高数上习题答案01-02

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

高等数学一(1)完整答案

高等数学一(1)完整答案
原式=
(6)令 ,则
原式=
(7)令 ,则
原式=
(8)令 ,则
原式=
(9)原式=
(10)原式=
(11)原式=
(12)原式=
(13)原式=
(14)令 ,则 ,
原式=
(15)令 ,则
原式=
(16)原式=
(17)原式=
(18)原式=
2、(1)原式=
(2)原式=0(因为 在 上为奇函数)
(3)原式=0(因为 在 上为奇函数)
原式= 发散
,而事实上 矛盾
方程 只有正根。
5.解: 为一元三次方程, 为一元二次方程,
故只有两个实根。

由罗尔定理知,两实根区间分别为 。
习题3-2
1.(1)原式
(2)原式
(3)原式
(4)原式
(5)原式
(6)原式
(7)原式
(8)原式
(9)原式
(10)原式
(11)原式
(12)原式
2.解:
3.解:
若用洛必达法则,则无限循环,即
(4)原式=
3、(1)证明:令 ,则
所以
(2)证明:令 ,则 ,
所以
(3)证明:令 ,则 ,
所以
6、(1)原式=
(4)原式=
(6)原式=
(8)令 ,则原式=
(9)原式=
(10)原式=
习题5—4
1、(1)
(3) ,发散
2、(1) 为函数 的无穷间断点,所以原式= 发散
(3) 为函数 的无穷间断点,所以
故 ,
,得唯一驻点: 。
当 , 时,圆柱体积最大。
15.解:设生产 台,利润最大。
则目标函数为

大学高等数学上习题(附答案)

大学高等数学上习题(附答案)

《高数》习题1(上)一.选择题1.下列各组函数中,是相同的函数的是( ).(A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()g x =(C )()f x x = 和 ()2g x =(D )()||x f x x=和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ).(A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7.211f dx x x⎛⎫' ⎪⎝⎭⎰的结果是( ). (A )1f C x ⎛⎫-+ ⎪⎝⎭(B )1f C x ⎛⎫--+ ⎪⎝⎭ (C )1f C x ⎛⎫+ ⎪⎝⎭ (D )1f C x ⎛⎫-+ ⎪⎝⎭10.设()f x 为连续函数,则()102f x dx '⎰等于( ).(A )()()20f f - (B )()()11102f f -⎡⎤⎣⎦(C )()()1202f f -⎡⎤⎣⎦(D )()()10f f -二.填空题1.设函数()2100x e x f x x a x -⎧-≠⎪=⎨⎪=⎩在0x =处连续,则a =.2.已知曲线()y f x =在2x =处的切线的倾斜角为56π,则()2f '=.3.()21ln dxx x =+⎰.三.计算 1.求极限①21lim xx x x →∞+⎛⎫⎪⎝⎭ ②()20sin 1lim xx x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分xxe dx -⎰四.应用题(每题10分,共20分)1.求曲线22y x =和直线4y x =-所围图形的面积.《高数》习题1参考答案一.选择题1.B 4.C 7.D 10.C 二.填空题 1.2- 2.33- 3.arctan ln x c + 三.计算题 1①2e ②162.11xy x y '=+- 3. ()1x ex C --++四.应用题1. 18S =《高数》习题2(上)一.选择题(将答案代号填入括号内,每题3分,共30分) 1.下列各组函数中,是相同函数的是( ).(A) ()f x x =和()2g x x = (B) ()211x f x x -=-和1y x =+(C) ()f x x =和()22(sin cos )g x x x x =+ (D) ()2ln f x x =和()2ln g x x =2.设函数()()2sin 21112111x x x f x x x x -⎧<⎪-⎪⎪==⎨⎪->⎪⎪⎩,则()1lim x f x →=( ). (A) 0 (B) 1 (C) 2 (D) 不存在3.设函数()y f x =在点0x 处可导,且()f x '>0, 曲线则()y f x =在点()()00,x f x 处的切线的倾斜角为{ }. (A) 0 (B)2π(C) 锐角 (D) 钝角 4.曲线ln y x =上某点的切线平行于直线23y x =-,则该点坐标是( ). (A) 12,ln2⎛⎫⎪⎝⎭ (B) 12,ln 2⎛⎫- ⎪⎝⎭ (C)1,ln 22⎛⎫⎪⎝⎭ (D) 1,ln 22⎛⎫- ⎪⎝⎭6.以下结论正确的是( ).(A) 若0x 为函数()y f x =的驻点,则0x 必为函数()y f x =的极值点. (B) 函数()y f x =导数不存在的点,一定不是函数()y f x =的极值点. (C) 若函数()y f x =在0x 处取得极值,且()0f x '存在,则必有()0f x '=0. (D) 若函数()y f x =在0x 处连续,则()0f x '一定存在. 7.设函数()y f x =的一个原函数为12xx e ,则()f x =( ).(A) ()121xx e - (B) 12x x e - (C) ()121x x e + (D) 12xxe 8.若()()f x dx F x c =+⎰,则()sin cos xf x dx =⎰( ).(A) ()sin F x c + (B) ()sin F x c -+ (C) ()cos F x c + (D) ()cos F x c -+ 9.设()F x 为连续函数,则12x f dx ⎛⎫' ⎪⎝⎭⎰=( ). (A) ()()10f f - (B)()()210f f -⎡⎤⎣⎦ (C) ()()220f f -⎡⎤⎣⎦ (D) ()1202f f ⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦10.定积分badx ⎰()a b <在几何上的表示( ).(A) 线段长b a - (B) 线段长a b - (C) 矩形面积()1a b -⨯ (D) 矩形面积()1b a -⨯二.填空题(每题4分,共20分)1.设 ()()2ln 101cos 0x x f x xa x ⎧-⎪≠=⎨-⎪=⎩, 在0x =连续,则a =________.2.设2sin y x =, 则dy =_________________sin d x .5. 定积分2121sin 11x x dx x -+=+⎰___________. 三.计算题(每小题5分,共30分)1.求下列极限:①()10lim 12xx x →+ ②arctan 2lim 1x x xπ→+∞-2.求由方程1yy xe =-所确定的隐函数的导数x y '. 3.求下列不定积分:①3tan sec x xdx ⎰③2xx e dx ⎰四.应用题(每题10分,共20分)2.计算由两条抛物线:22,y x y x ==所围成的图形的面积.《高数》习题2参考答案一.选择题:CDCDB CADDD二填空题:1.-2 2.2sin x 3.3 4.2211ln 24x x x c -+ 5.2π 三.计算题:1. ①2e ②1 2.2yx e y y '=-3.①3sec 3xc +②)ln x c + ③()222x x x e c -++四.应用题:1.略 2.13S =《高数》习题3(上)一、 填空题(每小题3分, 共24分)1.函数y =的定义域为________________________.2.设函数()sin 4,0,0xx f x x a x ⎧≠⎪=⎨⎪=⎩, 则当a =_________时, ()f x 在0x =处连续.4. 设()f x 可导, ()xy f e =, 则____________.y '=5. 221lim _________________.25x x x x →∞+=+- 二、求下列极限(每小题5分, 共15分)1. 01lim sin x x e x →-;2. 233lim 9x x x →--; 3. 1lim 1.2xx x -→∞⎛⎫+ ⎪⎝⎭三、求下列导数或微分(每小题5分, 共15分)1. 2xy x =+, 求(0)y '. 2. cos x y e =, 求dy . 3. 设x y xy e +=, 求dydx .四、求下列积分 (每小题5分, 共15分)1. 12sin x dx x ⎛⎫+ ⎪⎝⎭⎰. 2.ln(1)x x dx +⎰.3.120x e dx ⎰五、(8分)求曲线1cos x t y t=⎧⎨=-⎩在2t π=处的切线与法线方程.六、(8分)求由曲线21,y x =+ 直线0,0y x ==和1x =所围成的平面图形的面积, 以及此图形绕y 轴旋转所得旋转体的体积.《高数》习题3参考答案一.1.3x< 2.4a = 3.2x = 4.'()x x e f e5.126.07.22x xe -8.二阶二.1.原式=0lim 1x xx→= 2.311lim36x x →=+ 3.原式=112221lim[(1)]2x x e x--→∞+= 三.1.221','(0)(2)2y y x ==+2.cos sin x dy xe dx =-3.两边对x 求写:'(1')x y y xy e y +==+'x y x y e y xy yy x e x xy++--⇒==-- 四.1.原式=lim 2cos x x C -+2.原式=2221lim(1)()lim(1)[lim(1)]22x x x d x x d x x +=+-+⎰⎰=22111lim(1)lim(1)(1)221221x x x x dx x x dx x x+-=+--+++⎰⎰=221lim(1)[lim(1)]222x x x x x C +--+++3.原式=1221200111(2)(1)222x x e d x e e ==-⎰五.sin 1,122dy dy tt t y dx dx ππ=====且 切线:1,1022y x y x ππ-=---+=即 法线:1(),1022y x y x ππ-=--+--=即六.12210013(1)()22S x dx x x =+=+=⎰11224205210(1)(21)228()5315V x dx x x dxx x x ππππ=+=++=++=⎰⎰《高数》习题4(上)一、选择题(每小题3分) 1、函数 2)1ln(++-=x x y 的定义域是( ).A []1,2-B [)1,2-C (]1,2-D ()1,2- 2、极限xx e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21-D 、21 4、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y 5、下列各微分式正确的是( ).A 、)(2x d xdx = B 、)2(sin 2cos x d xdx = C 、)5(x d dx --= D 、22)()(dx x d =6、设⎰+=C xdx x f 2cos 2)( ,则 =)(x f ( ). A 、2sin x B 、 2sin x - C 、 C x +2sin D 、2sin 2x-7、⎰=+dx xx ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 9、⎰=+101dx e e xx( ). A 、21ln e + B 、22ln e + C 、31ln e + D 、221ln e +二、填空题(每小题4分)1、设函数xxe y =,则 =''y ; 2、如果322sin 3lim 0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、xe x )2(+; 2、94 ; 3、0 ; 4、xe x C C y 221)(-+= ; 5、8,0 三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 四、1、38;《高数》习题5(上)一、选择题(每小题3分) 1、函数)1lg(12+++=x x y 的定义域是( ).A 、()()+∞--,01,2B 、 ()),0(0,1+∞-C 、),0()0,1(+∞-D 、),1(+∞- 2、下列各式中,极限存在的是( ).A 、 x x cos lim 0→ B 、x x arctan lim ∞→ C 、x x sin lim ∞→ D 、xx 2lim +∞→3、=+∞→xx xx )1(lim ( ). A 、e B 、2e C 、1 D 、e1 4、曲线x x y ln =的平行于直线01=+-y x 的切线方程是( ). A 、 x y = B 、)1)(1(ln --=x x y C 、 1-=x y D 、)1(+-=x y 5、已知x x y 3sin = ,则=dy ( ).A 、dx x x )3sin 33cos (+-B 、dx x x x )3cos 33(sin +C 、dx x x )3sin 3(cos +D 、dx x x x )3cos 3(sin + 6、下列等式成立的是( ).A 、⎰++=-C x dx x 111ααα B 、⎰+=C x a dx a xx ln C 、⎰+=C x xdx sin cos D 、⎰++=C xxdx 211tan 7、计算⎰xdx x e xcos sin sin 的结果中正确的是( ).A 、C ex+sin B 、C x e x +cos sinC 、C x ex+sin sin D 、C x e x +-)1(sin sin二、填空题(每小题4分)1、设⎩⎨⎧+≤+=0,0,1)( x b ax x e x f x ,则有=-→)(lim 0x f x ,=+→)(lim 0x f x ;2、设 xxe y = ,则 =''y ;3、函数)1ln()(2x x f +=在区间[]2,1-的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 )2311(lim 21-+--→x x x x ;2、求 x x y arccos 12-= 的导数;3、求函数21xx y -=的微分;4、求不定积分⎰+dx xxln 21 ;5、求定积分⎰e edx x 1ln ;四、应用题(每小题10分)1、求由曲线 22x y -= 和直线 0=+y x 所围成的平面图形的面积.参考答案一、1、B ; 2、A ; 3、D ; 4、C ; 5、B ; 6、C ; 7、D ; 8、A ; 9、D ; 10、B.二、1、 2 ,b ; 2、xe x )2(+ ; 3、 5ln ,0 ; 4、0 ; 5、xxe C e C 221+.三、1、31 ; 2、1arccos 12---x x x ; 3、dx xx 221)1(1-- ; 4、C x ++ln 22 ; 5、)12(2e - ; 四、1、 29;。

