,AB=,
∵等腰直角三角形ABC,∠BAC=90°,
∴BC=;
(2)①如图1,
∵B(0,3),
∴OB=3,
∵AB=5,
∴AO=AB-BO=5-3=2,
∴A(0,-2).
当在x轴上方时,点A的坐标为(0,8),②如图2,
过点C作CF⊥OA与点F,
∵△ABC为等腰直角三角形,
∴∠BAC=90°,AB=AC,
∴∠BAO+∠CAF=90°,
∵∠OBA+∠BAO=90°,
∴∠CAF=∠OBA,
在△AOB和△CFA中,
,
∴△AOB≌△CFA(AAS);
∴OA=CF=4,OB=AF=3,
∴OF=7,CF=4,
∴C(-7,4)
∵A(-4,0)
设直线AC解析式为y=kx+b,
将A与C坐标代入得:,
解得:,
则直线AC解析式为y=x,
∵将△ABC绕点B逆时针旋转,当旋转角为90°时,得到△BDE,
∴∠ABD=90°,
∵∠CAB=90°,
∴∠ABD=∠CAB=90°,
∴AC∥BD,
∴设直线BD的解析式为y=x+b1,
把B(0,3)代入解析式的:b1=3,
∴直线BD的解析式为y=x+3;
③因为旋转过程中AC扫过的图形是以BC为半径90°圆心角的扇形面积减去以AB为半径90°圆心角的扇形面积,
所以可得:S=;
(3)将△ABC向右平移到△A′B′C′的位置,△ABC扫过的图形是一个平行四边形和三角形ABC,如图3:
将C点的纵坐标代入一次函数y=x+3,求得C′的横坐标为,
平行四边CAA′C′的面积为(7+)×4=,
三角形ABC的面积为×5×5=
△ABC扫过的面积为:.
考点:几何变换综合题.
15.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.
(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;【解析】
试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;
(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而得AB=AF,因此当AB=AF时,四边形AMCN是菱形.
试题解析:(1)∵四边形ABCD是矩形,∴∠B=∠D=90°,AB=CD,AD∥BC.
∵四边形AECF是矩形,∴AE∥CF.∴四边形AMCN是平行四边形.∴AM=CN.在
Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.
(2)当AB=AF时,四边形AMCN是菱形.
∵四边形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90°.∴∠BAD-∠NAM=∠EAF-∠NAM,即∠BAM=∠FAN.又∵AB=AF,∴△ABM≌△AFN.∴AM=AN.由(1)知四边形AMCN是平行四边形,∴平行四边形AMCN是菱形.
考点:1.矩形的性质;2.三角形全等的判定与性质;3.菱形的判定.。