北京北京汇文中学高三数学等差数列测试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
2.已知数列{}n a 的前n 项和为n S ,且满足212n n n a a a ++=-,534a a =-,则7S =( ) A .7
B .12
C .14
D .21
3.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72
B .90
C .36
D .45
4.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个
B .3个
C .2个
D .1个
5.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为( ) A .
89
B .
910
C .10
11
D .
1112
6.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S
B .5S
C . 6S
D . 7S
7.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24
B .36
C .48
D .64
8.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
9.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1
B .2
C .3
D .4
10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
11.已知{}n a 为等差数列,n S 是其前n 项和,且100S =,下列式子正确的是( ) A .450a a +=
B .560a a +=
C .670a a +=
D .890a a +=
12.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
13.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m
B .21m +
C .22m +
D .23m +
14.已知数列{}n a 的前项和2
21n S n =+,n *∈N ,则5a =( )
A .20
B .17
C .18
D .19 15.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )
A .9
B .12
C .15
D .18
16.已知等差数列{}n a 的前n 项和为n S ,且2
n S n =.定义数列{}n b 如下:
()*1m m b m m
+∈N 是使不等式()
*
n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++
+=( )
A .25
B .50
C .75
D .100 17.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9
B .5
C .1
D .
59
18.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .1111p q m n a a a a +<+
D .1111p q m n
S S S S +>+ 19.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51
B .57
C .54
D .72
20.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7
B .
83 C .
143
D .
103
二、多选题
21.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )
A .数列{}n a 的公差d <0
B .数列{}n a 中S n 的最大项为S 10
C .S 10>0
D .S 11>022.题目文件丢失!
23.已知数列{}n a 满足0n a >,
121
n n n a n
a a n +=+-(N n *∈),数列{}n a 的前n 项和为
n S ,则( )
A .11a =
B .121a a =
C .201920202019S a =
D .201920202019S a >
24.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
25.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54
C .S 2020=a 2022-1
D .a 1+a 3+a 5+…+
a 2021=a 2022
26.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <
B .70a =
C .95S S >
D .170S <
27.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =
D .当8n ≥时,0n a <
28.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数) B .数列{}n a -是等差数列 C .数列1n a ⎧⎫

⎬⎩⎭
是等差数列 D .1n a +是n a 与2n a +的等差中项
29.已知等差数列{}n a 的前n 项和为n S (
)*
n N ∈,公差0d ≠,6
90S
=,7a 是3a 与9
a 的等比中项,则下列选项正确的是( ) A .2d =-
B .1
20a =-
C .当且仅当10n =时,n S 取最大值
D .当0n
S <时,n 的最小值为22
30.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )
A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.A 【分析】 将11122
n n n a a -=
+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,111
22
n n n a a -=
+,所以11221n n n n a a --=+,而1123a = 所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2
n n n a +=
. 又因为n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max 22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 2.C 【分析】
判断出{}n a 是等差数列,然后结合等差数列的性质求得7S . 【详解】
∵212n n n a a a ++=-,∴211n n n n a a a a +++-=-,∴数列{}n a 为等差数列. ∵534a a =-,∴354a a +=,∴173577()7()
1422
a a a a S ++===. 故选:C 3.B
【分析】
由题意结合248,,a a a 成等比数列,有2
444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】
由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,
∴2
444(4)(8)a a a =-+,解之得48a =,
∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,
∴99(229)
902
S ⨯+⨯=
=,
故选:B 【点睛】
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2
k m n a a a =; 2、等差数列前n 项和公式1()
2
n n n a a S +=的应用. 4.B 【分析】
设公差为d ,利用等差数列的前n 项和公式,56S S ≥,得2d ≤-,由前n 项和公式,得
728S ≤,同时可得n S 的最大值,2d =-,5n =或6n =时取得,结合递减数列判断
D . 【详解】
设公差为d ,由已知110a =,56S S ≥,得5101061015d d ⨯+≥⨯+,所以2d ≤-,A 正确;
所以7710217022128S d =⨯+≤-⨯=,B 错误;
1(1)10(1)0n a a n d n d =+-=+-≥,解得10
1n d
≤-
+,11100n a a nd nd +=+=+≤,解得10n d
≥-, 所以1010
1n d d
-
≤≤-+,当2d =-时,56n ≤≤, 当5n =时,有最大值,此时51010(2)30M =⨯+⨯-=,
当6n =时,有最大值,此时61015(2)30M =⨯+⨯-=,C 正确. 又该数列为递减数列,所以20192020a a >,D 正确. 故选:B . 【点睛】
关键点点睛:本题考查等差数列的前n 项和,掌握等差数列的前n 和公式与性质是解题关
键.等差数列前n 项和n S 的最大值除可利用二次函数性质求解外还可由1
0n n a a +≥⎧⎨≤⎩求得.
5.C 【分析】 首先根据()12n n n S +=得到n a n =,设1
1111n n n b a a n n +==-+,再利用裂项求和即可得
到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=. 检验111a S ==,所以n a n =. 设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C 6.B 【分析】
根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】
依题意556475600000
a a a a a a a d >⎧>⎧⎪
⇒<⎨
⎨+=+<⎩⎪<⎩
,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 7.B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B 8.C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2152251524n S n n n ⎛⎫=-=--
⎪⎝⎭

∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =为对称轴,且1515|
7822
-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 9.C 【分析】
利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】
设等差数列{}n a 的公差为d ,
则3856522a a a a a +=+=+,解得652d a a =-=,
212112228S a a a d a =+=+=+=,解得13a =
故选:C 10.B 【分析】
由条件可得127a =,然后231223S a =,算出即可. 【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即
127a =
所以231223161S a == 故选:B 11.B 【分析】
由100S =可计算出1100a a +=,再利用等差数列下标和的性质可得出合适的选项. 【详解】
由等差数列的求和公式可得()
110101002
a a S +=
=,1100a a ∴+=, 由等差数列的基本性质可得561100a a a a +=+=. 故选:B. 12.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +==,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B. 13.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()1232322323<02
m m m m a a S m a +++++==+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 14.C 【分析】
根据题中条件,由554a S S =-,即可得出结果. 【详解】
因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C . 15.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解.
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 16.B 【分析】
先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121
2
k k b --=,结合等差数列的求和公式,即可求解. 【详解】
由题意,等差数列{}n a 的前n 项和为n S ,且2
n S n =,可得21n a n =-,
因为n a m ≥,即21n m -≥,解得12
m n +≥
, 当21m k =-,(*
k N ∈)时,
1
m m b k m
+=,即()()11212m m m mk m b m m +===++, 即2121
2
k k b --=
, 从而()135191
13519502
b b b b ++++=
++++=.
故选:B. 17.B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+=
=,99a d =,且0d ≠, ∴9
9
5S a =. 故选:B 18.D 【分析】
利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误.
对于A 选项,由于()
()1221222
p p
p p p p a a S
p a a pa ++=
=+≠,故选项A 错误;
对于B 选项,由于m p q n -=-,则
()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦
()()()()()2
2m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦
()()()2
220q n n m d q n d =-----<,故选项B 错误;
对于C 选项,由于
1111
p q m n m n p q p q p q m n m n
a a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则
()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,
由于2
2
2
2
22p q m n p q pq m n mn +=+⇔++=++,故2222
p q m n +>+.
()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,
故()()22221122
p q m n p q p q m n m n
S S p q a d m n a d S S +--+--+=++>++=+.
()()()()()221111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d
--+---⎡
⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦
()()()22
1121124mn m n mn p q mna a d d
+---<+
+()()()22
1121124m n mn m n mn m n mna a d d S S +---<++=,
由此1111
p q m n p q p q m n m n
S S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】
关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 19.B 【分析】
根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】
317102a a a += 1039a ∴=,即103a =
()11910
19191921935722
a a a S +⨯∴=
==⨯= 故选:B 20.D 【分析】
由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】
已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,
所以()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =.

()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而
126103
S S =. 故选:D 【点睛】 思路点睛:
(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,
(2)()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.
二、多选题
21.AC 【分析】
由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】
解:因为564S S S >>,所以650,0a a ,且650a a +>,
所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()
5()02a a S a a +=
=+>,11111611()1102
a a S a +==<, 所以C 正确,D 错误, 故选:AC
22.无
23.BC 【分析】
根据递推公式,得到11n n n
n n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;
根据求和公式,得到1
n n n
S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】
由121n n n a n a a n +=+-可知2111
n n n n n
a n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则12
1
a a =
,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321
111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=++
+=-+-+
+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:
由递推公式求通项公式的常用方法:
(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;
(2)累乘法,形如()1
n n
a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1
n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通
项时,常需要构造成等比数列求解;
(4)已知n a 与n S 的关系求通项时,一般可根据11
,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解.
24.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会
循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 25.BCD 【分析】
由题意可得数列{}n a 满足递推关系()12211,1,+3n n n a a a a a n --===≥,依次判断四个选项,即可得正确答案. 【详解】
对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确; 对于C ,可得()112n n n a a a n +-=-≥, 则()()()()1234131425311++++
++++++n n n a a a a a a a a a a a a a a +-=----
即212++1n n n n S a a a a ++=-=-,∴202020221S a =-,故C 正确; 对于D ,由()112n n n a a a n +-=-≥可得,
()()()135202124264202220202022+++
+++++a a a a a a a a a a a a =---=,故D 正确.
故选:BCD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3n n n a a a a a n --===≥,能根据数列性质利用累加法求解. 26.ABD 【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案. 【详解】
由67S S =,可得7670S S a -==,故B 正确; 由56S S <,可得6560S S a -=>, 由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确; 又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确; 又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <, 所以()
117179171702
a a S a +=
=<,故D 正确.
故选:ABD. 【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()
12
n n n a a S +=
,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 27.AD 【分析】 利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】
因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,
故1a 最大,选项A 正确;选项B 不正确;
10345678910770S S a a a a a a a a -=++++++=>,
所以310S S ≠,故选项C 不正确;
当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】
本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 28.ABD 【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项. 【详解】
A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;
B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么
()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确;
C.
1111
11n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是等差数列,故C 不正确;
D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确. 故选:ABD
【点睛】
本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型. 29.AD 【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .
【详解】
等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即
12530a d +=,①
由7a 是3a 与9a 的等比中项,得2
739a a a =,即()()()2
111628a d a d a d +=++,化为
1100a d +=,②
由①②解得120a =,2d =-,则202(1)222n a n n =--=-,
21
(20222)212
n S n n n n =+-=-,
由2
2144124n S n ⎛⎫=--+ ⎪⎝
⎭,可得10n =或11时,n S 取得最大值110; 由2
102n S n n -<=,解得21n >,则n 的最小值为22.
故选:AD 【点睛】
本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.AC 【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --==-.
故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力.。

相关文档
最新文档