高等数学-习题答案 -第一章

高等数学-习题答案 -第一章

习 题 1-11.求下列函数的自然定义域:(1)211y x =+- 解:依题意有21020x x ⎧-≠⎨+≥⎩,则函数定义域{}()|2x 1D x x x =≥-≠±且.(2)21arccosx y -= 解:依题意有2211360x x x ⎧-≤⎪⎨⎪-->⎩,则函数定义域()D x =∅.(3)2ln(32)y x x =-+-;解:依题意有2320x x -+->,则函数定义域{}()|12D x x x =<<.(4)312x xy -=;解:依题意有30x x -≠,则函数定义域{}()|x 0,1D x x x =-∞<<+∞≠±且.(5)1sin1,121;x y x x ⎧≠⎪=-⎨⎪=⎩, , 解:依题意有定义域{}()|D x x x =-∞<<+∞.(6)1arctan y x =+解:依题意有030x x ≠⎧⎨-≥⎩,则函数定义域{}()|3x 0D x x x =≤≠且.2.已知()f x 定义域为[0,1],求2(), (sin ), (), ()()f x f x f x a f x a f x a +++-(0a >)的定义域.解:因为()f x 定义域为[0,1],所以当201x ≤≤时,得函数2()f x 的定义域为[1,1]-;当0sin 1x ≤≤时,得函数(sin )f x 定义域为[2π,(21)π]k k +; 当01x a ≤+≤时,得函数()f x a +定义域为[,1]a a --+;当0101x a x a ≤+≤⎧⎨≤-≤⎩时,得函数()()f x a f x a ++-定义域为:(1)若12a <,[],1x a a ∈-;(2)若12a =,12x =;(3)若12a >,x ∈∅.3.设21()1,f x x ⎛⎫= ⎝其中0,a >求函数值(2),(1)f a f .解:因为21()1f x x ⎛⎫= ⎝,则 2211(2)142a f a a a a -⎛⎫=-= ⎪⎝⎭,20 ,>1,11(1)1 2 ,0<<111a a f a a ⎛⎫⎧-=-= ⎪⎨ ⎪-⎩⎝⎭.4.设1||1,()0||1,()21|| 1.x x f x x g x x <⎧⎪===⎨⎪->⎩,求(())f g x 与(())g f x ,并做出函数图形.解:121(())0211 21x x xf g x ⎧<⎪==⎨⎪->⎩,即10(())001 0x f g x x x <⎧⎪==⎨⎪->⎩,1012||1(())2||12||1x g f x x x -⎧<⎪==⎨⎪>⎩,即2||1(())1||11 ||12x g f x x x ⎧⎪<⎪==⎨⎪⎪>⎩,函数图形略.5.设1,0,()1,0,x x f x x +<⎧=⎨≥⎩试证:2,1,[()]1, 1.x x f f x x +<-⎧=⎨≥-⎩证明:1(),()0[()]1,()0f x f x f f x f x +<⎧=⎨≥⎩,即2,1,[()]1,1x x f f x x +<-⎧=⎨≥-⎩,得证. 6.下列各组函数中,()f x 与()g x 是否是同一函数?为什么? (1)))()ln,()ln3f x x g x ==- ;不是,因为定义域和对应法则都不相同. (2)()()f x g x ==; 是.(3)22()2,()sec tan f x g x x x ==-; 不是,因为对应法则不同. (4)2()2lg ,()lg f x x g x x ==; 不是,因为定义域不同.7.确定下列函数在给定区间内的单调性: (1)3ln y x x =+,(0,)x ∈+∞; 解:当(0,)x ∈+∞时,函数13y x =单调递增,2ln y x =也是单调递增,则12y y y =+在(0,)+∞内也是递增的.(2)1xy x-=-,(,1)x ∈-∞. 解:(1)111111x x y x x x ---===+---,当(,1)x ∈-∞时,函数11y x =-单调递增,则21111y y x ==-是单调递减的,故原函数1xy x-=-是单调递减的. 8. 判定下列函数的奇偶性. (1)lg(y x =+;解:因为1()lg(lg(lg(()f x x x x f x --=-+==-+=-,所以lg(y x =+是奇函数.(2)0y =;解:因为()0()f x f x -==,所以0y =是偶函数. (3)22cos sin 1y x x x =++-;解:因为2()2cos sin 1f x x x x -=+--,()()()()f x f x f x f x -≠-≠-且,所以22cos sin 1y x x x =++-既非奇函数,又非偶函数.(4)2x xa a y -+=.解:因为()()2x x a a f x f x -+==,所以函数2x xa a y -+=是偶函数. 9.设()f x 是定义在[,]l l -上的任意函数,证明:(1)()()f x f x +-是偶函数,()()f x f x --是奇函数; (2)()f x 可表示成偶函数与奇函数之和的形式. 证明:(1)令()()(),()()()g x f x f x h x f x f x =+-=--,则()()()(),()()()()g x f x f x g x h x f x f x h x -=-+=-=--=-,所以()()f x f x +-是偶函数,()()f x f x --是奇函数.(2)任意函数()()()()()22f x f x f x f x f x +---=+,由(1)可知()()2f x f x +-是偶函数,()()2f x f x --是奇函数,所以命题得证. 10.证明:函数在区间I 上有界的充分与必要条件是:函数在I 上既有上界又有下界.证明:(必要性)若函数()f x 在区间I 上有界,则存在正数M ,使得x I ∈,都有()f x M ≤成立,显然()M f x M -≤≤,即证得函数()f x 在区间I 上既有上界又有下界(充分性)设函数()f x 在区间I 上既有上界2M ,又有下界1M ,即有12()()f x M f x M ≥≤且,取12max{,}M M M =,则有()f x M ≤,即函数()f x 在区间I 上有界.11.下列函数是否是周期函数?对于周期函数指出其周期: (1)|sin |y x =;周期函数,周期为π. (2)1sin πy x =+; 周期函数,周期为2. (3)tan y x x =; 不是周期函数. (4)2cos y x =.周期函数,周期为π.12.求下列函数的反函数:(1)331xx y =-;解:依题意,31x y y =-,则3log 1yx y =-,所以反函数为13()log ,(,0)(1,)1xf x x x -=∈-∞⋃+∞-.(2)()ax by ad bc cx d+=≠+;解:依题意,b dy x cy a -=-,则反函数1()()b dxf x ad bc cx a--=≠-.(3)(lg y x =+;解:依题意,1(1010)2y y x -=+,所以反函数11()(1010),2x x f x x R --=+∈.(4)ππ3cos 2,44y x x ⎛⎫=-≤≤ ⎪⎝⎭. 解:依题意,arccos 32y x =,所以反函数1arccos3(),[0,3]2x f x x -=∈. 13.在下列各题中,求由所给函数构成的复合函数,并求这函数分别对应于给定自变量值1x 和2x 的函数值:(1)212e ,1,0,2u y u x x x ====+;(2)2121,e 1,1,1,1v y u u v x x x =+=-=+==-. 解:(1)215()e ,(0),(2)x y f x f e f e +====(2)12()(e 1)1x y f x +==-+,42(0)22f e e =-+,(1)1f -=.14.在一圆柱形容器内倒进某种溶液,该容器的底半径为r ,高为H .当倒进溶液后液面的高度为h 时,溶液的体积为V .试把h 表示为V 的函数,并指出其定义区间.解:依题意有2πV r h =,则22,[0,π]πV h V r H r =∈. 解:依题意有0.64,0 4.5() 4.50.64( 4.5) 3.2, 4.5x x f x x x ≤≤⎧=⎨⨯+-⨯>⎩,所以(3.5) 2.24(4.5) 2.88(5.5) 6.08f f f ===元,元,元.习 题 1-21.设21(1,2,3,)31n n a n n +==+, (1) 求110100222||,||,||333a a a ---的值;(2) 求N ,使当n N >时,不等式42||103n a --<成立;(3) 求N ,使当n N >时,不等式2||3n a ε-<成立.解:(1) 12321||||,34312a -=-= 1022121||||,331393a -=-=100220121||||33013903a -=-=. (2) 要使 42||10,3n a --< 即 4113310<(n+1), 则只要9997,9n > 取N=99971110,9⎡⎤=⎢⎥⎣⎦故当n>1110时,不等式42||103n a --<成立. (3)要使2||3n a ε-<成立,13,9n εε-> 取139N εε-⎡⎤=⎢⎥⎣⎦,那么当n N >时, 2||3n a ε-<成立.2.根据数列极限的定义证明:(1)1lim 0!n n →∞=; (2)1n →∞=.解:(1)0ε∀>, 要使111|0|!!n n n ε-<<=, 只要取1N ε⎡⎤=⎢⎥⎣⎦, 所以,对任意0ε>,存在1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,总有1|0|!n ε-<,则1lim 0!n n →∞=.(2) 0ε∀>,要使221|2n ε-=<<, 即n >,只要取N =,所以,对任意的ε>0,存在N =, 当n N >, 总有1|ε-<,则1n →∞=. 3.若lim n n x a →∞=,证明lim ||||n n x a →∞=.并举例说明:如果数列}{||n x 有极限,但数列}{n x 未必有极限.证明: 因为lim n n x a →∞=, 所以0ε∀>, 1N ∃, 当1n N >时, 有||n x a ε-<.不妨假设a>0, 由收敛数列的保号性可知:2N ∃, 当2n N >时, 有0n x >, 取{}12max ,N N N =, 则对0ε∀>, N ∃, 当n N >时, 有||||||||n n x a x a ε-=-<.故lim ||||n n x a →∞=. 同理可证0a <时, lim ||||n n x a →∞=成立.反之,如果数列{}||n x 有极限, 但数列{}||n x 未必有极限.如:数列()1nn x =-,||1n x =, 显然lim ||1n n x →∞=, 但lim n n x →∞不存在.4.设数列{}n x 有界,又lim 0n n y →∞=.证明:lim 0n n n x y →∞=.证明: 依题意,存在M>0, 对一切n 都有||n x M ≤, 又lim 0n n y →∞=, 对0ε∀>,存在N ,当n N >时, |0|n y ε-<, 因为对上述N , 当n N >时, |0|||||n n n n n x y x y M y M ε-=≤<,由ε的任意性, 则lim 0n n n x y →∞=.5.设数列{}n x 的一般项(3)π2n n x +=,求lim n n x →∞.解: 因为0x =, (3)π|cos |12n +≤, 所以 (3)π02x n +=. 6.对于数列{}n x ,若21()k x A k -→→∞,2()k x A k →→∞,证明:()n x A n →→∞.证明: 由于21lim k k x A -→∞=, 所以, 0ε∀>, 10N ∃>, 当1>k N 时,有21||k x A ε--<,同理, 0ε∀>,20N ∃>, 当2k N >时, 有2||k x A ε-<.取N =max {}12,N N , 0ε∀>, 当n N >时, ||n x A ε-<成立, 故()n x A n →→∞.习 题 1-31.当1x →时,234y x =+→.问δ等于多少,使当|1|x δ-<时,|4|0.01y -<?解:令 1|1|2x -<,则35|1|22x <+<,要使225|4||34||1||1||1||1|0.012y x x x x x -=+-=-=-+<-<, 只要|1|0.004x -<,所以取0.004δ=,使当 |1|x δ-< 时,|4|0.01y -<成立.2.当x →∞时,222123x y x +=→-.问X 等于多少,使当||x X >时,|2|0.001y -<? 解:要使222217|2||2|3|3|x y x x +-=-=--2|3|7000x ->, 即237000x ->. 因此,只要||x >,所以取X ≥3.根据函数极限的定义证明:(1)3lim(21)5x x →-=; (2)35lim31x x x →∞+=-;(3)224lim 42x x x →--=-+; (4)lim0x =. 证明:(1) 由于|(21)5|2|3|x x --=-, 任给0ε>,要使|(21)5|x ε--<,只要|3|2x ε-<.因此取2εδ=,则当0|3|x δ<-<时, 总有|(21)5|x ε--<,故3lim(21)5x x →-=.(2) 由于358|3|1|1|x x x +-=--,任给0ε>, 要使35|3|1x x ε+-<-,只要8|1|x ε<-,即81x ε>+或81x ε<-, 因为0ε>,所以88|1||1|εε+>-, 取8|1|M ε=+,则当||x M >时,对0ε∀>,总有35|3|1x x ε+-<-,故有35lim 31x x x →∞+=-.(3)由于24|(4)||2|2x x x ---=++,任给0ε>,,要使24|(4)|2x x ε---<+,只要|2|x ε+<,因此取δε=,则当0|(2)|x δ<--<时,总有24|(4)|2x x ε---<+,故224lim 42x x x →--=-+. (4) 由于0|-<,任给0ε>,要使|0|ε<,ε<,即21x ε>,因此取21M ε=,则当x>M 时,总有0|ε-<,故lim 0x =. 4.用X ε-或εδ-语言,写出下列各函数极限的定义: (1)lim ()1x f x →-∞=; (2)lim ()x f x a →∞=;(3)lim ()x a f x b +→=; (4)3lim ()8x f x -→=-.解: (1) 0,ε∀> 0M ∃>, 当x<-M 时, 总有|()1|f x ε-<;(2) 0,ε∀> 0M ∃>, 当||x M >, 总有|()|f x a ε-<;(3) 0,ε∀> 0δ∃>, 当a x a δ<<+时, 总有|()|f x b ε-<; (4) 0,ε∀> 0δ∃> 当33x δ-<<时, 总有|()8|f x ε+<. 5.证明:0lim ||0x x →=.证明: 由于00lim ||lim 0x x x x ++→→==, 00lim ||lim()0x x x x --→→=-=,所以0lim ||0x x →=.6.证明:若x →+∞及x →-∞时,函数()f x 的极限都存在且都等于A ,则lim ()x f x A →∞=.证明: 由于lim ()x f x A →+∞=,则对0ε∀>,10M ∃>,当1x M >时,有|()|f x A ε-<.又lim ()x f x A →-∞=,则20M ∃>,当2x M <-,有|()|f x A ε-<.取{}12max ,M M M =那么对0ε∀>,当||x M >时,总有|()|f x A ε-<,故有lim ()x f x A →∞=.习 题 1-41.根据定义证明:(1)211x y x -=+为当1x →时的无穷小;(2)1sin y x x =为当x →∞时的无穷小;(3)13xy x+=为当0x →时的无穷大.证明:(1) 0ε∀>,因为21|0||1|1x x x --=-+,取δε=,则当0|1|x δ<-<时, 总有0x ≠,故211lim 01x x x →-=+. (2) 0ε∀>,因为111|sin 0||sin |||||x x x x x -=≤,取1M ε=, 则当||x M >时, 总有1|sin |1|sin 0|||||x x x x x ε-=≤<, 故1lim sin 0x x x →∞=.(3) 0M ∀>, 13M δ∃=+,当0||x δ<<时,总有1311|||3|3||x M x x x +=+>->,所以013lim x x x→+=∞. 2.函数sin y x x =在(0,)+∞内是否有界?该函数是否为x →+∞时的无穷大?解答: 取2πn x n =,则0n y =,因此当2πn x n =()n →∞时, ()0n n y x →→+∞故函数sin y x x = 当x →+∞时,不是无穷大量.下证该函数在()0,+∞内是无界的. 0M ∀>,π2π2n x n ∃=+ 且()n x n →+∞→∞,πππ2πsin 2π2π222n y n n n ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,取[]01N M =+, 00π2π(0,)2x N ∃=+∈+∞,有0π2π2n y N M =+≥,所以sin y x x =是无界的.3.证明:函数11cos y x x=在区间(0,1]上无界,但这函数不是0x +→时的无穷大.证明: 令1t x=,类似第2题可得.习 题 1-51.求下列极限:(1)23231lim 41n n n n n →∞+++-;(2)111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦;(3)22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭; (4)1132lim 32n nn n n ++→∞+-;(5)2211lim 54x x x x →--+;(6)3221lim 53x x x x →+-+;(7)limx →+∞;(8)2221lim 53x x x x →∞+++;(9)330()lim h x h x h→+-;(10)22131lim 41x x x x →+-+;(11)3131lim 11x x x →⎛⎫- ⎪--⎝⎭; (12)23lim 531x x xx x →∞+-+;(13)x →(14)3lim 21x x x →∞+;(15)3lim(236)x x x →∞-+; (16)323327lim 3x x x x x →+++-.解:(1) 23231lim 41n n n n n →∞+++- = 233311lim 0411n n n n n n→∞++=+-. (2) 111lim 1223(1)n n n →∞⎡⎤+++⎢⎥⋅⋅+⎣⎦= 111111lim ()()()12231n n n →∞⎡⎤-+-++-⎢⎥+⎣⎦= 1lim(1)11n n →∞-=+. (3) 22212lim n n n n n →∞⎛⎫+++ ⎪⎝⎭=21(1)12lim 2n n n n →∞+=. (4) 1132lim 32n nn n n ++→∞+-=21()13lim 2332()3n n n →∞+=-⋅.(5) 2211lim 54x x x x →--+=1(1)(1)lim (1)(4)x x x x x →-+--=112lim 43x x x →+=--. (6) 3221lim 53xx x x →+-+=322132523+=--⨯+.(7) limx →+∞=limx=limx =111lim 2x -=. (8) 2221lim53x x x x →∞+++=2212lim 2531x x x x→∞+=++. (9) 330()lim h x h x h →+-=322330(33)lim h x x h xh h x h→+++-=3220lim(33)3h x xh h x →++=.(10) 3131lim 11x x x →⎛⎫- ⎪--⎝⎭=2313(1)lim 1x x x x →⎛⎫-++ ⎪-⎝⎭=21(1)(2)lim (1)(1)x x x x x x →-+-++ =212lim11x xx x →+=++.(11) 23lim 531x x x x x →∞+-+=22311lim 0315x x x x x→∞+=-+.(12) x →=x →=x →(13) 3lim 21x x x →∞+=2lim12x x x→∞=+∞+. (14) 3lim(236)x x x →∞-+=32336lim (2)x x x x→∞-+=∞.(15) 323327lim 3x x x x x →+++-=32331lim(327)lim 3x x x x x x →→+++⨯=∞-.2.设,0,()2,0.x e x f x x a x ⎧<=⎨+≥⎩问当a 为何值时,极限0lim ()x f x →存在.解:因为0000lim ()lim 1,lim ()lim(2)x x x x x f x e f x x a a --++→→→→===+=,所以,当00lim ()lim ()x x f x f x -+→→=,即1a =时,0lim ()x f x →存在. 3.求当x 1→时,函数12111x x e x ---的极限.解:因为11211111lim lim(1)0,1x x x x x e x e x ----→→-=+=-所以12111lim 1x x x e x -→--不存在。

高数上册全部答案

高数上册全部答案

第1页/共8页第一章 函数、极限与连续1.1 映射与函数1. (1))(x f 与 )(x h 相同; )(x g 与)(),(x h x f 不同. (2))(x f 与 )(x ψ相同相同)(x ϕ与)(),(x x f ψ不同. (3) )(x f 与 )(x g 相同. 2. (1) [ππ)(12,2+n n ],,2,1,0 =n (2) 21≤a 时[]a a −1,;21>a 为空集. 3. (1)3arctan 213arctan 21xy y x ==;(2)xx y y y x −=−=1ln 1ln; 5.(2),224,216==−)()(πϕπϕ02=)(ϕ. 6. (1)奇 , (2)奇 , (3) 偶. 7..22332+∞<<−h r r h h hr ,)(π1.2 数列的极限1.(1)3⎯⎯→⎯∞→n n x .(2).0⎯⎯→⎯∞→n n x(3)无极限. (4) 无极限. 1.3 函数的极限2. (1) 极限不存在. (2) 极限不存在. (3),2arctan π−⎯⎯→⎯−∞→x x∞→x 时,x arctan 的极限不存在. (4),11⎯⎯→⎯++∞→−x x e ∞→x 时,x e −+1的极限不存在. (5) 极限不存在. 1.4 无穷小与无穷大3.无界,非无穷大. 1.5 极限运算法则1. 2; 2. 0; 3. -1/5; 4. -1; 5. 2x ;6. 2; 7. 0; 1.6 极限存在准则 两个重要极限1.(1) e1; (2) a ; (3) 0 ; (4) x ; (5) 1; (6)2−e ; (7) 1−e ; (8) 3; (9) e . 2. 2 ; 3. 0 1.7 无穷小的比较1. (1)x x ~arctan . (2)e a =时等价; e a ≠时同阶. (3) 同阶. (4) 同阶. 2 (1)6=n ; (2) 1=n ; (3) 8=n . 1.8 函数的连续性与间断点1.(1)2=x ,第一类可去,补充定义-4; 3=x ,第二类无穷. (2),,20ππ+==k x x 第一类可去, 分别补充定义1,0; )(0≠=k k x π为第二类无穷. (3) 0x =第一类跳跃第一类跳跃 (4)0x =第二类无穷第二类无穷2. ),),(,),(,(∞+−−∞−1122.3112∞⎯⎯→⎯−⎯⎯→⎯→−→x x x f x f )(,)(3.)()(,)(0100100f f f =−=+=−, ,0=x 第一类跳跃.4.1±=x ,第一类跳跃.1.9 连续函数的运算与初等函数的连续性1..34==b a ,2. (1)112ln ++e ; (2) 0 ; (3) 1/2 ; (4)-1/56 ; (5) 1/2 ;(6) 0 ; (7) 2−e ; (8) 0 ; (9) ;x sin − (10) 1−e . 第二章 导数与微分 2.1 导数概念1、(1)-20 (2)12、(1)(0)f ′ (2)0()f x ′−(3)02()f x ′3、2,-14、1,1y x y x −=−=−2.2 函数的求导法则1、(1)′=++y x xln ln 2222 (2)′=−+⋅y x x x x x 332155222cos sin sec () (3)2-1(1)y x x =+(4)2cos sin x x x y x −= (5)(2)(3)(1)(3)y x x x x =−−+−−(1)(2)x x +−−(6)21cos sin (1cos )x xy x ++=+ (7)()22224sin1cos (1)x x x y x x ⎡⎤++⎣⎦=+(8)x x chx shx e y x tan sec )(3−+=′ 2、(1)-2 (2)2(1)42π+ 3.(1)38(25)y x =+(2)3sin(43)y x =− (3)22xy a x−=− (4)2sin 4y x =(5)2sec (12)y x x =−−(6)()arctan 21x e y x x =+ (7)211y x=+(8)12(1)y x x =− (9)sec y x =(10)csc y x =(11)()11sin cos sin sin cos n n n n y n x x x x x x −−=+(12)211y x =−− (13)()1ln ln ln y x x x =(14)′=++−y x x x xx xx 3222212123ln ()ln cos4.22()()()()()()f x f xg x g x f x g x ′′++5.445(3),5x x −6.(1)()-241xy exx =−++(2)-24()t ty e e =+或21(ch) (3)24arctan 24xy x =+ (4)arcsin 2x y =(5)4218x x x x y x x x x x x+++=+++ 7.122.3 高阶导数1. (1)214-x (2)()23222aa x −− (3)232(1)x y x −=+2.(1)!n (2) ().xx n e +(3)-1-12sin(2).2n n y x π=+3. (1)4cos xe x −(2)21225(sin 250cos 2sin 2)2x x x x x −++5022.4隐函数及由参数方程所确定的函数的导数1 (1)22.ay x y ax −− (2)′=++−+y y x x y x x y sin cos()cos cos()2.(1)222.y x y −(2)22.e3.sin 11cot 2(1)x xx x x e e x x e ⎡⎤−+−⎢⎥−⎣⎦24.(1)cos sin 1sin cos θθθθθθ−−− (2)sin cos cos sin t t t t +−5.(1)231t t +− (2)1()f t ′′2.5函数的微分1 (1)22)sin 2).xxx e x e dx ++(((2)231(1)dx x + (3)2ln 1)1x dx x −−−((4)42.1xdx x −+2.dx3.提示:利用()(0)(0)f x f f x ′≈+第三章 微分中值定理与导数的应用3.1 微分中值定理1.提示:首先验证函数满足Lagrange 定理的条件,并可求得63(1,2)3ξ−=∈, 使(2)(1)()21f f f ξ−′=−.2.11ln()xe x x θ−=3.方程()0f x ′=有且仅有三个实根,它们分别在区间(0,1),(1,2),(2,3)内.4.提示:利用反证法.5.提示:作辅助函数()x ϕ=(1)10xx e −+>,利用Lagrange 中值定理.3.2 洛必达法则1.32 2. 12 3. 3. 11 4. 12 5. 5. 1 6. 1 6. 0 0 7. 528. 8. 1 1 9. ∞ 10. 13.3 泰勒公式 1.21()ln 2()()244f x x x ππ=−−−−− 232sec tan ()34x πξξ−− ,ξ在,4x π之间.2.2311()2!(1)!xn n xe x x x x o x n =+++++− 3.4 函数的单调性与曲线的凹凸性2. 1(,),(1,)2−∞+∞单调增加,1(,1)2上单调减少.3.2(,),(,)3a a −∞+∞单调增,2(,)3a a 上单调减.4.22[,]33−单调增, 2(,]3−∞−,2[,)3+∞单调减.7. 凸区间(,1]−∞,凹区间[1,)+∞, 拐点11(1,)9−3.5 函数的极值与最大值最小值1.2[1,]e 单调增,(0,1],2[,)e +∞单调减,极小值(1)0f =,极大值224()f e e=2.2,05x x ==3. 极大值213xy ==,极小值312.5x y ==.4. 3,0,1a b c =−==5. 0()f x 是极小值是极小值6.最大值为2,最小值为 -2.7.最小值212x y =−=8.0163x =, max 16()151.73S =9.422,33h R r R == 3.7 曲率1. 曲率2K =,曲率半径12ρ=. 2. 2x π=处曲率最大,为1.高等数学期中自测试题一、DDCDD二、1、[1,2] 2、1/2 3、-14、(1)(1)(0)(0)f f f f ′′>−>5、1t =三、1、(22)n n πππ+,(012)n =±± ,,,2lim ln sin 0x x π→=2、1/43、04、36、(]0−∞,单调减,[)0+∞,单调增单调增五、提示:利用反证法,由零点定理推出矛盾。

高数(高等教育出版社)第一版,第二章习题详解参考

高数(高等教育出版社)第一版,第二章习题详解参考

第二章习题解答参考习 题 2-11.设()=8f x x ,试按定义求(1)f '. 解 ()()()0011818(1)=limlim 8x x f x f x f x x∆→∆→+∆-+∆-'==∆∆. 2.设2()=f x ax bx c ++,其中,,a b c 为常数.按定义求()f x '. 解 ()()()0=limx f x x f x f x x∆→+∆-'∆()()()220limx a x x b x x c ax bx c x∆→+∆++∆+-++=∆()202lim 2x ax x a x b x ax b x∆→∆+∆+∆==+∆. 3.证明 (sin )=cos x x '. 证 设()sin f x x =,则()()()sin sin 2cos sin 22x x f x x f x x x x x ∆∆⎛⎫+∆-=+∆-=+ ⎪⎝⎭ ()()()002cos sin 22lim lim x x x x x f x x f x f x x x∆→∆→∆∆⎛⎫+ ⎪+∆-⎝⎭'==∆∆0sin2lim cos cos 22x xx x x x ∆→∆∆⎛⎫=+⋅= ⎪∆⎝⎭, 所以 (sin )=cos x x '.4.下列说法可否作为()f x 在0x 可导的定义 (1)000()()limh f x h f x h h→+--存在;解 不能.因为从极限式中不能判断()0f x 存在,也不能判断000()()limh f x h f x h→+-存在.例如()f x x =在0x =点不可导,但00(0)(0)limlim 0h h h h f h f h h h→→--+--==却存在.(2)000()()lim h f x h f x h +→+-和000()()lim h f x h f x h+→---存在且相等;解 可以.因为()0000()()lim h f x h f x f x h++→+-'=,()0000000()()()()lim lim h h f x h f x f x h f x f x h h+--→-→----'==--,根据导数存在的充要条件,可知()0f x '存在.5.求下列函数的导数:(1)5y x =; (2)y =; (3)y x =; (4)13log y x = ; (5)y =(6)lg y x =.解 (1)51455y x x -'==;(2)132212y x x --'⎛⎫'==-= ⎪⎝⎭(3)221577222277y x x x '⎛⎫'=== ⎪⎝⎭(4)111ln 3ln3y x x '==-; (5)25152326616y x x x +--''⎛⎫⎛⎫'==== ⎪ ⎪⎝⎭⎝⎭;(6)1ln10y x '=. 6.已知物体的运动规律为3s t =(米),求这物体在2t =(秒)时的速度. 解 因为3s t =,23dsv t dt==,所以2t =时,()223212v =⨯=. 7.如果()f x 为偶函数,且(0)f '存在,证明(0)=0f '.证 因为()()0(0)=lim x f x f f x∆→∆-'∆,而()f x 为偶函数,故()()f x f x -∆=∆,所以()()()()000(0)limlim (0)x x f x f f x f f f x x∆→∆→-∆--∆-''==-=-∆-∆, 所以(0)=0f '.8.抛物线2y x =在哪一点的切线平行于直线45y x =-在哪一点的切线垂直于直线2650x y -+=解 由2y x =,可得2y x '=,若切点为()200,x x ,则依题设024x =,即02x =时,切线平行于直线45y x =-;01213x ⋅=-,即032x =-时,切线垂直于直线2650x y -+=;所以抛物线2y x =在点()2,4的切线平行于直线45y x =-在点39,24⎛⎫- ⎪⎝⎭的切线垂直于直线2650x y -+=.9.在抛物线2y x =上取横坐标为11x =及23x =的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线解 由题设可知2y x '=,所取的两点为()1,1,()3,9,连接两点的直线斜率为4k =,依题设,应有24x =,即2x =,所以所求点为()2,4.10.如果()y f x =在点()4,3处的切线过点()0,2,求()4f '. 解 依题设,曲线在点()4,3处的切线为()()344y f x '-=-,满足()()23404f '-=-,从而()144f '=.11.讨论下列函数在0x =处的连续性与可导性:(1)y = (2)21sin ,0,0,0.x x y xx ⎧≠⎪=⎨⎪=⎩ 解(1)因为()000x y →==,所以y =0x =点连续,而20031lim x x x →→==+∞,所以y =0x =点不可导;(2)因为()201lim sin 00x x y x →==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点连续, 又 2001sin1limlim sin 0x x x x x x x →→==,所以21sin ,0,0,0.x x y x x ⎧≠⎪=⎨⎪=⎩在0x =点可导. 12.设sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,求,a b 的值.解 因为sin ,0()=,0x x f x ax b x <⎧⎨+≥⎩在0x =处可导,所以()0lim ()0x f x f →=,且()()00f f -+''=,又0lim ()0x f x -→=,0lim ()x f x b +→=,()0f b =,故0b =,()00f =, 从而()()()000sin 0lim lim 1x x f x f xf x x---→→-'===, ()()()0000lim lim x x f x f ax f a xx +++→→-'===,所以1a =. 13.已知2,0(),0x x f x x x ⎧≥=⎨-<⎩,求(0)f +',(0)f -'和(0)f '.解 因为2,0(),0x x f x x x ⎧≥=⎨-<⎩,所以()200()0(0)lim lim 0x x f x f x f x x +++→→-'===, ()00()0(0)lim lim 1x x f x f xf x x---→→--'===-,所以(0)f '不存在. 14.设函数33,0()=,0x x f x x x ⎧≥⎨-<⎩,求()f x '.解 当0x >时,2()3f x x '=,当0x <时,2()3f x x '=-,当0x =时,()()3000(0)limlim 0x x f x f x f xx +++→→-'===, ()()3000(0)lim lim 0x x f x f x f xx ---→→--'===,所以(0)0f '=,所以 223,0()=3,0x x f x x x ⎧≥'⎨-<⎩.15.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数; (2)周期函数的导函数仍是周期函数. 证 (1)设()f x 为奇函数,则()()f x f x -=-, 而()()()limh f x h f x f x h→+-'=,()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----+'-== ()()0lim h f x h f x h →--=-()()()0lim h f x h f x f x h→--'==-,所以()f x '为偶函数;相似地,若()f x 为偶函数,则()()f x f x -=,于是()()()()()0limlim h h f x h f x f x h f x f x h h→→-+----'-== ()()()0limh f x h f x f x h→--'=-=--,所以()f x '为奇函数.(2)设()f x 为周期函数,则存在T ,使()()f x T f x +=,则()()()0limh f x T h f x T f x T h →++-+'+=()()()0lim h f x h f x f x h→+-'==, 所以()f x '也是以T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间[0,]x 上细棒的质量m 是x 的函数()m m x =.应怎样确定细棒在点0x 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)解 设在0x 处的线密度为()0x ρ,给0x 以x ∆的增量, 则在区间00[,]x x x +∆上细棒的平均线密度为()()00m x x m x x+∆-∆,故()()()()00000limx m x x m x x m x xρ∆→+∆-'==∆.17.证明:双曲线2xy a =上任一点处的切线与两坐标轴构成的三角形的面积都等于22a .证 由2xy a =可得2,0a y x x =≠,于是22,0a y x x '=-≠,若切点为200,a x x ⎛⎫ ⎪⎝⎭,则该点处的切线为()220200a a y x x x x -=--,它与两坐标轴的交点分别为()02,0x ,2020,a x ⎛⎫ ⎪⎝⎭,所以所求三角形的面积为220012222a S x a x =⨯⨯=. 18.设函数()f x 在0x =处可导,试讨论函数|()|f x 在0x =处的可导性. 解 因为函数()f x 在0x =处可导,所以()()0()0lim0x f x f f x→-'=存在, 而()()()0limx x f x f f x x=→-'=,故(1)若(0)0f =,由()()0()0lim 0x f x f f x →-'=可知:()()0f x f xα'=+,其中lim 0x α→=,从而()()0f x x f α'=+⎡⎤⎣⎦,此时()()()000limlim 0x x x x f xf x f xxαα=→→'+⎡⎤⎣⎦''==⋅+, 因此|()|f x 在0x =点的左导数为()0f '-,右导数为()0f ', 所以|()|f x 在0x =处可导的充要条件是()00f '=;(2)若(0)0f ≠,设(0)0f >,则()0lim ()00x f x f →=>,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x >, 此时有()()()()0()0()0limlim0x x x f x f f x f f x f xx=→→--''===,相似地, 若(0)0f <,则()0lim ()00x f x f →=<,由保号性定理,0δ∃>,当()0,x U δ∈时,()0f x <,此时有()()()()00()0()0limlim 0x x x f x f f x f f x f x x=→→---⎡⎤⎣⎦''===-; 总之,若()f x 在0x =处可导,则当(0)0f ≠时,|()|f x 在0x =处可导;当(0)0f =时,|()|f x 在0x =处可导的充要条件是()00f '=.习 题 2-21.求下列函数的导数: (1)3cos2y x =;(2)4sin(31)y t =-;(3)32e 4cos2x y x =+; (4)5(1)y x =+;(5)43e 1x y -=+; (6)y =(7)1ln y x x=; (8)23(1)(1)y x x x =++-;(9)3e sin xy x x =;(10)322ln 3ln x x y x x +=+.解(1)()()()()3sin 223sin 226sin 2y x x x x ''=⋅-=-⋅=-; (2)()4cos(31)3112cos(31)y t t t ''=-⋅-=-;(3)()()()()332e 34sin 226e 8sin 2x x y x x x x '''=+-=-; (4)()445(1)15(1)y x x x ''=++=+; (5)()443e 4012e x x y x --''=-+=-;(6)y '==(7)()()()()2221ln ln ln 1ln ln ln x x x x x x y x x x x x x +⋅'+'=-=-=-; (8)()()3222221(1)(1)3(1)(1)522y x x x x x x x x '=+-+++⋅-=-++; (9)()23323e sin e sin e cos e 3sin sin cos x x x x y x x x x x x x x x x x x '=++=++;(10)()()()()()2234222222333ln 2ln 294ln 323ln 3ln x x x x x x x x x x x xx x y x x x x ⎛⎫⎛⎫++-++ ⎪ ⎪-+-+⎝⎭⎝⎭'==++2.证明:(1)2(cot )csc x x '=-; (2) (csc )csc cot x x x '=- .证 (1)22cos sin sin cos cos (cot )csc sin sin x x x x x x x x x '-⋅-⋅⎛⎫'===- ⎪⎝⎭; (2)21cos 1cos (csc )csc cot sin sin sin sin x x x x x x x x x '⎛⎫'==-=-⋅=- ⎪⎝⎭. 3.证明:(1)(arccos )x '= (2)21(arccot )1x x '=-+. 证 (1)设arccos y x =,则其反函数为cos x y =,,22y ππ⎡⎤∈-⎢⎥⎣⎦,由于sin x y '=-,由反函数求导法则,()1arccos sin x y '=-== (2)设arccot y x =,则其反函数为cot x y =,()0,y π∈, 由于2csc x y '=-,由反函数求导法则,()222111arccos csc 1cot 1x y y x'=-=-=-++. 4.求下列函数在给定点处的导数:(1)2cos 3sin y x x =-,求π4x y ='; (2)2233x y x =+-,求(2)f '. 解 (1)因为2sin 3cos y x x '=--,所以π4ππ2sin3cos 442x y ='=--=-; (2)因为()()()22212223333x xy x x ⋅-'=-+=+--,所以()22222103332x y =⋅'=+=-.5.写出曲线122y x x=-与x 轴交点处的切线方程. 解 令0y =,得曲线122y x x =-与x 轴交点为1,02⎛⎫ ⎪⎝⎭和1,02⎛⎫- ⎪⎝⎭, 而2122y x '=+,所以142y ⎛⎫'±= ⎪⎝⎭, 所以所求切线有两条,方程分别为42y x =+,42y x =-.6.求下列函数的导数: (1)25(23)y x =+;(2)2sin (52)y x =-;(3)2321e xx y -++=;(4)2sin ()y x =; (5)2cos y x =;(6)y =(7)()arctan x y e =; (8)2(arccos )y x =; (9)lnsin y x =;(10)3log (1)a y x =+.解 (1)242245(23)(23)20(23)y x x x x ''=⋅+⋅+=+; (2)222cos(52)(52)4cos(52)y x x x x ''=-⋅-=--; (3)()()223212321e 32162e xx x x y x x x -++-++''=⋅-++=-+;(4)222cos()()2cos()y x x x x ''=⋅=;(5)()()2cos cos 2cos sin sin 2y x x x x x ''==-=-; (6)()22y a x ''=-==(7)()()221e e 1e 1e xxxx y ''==++; (8)2(arccos )(arccos )2(arccos )y x x x ⎛⎫''=== ⎝ (9)()1cos sin cot sin sin xy x x x x''===; (10)233313(1)(1)ln (1)ln x y x x a x a''=+=++.7.求下列函数的导数:(1)arccos(12)y x =-; (2)1arcsin y x=;(3)1ln 1ln xy x-=+;(4)ln (y x =;(5)sin cos n y x nx =⋅; (6)y =(7)e y =;(8)[]ln ln(ln )y x =;(9)y =(10)1arccot tan 22x y ⎛⎫= ⎪⎝⎭.解 (1)2)y x ''=-==;(2)211y x x '⎫⎫'==-=⎪⎪⎭⎭; (3)()()()()22111ln 1ln 21ln 1ln x x x x y x x x -+--'==-++; (4)y x ''=+==;(5)()()()1sin sin cos sin sin n n y n x x nx x nx nx -'''=⋅+-()1sin cos cos sin sin n n x x nx x nx -=⋅-()1sin cos 1n n x n x -=+⎡⎤⎣⎦;(6)1sin 21sin 2x y x '-⎛⎫'=⎪+⎝⎭()()()22cos 21sin 21sin 22cos 21sin 2x x x x x -+--=+2cos 21sin 2xx-=+()2cos 2cos 21sin 2x x x =-+;(7)(1ee1y x'''===+ (8)()()()1111ln (ln )ln ln (ln )ln (ln )ln ln ln (ln )y x x x x x x x x '''==⋅=; (9)y'====;(10)211tan 2211tan 22x y x '⎛⎫'=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭2241sec 2224tan 2x x x '⎛⎫=- ⎪⎝⎭⎛⎫+ ⎪⎝⎭ 222sec 1213cos 4tan 22xx x =-=-⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭. 8.设1cos ,0()ln (1)cos ,0x x f x x x x x -<⎧=⎨+-≥⎩,求()f x '.解 当0x ≠时,sin ,0()1cos sin ,01x x f x x x x x x<⎧⎪'=⎨-+>⎪+⎩,当0x =时,20002sin sin1cos 022(0)lim limlim sin 022x x x x xx x f xxx ----→→→--'===⋅=,()()100ln 1cos 0(0)lim lim ln 1cos ln 10x x x x x x f x x e x +++→→+--⎡⎤'==+-=-=⎢⎥⎣⎦, 所以()00f '=,从而sin ,0()1cos sin ,01x x f x x x x x x <⎧⎪'=⎨-+≥⎪+⎩.9.求函数cos (sin )x y x =的导函数. 解法1 因为cos cos lnsin (sin )x x x y x e ==,所以()()cos cos lnsin cos cos ln sin sin sin ln sin cos sin x x x x y e x x x x x x x ⎛⎫''=⋅=-+ ⎪⎝⎭()2cos cos sin sin ln sin sin xx x x x x ⎛⎫=-+ ⎪⎝⎭.解法2 对数求导法,由cos (sin )x y x =,得ln cos ln (sin )y x x =, 两边同时对x 求导,得cos sin ln sin cos sin y x x x x y x'=-+, 所以()2cos cos sin sin ln sin sin xx y x x x x ⎛⎫'=-+ ⎪⎝⎭.10.设()sin f x x =,3()x x ϕ=,求[()]f x ϕ',[()]f x ϕ',{[()]}f x ϕ'.解 因为()sin f x x =,3()x x ϕ=,所以()cos f x x '=,2()3x x ϕ'=, 所以()()22[()]3sin 3f x f x x ϕ'==,[]()3[()]cos ()cos f x x x ϕϕ'==,()()()()33323{[()]}sin cos 3cos f x x x x x x ϕ''⎡⎤'===⎣⎦. 11.设()f x '存在,求下列函数的导数: (1)(cos )n f x ; (2)cos [()]n f x .解 (1)[]()11(cos )(cos )(cos )(cos )(cos )cos nn n f x nf x f x nf x f x x --''''⎡⎤==⎣⎦1sin (cos )(cos )n n xf x f x -'=-;(2){}{}{}()11cos [()]cos [()]cos[()]cos [()]sin[()]n n n f x n f x f x n f x f x f x --'''==-()1sin[()]cos [()]n n f x f x f x -'=-⋅⋅.12. 求曲线()22sin sin f x x x =+所有具有水平切线的点. 解 因为()2cos 2sin cos f x x x x '=+,令()0f x '=,得()cos 1sin 0x x +=,于是cos 0x =,或sin 1x =-, 推得 ,2x k k Z ππ=+∈,或32,2x k k Z ππ=+∈, 所以所求的点为2,32k ππ⎛⎫+ ⎪⎝⎭,32,12k ππ⎛⎫+- ⎪⎝⎭,其中k Z ∈. 习 题 2-31.求下列函数的二阶导数: (1)35e x y -= ;(2)e sin t y t -= ; (3)2sin ln y x x = ;(4)tan y x = ;(5)ln(y x = ; (6)2(1)arctan y x x =+ . 解 (1)353e x y -'=,359e x y -''=;(2)()e sin e cos e cos sin t t t y t t t t ---'=-+=- ,()()e cos sin e sin cos 2e cos t t t y t t t t t ---''=--+--=-;(3)()221sin 2sin cos ln sin ln sin 2xy x x x x x x x x'=+⋅=⋅+,()()22sin 22sin cos sin ln 2cos 2x x x x xy x x x x ⋅-''=+⋅+ ()()222sin 2sin 2cos 2ln x xx x x x=+⋅-;(4)2sec y x '=,22sec sec tan 2sec tan y x x x x x ''=⋅⋅=⋅;(5)1y ⎛⎫'=+= ⎝ ()3221422y x x -''=-+⋅=;(6)2arctan 1y x x '=+,22arctan 1x y x x ⎛⎫''=+ ⎪+⎝⎭. 2.3e x y x = ,求(5)(0)y . 解 设3u x =,x v e =,则23u x '=,6u x ''=,6u '''=,()0,4n u n =∀≥;(),nx v e n N +=∀∈, 代入莱布尼兹公式,得 ()()()()5445(5)510105y u v u v u v u v u v uv ''''''''''''=+++++2310610653x x x x e xe x e x e =⋅+⋅+⋅+,所以 (5)(0)60y =.3.22e x y x =,求(20)y . 解 设2u x =,2x v e =,则2u x '=,2u ''=,()0,3n u n =∀≥;()22,nn x v e n N +=∀∈,代入莱布尼兹公式,得 ()()20(20)200n k k k k yC u v -==∑()()()181920210202020C u v C u v C uv '''=++ 182119202202202019022222x x x e C x e C x e =⋅⋅+⋅+⋅()202229520x e x x =++.4.试从d 1d x y y='导出:(1)223d d ()x y y y ''=-';(2)3235d 3()d ()x y y y y y ''''''-='.解 因为d 1d x y y =',所以()()2232d 111d x d d dx y y y dy y dx y dy y y y ''''⎛⎫⎛⎫==⋅=-⋅=- ⎪ ⎪'''''⎝⎭⎝⎭, ()()3333d d x d y d y dx y dy dx dyy y ⎛⎫⎛⎫''''=-=-⋅ ⎪ ⎪ ⎪ ⎪''⎝⎭⎝⎭ ()()()()()32265331y y y y y y y y y y y '''''''''''''''-⋅-=-⋅='''. 5.证明:函数12e e x x y C C λλ-=+(12,,C C λ是常数)满足关系式20y y λ''-=. 解 因为12e e x x y C C λλ-=+,所以()1212e e e e x x x x y C C C C λλλλλλλλ--'=+-=-,2212e e x x y C C λλλλ-''=+, 所以()22221212e e e e 0x x x x y y C C C C λλλλλλλλ--''-=+-+=. 6. 求常数λ的值,使得函数x y e λ=满足方程560y y y '''+-=.解 因为x y e λ=,所以x y e λλ'=,2x y e λλ''=,代入方程560y y y '''+-=, 得()2560x e λλλ+-=,因为0,x e x R λ≠∀∈,所以2560λλ+-=, 解得16λ=-,21λ=.7. 设()()sin f x x a =+,()sin cos g x b x c x =+,求常数,b c 的值,使得()()00f g =,且()()00f g ''=.解 因为()()sin f x x a =+,()sin cos g x b x c x =+, 所以()()cos f x x a '=+,()cos sin g x b x c x '=-,所以由()()00f g =,()()00f g ''=,可得sin c a =,且cos b a =. 8.求下列函数的n 阶导数.(1)12121n n n n n y x a x a x a x a ---=+++++L (12,,n a a a L 是常数); (2)e x y x =; (3)2sin y x =; (4)2156y x x =-+.解 (1)()()12312112n n n n y nx n a x n a x a ----'=+-+-++L ,()()()()()23412211223n n n n y n n x n n a x n n a x a ----''=-+--+--++L ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故()!ny n =.(2)()e e e 1x x x y x x '=+=+,()()e 1e e 2x x x y x x ''=++=+,()()e 2e e 3x x x y x x '''=++=+,由此可见,每求一次导数,增加一个e x , 所以()()e n x y x n =+,n N +∀∈; (3)()()21cos 211sin cos 2222x y x x -===-, ()2sin cos sin 2cos 22y x x x x π⎛⎫'===-+ ⎪⎝⎭,()2cos 22cos 222y x x π⎛⎫''==-+⋅ ⎪⎝⎭,()222sin 22cos 232y x x π⎛⎫'''=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, ()()4332cos 22cos 242y x x π⎛⎫=-=-+⋅⎡⎤ ⎪⎣⎦⎝⎭, 所以()12cos 22nn y x n π-⎛⎫=-+⋅ ⎪⎝⎭,n N +∀∈.(4)因为 21115632y x x x x ==--+--, 而()2133x x -'⎛⎫=-- ⎪-⎝⎭,()()()311233x x -''⎛⎫=--- ⎪-⎝⎭, ()()()()4112333x x -'''⎛⎫=---- ⎪-⎝⎭, 可见,()()()()()()1112333n n n x x --⎛⎫=----- ⎪-⎝⎭L ()()11!3n n n x --=--,同理,()()()()()()()()11112321!22n n nn n x n x x ----⎛⎫=-----=-- ⎪-⎝⎭L ,所以()()()()()()()1111111!321!32nn n nn n n y n x x n x x ----++⎛⎫⎡⎤=----=-- ⎪⎣⎦ ⎪--⎝⎭.习 题 2-41.求由下列方程所确定的隐函数的导数d d y x: (1)e 0xy x y +-=;(2)22320x y xy y -+=;(3)e ln sin 2xy y x x +=;(4= (0a >的常数).解 (1)将方程两边同时对x 求导,得1e 0xy dy dy y x dx dx ⎛⎫+-+= ⎪⎝⎭,变形得:e 11e xy xydy y dx x -=-;(2)将方程两边同时对x 求导,得22222230dy dy dy xy x y x y y dx dx dx ⎛⎫⎛⎫+-+⋅+= ⎪ ⎪⎝⎭⎝⎭,变形整理得:2224223dy xy y dx x xy y -+=-+; (3)将方程两边同时对x 求导,得 e ln 2cos 2xy dy dy y y x x x dx dx x ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,变形整理得:22cos 2e ln exyxy dy x x y xy dx x x x --=+;(4)将方程两边同时对x 求导,得0+=,变形整理得:()0dy x dx =>. 2.求曲线2520x y xy +-=在点(1,1)处的切线方程. 解 将方程两边同时对x 求导,得:42520dy dy x y y x dx dx ⎛⎫+-+= ⎪⎝⎭, 将1x =,1y =代入,解得:()1,10dydx=,所以曲线在点(1,1)处的切线方程为:1y =.3.已知sin cos()0y x x y -+=,求隐函数()y y x =在点π0,2⎛⎫⎪⎝⎭的导数值.解 将方程两边同时对x 求导,得:sin cos sin()10dy dy x y x x y dx dx ⎛⎫⎛⎫++++= ⎪ ⎪⎝⎭⎝⎭,将0x =,2y π=代入,解得:0,212dydxππ⎛⎫ ⎪⎝⎭=--.4.求下列方程所确定的隐函数的二阶导数22d d yx.(1)tan()y x y =+; (2)1e y y x =+;(3)ln y y x y =+; (4)arctan yx=. 解 (1)将方程两边同时对x 求导,得:2sec ()1dy dy x y dx dx ⎛⎫=++ ⎪⎝⎭, 解得2csc ()dyx y dx=-+, 再求导,得:()222csc()csc()cot 1d y dy x y x y x y dx dx ⎛⎫=-+-+++⎡⎤ ⎪⎣⎦⎝⎭, 将2csc ()dy x y dx=-+代入,整理得:()22322csc ()cot d y x y x y dx =-++;(2)将方程两边同时对x 求导,得:e e y ydy dyx dx dx=+, 解得:e 1e y y dy dx x =-,再求导,得:()()222e 1e e e e 1e yy y y y y dy dy x x dx dx d ydxx ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦=-,将e 1e y y dy dx x =-代入,整理化简得:()()()()222332e 2e e 321e yyyy x y d y dx y x --==--; (3)将方程两边同时对x 求导,得:ln 1dy dy dyy dx dx dx+=+, 解得:1ln dy dx y =,再求导,得:()2221ln dyd yy dxdx y =-, 将1ln dy dx y =代入,整理化简得:()2321ln d y dx y y =-;(4)将方程两边同时对x 求导,得:2222221121dy dy x y x ydx dx x x y y x -+⋅=⋅+⎛⎫+ ⎪⎝⎭, 解得:dy x y dx x y +=-,再求导,得:()()()22211dy dy x y x y d y dx dx dx x y ⎛⎫⎛⎫+--+- ⎪ ⎪⎝⎭⎝⎭=-, 将dy x ydx x y +=-代入,整理化简得:()()222322x y d y dx x y +=-. 5.用对数求导法求下列函数的导数: (1)cos (sin )x y x =;(2)(tan 2)x y x =;(3)1xx y x ⎛⎫= ⎪+⎝⎭;(4)(2y x =-解 (1)两边取自然对数,得:ln cos ln(sin )y x x =, 两边同时对x 求导,得:()1cos sin ln sin cos sin dy xx x x y dx x=-+⋅, 整理化简得:()cos (sin )sin ln sin cos cot x dyx x x x x dx=-+⋅⎡⎤⎣⎦; (2)两边取自然对数,得:ln ln(tan 2)y x x =,两边同时对x 求导,得:()2sec 221ln(tan 2)tan 2x dyx x y dx x ⋅=+⋅, 整理化简得:4(tan 2)ln(tan 2)sin 4x dy x x x dx x ⎡⎤=+⎢⎥⎣⎦; (3)两边取自然对数,得:()ln ln ln ln 11x y x x x x x ⎛⎫==-+⎡⎤ ⎪⎣⎦+⎝⎭, 两边同时对x 求导,得:()111ln ln 11dy x x x y dx x x ⎛⎫=-++-⎡⎤ ⎪⎣⎦+⎝⎭整理化简得:1ln 111xdy x x dx x x x ⎛⎫⎡⎤=+ ⎪⎢⎥+++⎝⎭⎣⎦; (4)两边取自然对数,得:()111ln ln(21)ln ln(31)ln 1248y x x x x =-++++-,两边同时对x 求导,得:()121312124(31)81dy y dx x x x x =+++-+-,整理化简得:()2131(22124(31)81dy x dx x x x x ⎤=-+++⎢⎥-+-⎦6.求下列参数方程所确定的函数的导数d d yx: (1)cos sin sin cos x a bt b at y a bt b at =+⎧⎨=-⎩(,a b 为常数); (2)22221(1)1at x t a t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(a 为常数). 解 (1)因为()()sin cos dx ab bt ab at dt =-+,()()cos sin dyab bt ab at dt=+, 所以()()()()()()()()cos sin cos sin d d sin cos sin cos ab bt ab at bt at y x ab bt ab at bt at ++==-+-+; (2)因为()()()()22222221222111a t at t a t dx dt t t +-⋅-==++, ()()()22222221(1)2411at t a t t dy atdt t t -+--⋅-==++ 所以22d 22d 11y t tx t t =-=--. 7.求曲线2e 1(2)ettx t y t t --⎧=+⎪⎨=-⎪⎩在0t =处的切线方程与法线方程. 解 因为e e t t dx t dt --=-,()222e (2)e t t dy t t t dt--=---, 所以221dy t dx t +=-,02t dy dx==,又01,0t t xy====故所求切线为:()21y x =-,法线为:()112y x =--. 8.已知曲线2e 2e tx t mt n y p ⎧=++⎪⎨=-⎪⎩在0t =时过原点,且在该点处的切线与2350x y +-=平行,求常数,,m n p .解 因为2dx t m dt =+,e tdy p dt=,故e 2t dy p dx t m =+,由题设可知:00t xn ===,02e 0t yp ==-=,23t dy p dxm ===-, 所以所求常数为:0n =,2e p =,3e m =-. 注:此题的书后答案有误.9.求下列参数方程所确定的函数的二阶导数22d d yx:(1)231x t y t t⎧=-⎪⎨=-⎪⎩; (2)e cos e sin t t x t y t ⎧=⎨=⎩; (3)()2ln 1arctan x t y t t⎧=+⎪⎨=-⎪⎩; (4)()()()x f t y tf t f t '=⎧⎨'=-⎩(()f t ''存在且不为零).解 (1)因为2dx t dt =-,213dy t dt=-,所以21313222dy t t dx t t -==-+-, 于是 22223131313222224d y d t dt t t dx dt t dx t t ++⎛⎫=-+⋅==- ⎪-⎝⎭;(2)因为e cos e sin t t dx t t dt =-,e sin e cos t t dyt t dt=+, 所以e sin e cos sin cos e cos e sin cos sin t t t tdy t t t t dx t t t t++==--,于是 ()()()22222cos sin sin cos sin cos 1cos sin e cos e sin cos sin t tt t t t d y d t t dt dx dt t t dx t t t t -+++⎛⎫==⋅ ⎪--⎝⎭- ()32e cos sin tt t =-;(3)因为221dx t dt t =+,2111dy dt t =-+,所以22111221dy t t t dx t -+==+, 于是2222112241d y t t dx t t+==+; (4)因为()dx f t dt ''=,()()()()dy f t tf t f t tf t dt ''''''=+-=,所以dy t dx=,于是221()d y dx f t =''.10.将水注入深8米、上顶直径8米的正圆锥形容器中,注水速率为4吨/分钟.当水深为5米时,其表面上升的速率为多少解 如图所示,设在t 时刻容器中水面的高度为()h t (米),此时水面的半径为()r t (米),则依题意应有()()2143r t h t t π=,而()()84h t r t =, 所以()31412h t t π=,两边同时对时间t 求导, 可得()2144dh h t dt π=,当()5h t =时,可求得1625dh dt π=, 所以当水深为5米时,其表面上升的速率为16min 25m π. 11.汽车A 以50公里/小时的速度向西行驶,汽车B 以60公里/小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶.当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以什么速率接近解 如图所示,设在t 时刻,汽车A 距离交叉路口()x t ,汽车B 距离交叉路口()y t ,则两车之间的直线距离为()()()22s t x t y t =+t 求导,可得()()()()22dx dy x t y t ds dt dt dtx t y t +=+50dx dt =,60dy dt =,故当()0.3x t =,()0.4y t =时,22780.30.4ds dt ==+,即当汽车A 距离交叉路口0.3公里,汽车B 距离交叉路口0.4公里时,两辆车以78/km h 的速率接近.12.一个路灯安装在15英尺高的柱子上,一个身高为6英尺的人从柱子下以5英尺/秒的速度沿直线走离柱子,当他距离柱子40英尺时,他身影的顶端以多快的速率移动解 如图所示,设在t 时刻,此人离灯柱的水平距离为()x t ,身影的顶端离灯柱的水平距离为()y t ,则依题意有:5dx dt =,()()()615y t x t y t -=,可见()()53y t x t =, 两边同时对时间t 求导,得52533dy dx dt dt ==, 所以他身影的顶端以25feet /3s 的速率移动,与他离灯柱的水平 距离无关,只与他的前进速度、身高、灯柱高有关.习 题 2-51.函数2y x =,求当1x =,而0.1x ∆=,0.01时,y ∆与d y 之差是多少 解 当1x =,0.1x ∆=时,21.110.21y ∆=-=,d 20.2y x x =∆=, 所以 0.01y dy ∆-=;当1x =,0.01x ∆=时,21.0110.0201y ∆=-=,d 20.02y x x =∆=, 所以 0.0001y dy ∆-=;2.求函数2y x x =+在3x =处,x ∆等于0.1,0.01时的增量与微分. 解 因为2y x x =+,所以()21dy x x =+∆,当3x =,0.1x ∆=时,223.1 3.1330.71y ∆=+--=,0.7dy =; 当3x =,0.01x ∆=时,223.01 3.01330.0701y ∆=+--=,0.07dy =.3.函数3y x x =-,求自变量x 由2变到1.99时在2x =处的微分. 解 因为3y x x =-,所以()231dy x x =-∆,当2x =,0.01x ∆=-时,()()23210.010.11dy =⨯-⨯-=-.4.求下列函数的微分(1)234123y x x x x =+-+;(2)2e x y x -=; (3)21xy x =- ; (4)22tan (1)y x =+; (5)ln cos 3x y = ;(6)e sin ax y bx =.解 (1)()23144dy x x x dx =+-+;(2)()()()2222222e e e e 2e 12x x x x x dy dx x d x dx x x dx x dx -----=+-=+-=-;(3)()()()()()()()222222222211121111x dx xd x x dx x x dx xdy dx x x x ------+===---;(4)2222222tan(1)tan(1)2tan(1)sec (1)(1)dy x d x x x d x =++=+++2224tan(1)sec (1)x x x dx =++;(5)()()ln cos ln cos 13ln 3ln cos 3ln 3cos cos x x dy d x d x x==⋅lncos 3ln 3tan x xdx =-⋅;(6)()()()()()()e sin e cos e sin cos ax ax ax dy d ax bx bx d bx a bx b bx dx =+=+⎡⎤⎣⎦. 5.将适当的函数填入下列括号内,使等式成立: (1)d()sin d t t ω=; (2)2d()sec 3d x x =; (3)d()x =;(4)22d d()xx a =+; (5)2d()e d x x x =;(6)ln d()d xx x=. 解 (1)()1cos t ωω-; (2)()1tan 33x ; (3; (4)1arctan x a a ; (5)21e 2x ; (6)21ln 2x .6.某扩音器的插头为圆柱形,其截面半径r 为0.15厘米,长度L 为4厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为0.001厘米的铜,问每个插头约需要多少克纯铜(铜的密度为8.9克/立方厘米, 3.1416π≈)解 因为圆柱形的扩音器插头的体积为2V r L π=,侧面镀层的体积约为2V dV rL r π∆≈=∆,当0.15r =,0.001r ∆=,4L =时,32 3.14160.1540.001 3.7699210V -∆≈⨯⨯⨯⨯≈⨯, 故所需铜的重量约为33.76992108.90.03355m -≈⨯⨯≈克.7.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为2h ,若h 比R 小得多,试证明透镜的厚度22h D R≈.解 如下图所示,镜面半径R 、镜面口径2h 、透镜厚度D 之间有关系:()222h R D R +-=,化简得:2220h RD D -+=,得:22222441R R h h D R R --==--若h 比R 小得多,则2222112h h R R-≈-,故222221122h h h D R R R R R R R⎛⎫=--≈--= ⎪⎝⎭.8.利用微分求下列函数值的近似值(1)cos59o ;(2)tan 46o ;(3)lg11; (4) 1.01e ;(526;(63996解 (1)()00cos59cos 601cos cos sin 318033180πππππ⎛⎫⎛⎫⎛⎫⎛⎫=-=-≈-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭o130.51512180π⎫=-≈⎪⎝⎭; (2)()002tan 46tan 451tan tan sec 418044180πππππ⎛⎫⎛⎫⎛⎫=+=+≈+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭o 12 1.0349180π=+⨯≈;(3)()1lg11lg 101lg101 1.043410ln10=+≈+⨯≈;(4) 1.0110.010.01 2.7455e e e e +=≈+⨯≈; (526251251 5.1225=+≈=; (6()233331996100041000100049.98673-=-≈⨯⨯-≈.9.当||x 较小时,证明下列近似公式: (1)sin x x ≈;(2)(1)1x x αα+≈+;(3)ln(1)x x +≈.解 (1)设()sin f x x =,则()cos f x x '=,当||x 较小时,()sin sin0cos0f x x x x =≈+⋅=,所以sin x x ≈;(2)设()(1)f x x α=+,则()1(1)f x x αα-'=+图2-11当||x 较小时,()()()(1)111f x x f f x x αα'=+≈+=+,所以(1)1x x αα+≈+;(3)设()ln(1)f x x =+,则()11f x x'=+, 当||x 较小时,()()()ln(1)11f x x f f x x '=+≈+=,所以ln(1)x x +≈.习 题 2-61.一飞机在离地面2000米的高度,以200公里/小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设t 时刻飞机离B 点的水平距离为()x t ,摄影机镜头C 与A 点连线与飞机的水平飞行方向成θ夹角,则()cot 2000x t θ=,()()20000003600x t x t =-,两边同时对时间t求导,可得()211csc 200036dx t d dt dt θθ-==-,即21sin 36d dt θθ=,当飞机飞至该目标上方时,2πθ=, 代入解得:()13605/362d rad s dt θππ=⨯=. 2.一架飞机着陆的路径如图2-11所示,并且满足下列条件: (ⅰ)降落点为原点,飞机开始降落时水平距离为l ,飞行高度为h .(ⅱ)在整个降落过程中,飞行员必须使飞机保持恒定的水平速度v .(ⅲ)垂直方向的加速度的绝对值不能超过常数k (必须比重力加速度小很多).(1) 求一个三次多项式()32P x ax bx cx d =+++,通过在开始降落和着陆的点对()P x 和()P x '施加一定的条件限制,使它满足条件(ⅰ);(2) 根据条件(ⅱ)和(ⅲ),试证明:226hv k l≤;(3) 假设一条航线不允许飞机的垂直加速度超过2860k =哩小时.如果 一架飞机的飞行高度为35000呎,速度为300哩小时,飞机应从距离飞机场多远处开始降落(4) 画出满足问题(3)中条件的航线图.解 假设从飞机开始着陆时计时,飞行时间为t ,飞机位置为(),x y . (1)如要满足条件(ⅰ),应有0t =时,,x l y h ==,0t dy dt==;t T =(T 为着陆时刻)时,0x y ==,0t Tdydt==,因为()32y P x ax bx cx d ==+++,于是()()232dy dx dxP x ax bx c dt dt dt'==++, 所以应有 32h al bl cl d =+++,2320al bl c ++=,0d =,0c =, 解得3223,,0h h a b c d l l =-===,所以()323223h h P x x x l l=-+; (2)由条件(ⅱ)和(ⅲ)可知:dxv dt =,22d y k dt ≤,由()323223h h y P x x x l l==-+,可得:23266dy h h dx x x dt l l dt ⎛⎫=-+ ⎪⎝⎭, 222223232212666d y h h dx h h d xx x x dt ll dt l l dt ⎛⎫⎛⎫⎛⎫=-++-+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以[]0,x l ∀∈,应有232126hh x v k ll ⎛⎫-+≤ ⎪⎝⎭, 故226hv k l ≤;(3)当2860k =哩,0.62135000350000.305 6.62921000h ==⨯⨯≈呎哩,300v =哩小时,由226hv k l ≤,可解得64.52l ≥≈(哩),即飞机应从距离飞机场约64.52哩的水平距离处开始降落.(4)满足条件(3)的航线为()3232322350003350000.260625.223264.5264.52P x x x x x ⨯⨯=-+≈-+(呎)(注:式中x 的单位哩,图略).本章复习题A1、填空题(1)()f x 在点0x 可导是()f x 在点0x 连续的_____条件,()f x 在点0x 连续是()f x 在点0x 可导的______条件.解 因为()f x 在点0x 可导,则()f x 在点0x 连续,故第一个空应填“充分”,第二个空应填“必要”.(2)()f x 在点0x 可导是()f x 在点0x 可微的______条件. 解 应填“充分必要”. (3)若假定0()f x '存在,则000()()limh f x h f x h h→+--=______.解 因为()()00000000()()()()limlim h h f x h f x f x f x h f x h f x h h h→→+-+--+--= ()()00000()()lim h f x h f x f x h f x h h →+---⎡⎤=+⎢⎥-⎣⎦()02f x '=, 所以应填“()02f x '”.(4)若()(1)(2)f x x x x =++,则(0)_______f '=.解 因为()(1)(2)(2)(1)f x x x x x x x '=++++++,故(0)2f '=,应填“2”.(5)曲线231x t y t⎧=+⎨=⎩在2t =处的切线方程为________. 解 因为23322t t y dy t t dx x t '===',所以2t =时,23t dy dx ==,5x =,8y =,切线方程为()835y x -=-,即370x y --=,所以应填“370x y --=”.2、选择题(1)()f x 在点0x 的左导数0()f x -'及右导数0()f x +'都存在且相等是()f x 在点0x 可导的( ).A .充分条件B .充分必要条件C .必要条件D .既非充分条件也非必要条件 解 选B .(2)设101()n n n f x a x a x a -=+++L ,则()(0)n f =( ).A .n aB .0aC .0!n aD .0 解 选C .因为()0()!n f x n a =.(3)设函数()y f x =二阶可导,(ln )y f x =,则22d d yx等于( ).A .1(ln )f x x 'B .21[(ln )(ln )]f x f x x '''- C .21[(ln )(ln )]xf x f x x '''- D .21(ln )f x x' 解 选B .因为1(ln )(ln )f x y f x x x'''=⋅=, 则221(ln )(ln )(ln )(ln )f x x f x f x f x x y x x '''⋅⋅-'''-''==. (4)若函数()y f x =有01()2f x '=,则当0x ∆→时,该函数在0x x =处的微分d y 是( ).A .与x ∆等价的无穷小B .与x ∆同阶的无穷小C .比x ∆低阶的无穷小D .比x ∆高阶的无穷小 解 选B .因为()0012x x dyy x x x ='=∆=∆,所以001lim 2x x x dy x =∆→=∆.(5)已知方程222x y R +=确定了函数()y y x =,则22d d yx 等于( ).A .xy- B .23R y C .33R y - D .23R y -解 选D .由222x y R +=可得220x y y '+⋅=,。

(完整版)高数第一章例题及答案(终)理工类吴赣昌

(完整版)高数第一章例题及答案(终)理工类吴赣昌

第一章函数、极限与连续内容概要课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① a log □,( □0>) ② /N □, ( □0≠) ③(0)≥W④ arcsin W (W[]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ;(2)31121121arcsin≤≤-⇒≤-≤-⇒-=x x x y ; (3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★ 2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,x x g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★ 3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数;思路:注意自变量的不同范围; 解:216sin)6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★ 4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

高等数学上册第六版课后习题图文详细答案第一章

高等数学上册第六版课后习题图文详细答案第一章

高等数学上册第六版课后习题详细答案(图文)习题1-11. 设A =(-, -5)⋃(5, +), B =[-10, 3), 写出A ⋃B , AB , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +),A B =[-10, -5),A \B =(-∞, -10)⋃(5, +),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (AB )C =A C ⋃B C . 证明 因为 x (A B )C x ∉A B x ∉A 或x ∉Bx A C 或x B C x A C ⋃B C ,所以 (A B )C =A C ⋃B C .3. 设映射f : X →Y , A X , B X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A B )f (A )f (B ).证明 因为y f (A ⋃B )x ∈A ⋃B , 使f (x )=y(因为x ∈A 或x ∈B ) y f (A )或y f (B ) y f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y f (A B )x ∈A B , 使f (x )=y(因为x ∈A 且x ∈B ) y f (A )且y f (B )y f (A )f (B ),所以 f (A B )f (A )f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x X , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y Y , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)] x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x f -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-, -1)⋃(-1, 1)⋃(1, +).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +∞), 当x 1<x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f xx x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ;解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n .(2)n x n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当=0.001时, 求出数N .解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→n a n n分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<.这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有My n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-MM y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n } 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0,∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ;∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε .因此x n →a (n →∞).习题1-3 1. 根据函数极限的定义证明:(1)8)13(lim 3=-→x x ; 分析 因为|(3x -1)-8|=|3x -9|=3|x -3|所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x . 证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有 |(3x -1)-8|<ε ,所以8)13(lim 3=-→x x . (2)12)25(lim 2=+→x x ; 分析 因为|(5x +2)-12|=|5x -10|=5|x -2|所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x . 证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε ,所以12)25(lim 2=+→x x . (3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x 所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x .2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xx x x x 1|sin |0sin ≤=- 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001,只要0002.05001.0|2|=<-x取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0| 所以要使|f (x )-0|< 只须|x |< 因为对∀ε>0, ∃= 使当0<|x -0|< 时有 |f (x )-0|=||x |-0|< 所以0||lim 0=→x x6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理 如果f (x )当x →∞时的极限存在 则存在X >0及M >0 使当|x |>X 时 |f (x )|<M 证明 设f (x )→A (x →∞) 则对于 =1 X >0 当|x |>X 时 有|f (x )-A |< =1 所以|f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |这就是说存在X >0及M >0 使当|x |>X 时 |f (x )|<M 其中M =1+|A | 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x 3时为无穷小; (2)xx y 1sin =当x 0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有 εδ=<-=+-=|3|39||2x x x y ,所以当x 3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x 0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x . 证明 因为M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)x x x 12lim +∞→;(2)xx x --→11lim 20. 解 (1)因为xx x 1212+=+, 而当x → 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .f (x )→Af (x )→∞f (x )→+∞ f (x )→-∞x →x 0∀>0 ∃>0 使 当0<|x -x 0|<时 有恒|f (x )-A |<x →x 0+x →x 0-x →∞∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )|>Mx →+∞ x →-∞f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀>0 ∃>0 使当0<|x -x 0|<时 有恒|f (x )-A |<∀M >0 ∃>0 使当0<|x -x 0|<时 有恒|f (x )|>M ∀M >0 ∃>0 使当0<|x -x 0|<时 有恒f (x )>M ∀M >0 ∃>0 使当0<|x -x 0|<时 有恒f (x )<-Mx →x 0+∀>0 ∃>0 使当0<x -x 0<时 有恒|f (x )-A |< ∀M >0 ∃>0 使当0<x -x 0<时 有恒|f (x )|>M∀M >0 ∃>0 使当0<x -x 0<时 有恒f (x )>M∀M >0 ∃>0 使当0<x -x 0<时 有恒f (x )<-Mx →x 0-∀>0 ∃>0 使当0<x 0-x <时 有恒|f (x )-A |< ∀M >0 ∃>0 使当0<x 0-x <时 有恒|f (x )|>M∀M >0 ∃>0 使当0<x 0-x <时 有恒f (x )>M∀M >0 ∃>0 使当0<x 0-x <时 有恒f (x )<-M x →∞∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当|x |>X 时 有恒|f (x )|>M∀>0 ∃X >0 使当|x |>X 时 有恒f (x )>M∀>0 ∃X >0 使当|x |>X 时 有恒f (x )<-Mx →+∞∀>0 ∃X >0 使当x >X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当x >X 时 有恒|f (x )|>M∀>0 ∃X >0 使当x >X 时 有恒f (x )>M∀>0 ∃X >0 使当x >X 时 有恒f (x )<-Mx →-∞∀>0 ∃X >0 使当x <-X 时 有恒|f (x )-A |<∀>0 ∃X >0 使当x <-X 时 有恒|f (x )|>M ∀>0 ∃X >0 使当x <-X 时 有恒f (x )>M ∀>0 ∃X >0 使当x <-X 时 有恒f (x )<-M6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+ 时, 函数y =x cos x 不是无穷大.这是因为M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ; 解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ; 解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x . (8)13lim242--+∞→x x x x x ; 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零) 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x . (10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→n n n n n (分子与分母的次数相同, 极限为最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x .(5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(1)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 22210221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明设为任一给定的正数由于Ax g x x =→)(lim 0故由定义知对>0 存在1>0 使得当0<|x -x 0|<1时恒有|g (x )-A |<即A -<g (x )<A + 由于Ax h x x =→)(lim 0故由定义知 对>0存在2>0使得当0<|x -x 0|<2时 恒有|h (x )-A |< 即 A -<h (x )<A +取=min{1 2} 则当0<|x -x 0|<时A -<g (x )<A +与A -<h (x )<A +同时成立 又因为g (x )≤f (x )≤h (x ) 所以 A -<f (x )<A + 即 |f (x )-A |< 因此Ax f x x =→)(lim 0证明 仅对x →x 0的情形加以证明因为Ax g x x =→)(lim 0Ax h x x =→)(lim 0所以对任一给定的>0 存在>0 使得当0<|x -x 0|<时 恒有|g (x )-A |<及|h (x )-A |<即 A -<g (x )<A +及A -<h (x )<A +又因为 g (x )≤f (x )≤h (x ) 所以 A -<f (x )<A + 即 |f (x )-A |< 因此Ax f x x =→)(lim 04. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界. 再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan limarctan lim 00==→→y yx x y x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x x x x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ; (3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性.在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续.2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k (k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k 0), 故x =k (k 0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2= x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x xx x f n nn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型.解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=QQx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数(x )=max{f (x ), g (x )}, (x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==(x 0),所以(x )在点x 0也连续.同理可证明(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→(4)xx x 11lim 0-+→;。

高数课后习题答案及其解析

高数课后习题答案及其解析

第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。

高等数学教程习题答案

高等数学教程习题答案

《高等数学教程》第一章 习题答案习题1-1 (A)1.(1)),2()2,1()1,(+∞⋃⋃-∞ (2)]1,0()0,1[⋃-(3)),1()1,1()1,(+∞⋃-⋃--∞ (4)πk x ≠且),2,1,0(2Λ±±=+≠k k x ππ (5)),2,1,0()352,32(Λ±±=++k k k ππππ(6)]3,1[- 2.202)(6,916,6h x +++ 3.0,22,22,21 5.(1)奇函数 (2)非奇非偶函数 (3)偶函数 (4)奇函数 (5)奇函数(6)当)(x f 为奇函数或偶函数时,该函数为偶函数;当)(x f 为非奇非偶函数时,该函数为非奇非偶函数. (7)偶函数 (8)奇函数6.(1)是周期函数,π2=T (2)是周期函数,4=T (3)是周期函数,4=T (4)不是周期函数7.(1)a cx b dx y -+-=(2)2arcsin 31xy = (3)21-=-x e y (4)xxy -=1log 2(5)2xx e e y --=8.(1)2,x a u u y -== (2)2,x u e y u == (3)cos ,lg ==u u y (4)x v tgv u u y 6,,2=== (5)21,,cos ,xw e v v u arctgu y w -==== (6)22,ln ,ln ,x w w v v u u y ====9.(1)]1,1[- (2)Y zk k k ∈+])12(,2[ππ (3)]1,[a a --(4)若210≤<a ,则]1,[a a D -=;若21>a ,则=D Ф. 10.4)]([x x =ϕϕ,xx 22)]([=ψψ,x x 22)]([=ψϕ,22)]([x x =ϕψ. 11.1,4-==b a12.⎪⎩⎪⎨⎧>-=<=0,10,00,1)]([x x x x g f ,⎪⎪⎩⎪⎪⎨⎧>=<=-1,1,11,)]([1x e x x e x f g13.)20(,])2([22r h h r h V <<-=π14.πααπααππ20,4)2(242223<<--=r V 15.),2(,])[(32232+∞--=r r r h h r V π16.(1)⎪⎩⎪⎨⎧≥<<⋅--≤≤=1600,751600100,01.0)100(901000,90x x x x p(2) ⎪⎩⎪⎨⎧≥<<-≤≤=-=1600,151600100,01.0311000,30)60(2x x x x x x x x p p(3)21000=p (元)习题1-1 (B)1.)(x f 为偶函数.2.41)1(,2)(222-+=--=xx x x f x x f 3.⎩⎨⎧≥<=0,0,0)]([2x x x x g f ,⎩⎨⎧≥<=0,0,0)]([2x x x x f g4.22123x x ++ 8.⎩⎨⎧-≤-<<--=-1,101,1)(x x e x f x9.]0,(,)1ln()(-∞-=x x g10.奇函数,偶函数,偶函数,偶函数. 12.1)2005(=f习题1-2 (A)1.(1)121+n ,0 (2)11)1(1+-+n n ,0 (3)2+n n,1 (4)1)1()1(+-⋅+n n ,没有极限(5)222)1(1)1(2)1(1+++++++n n n n Λ,21(6)2)2)(1()1(++-n n ,没有极限.2.(1)17; (2)24; (3)]3[ε3.0,]1[ε习题1-3 (A)3.0002.0=δ4.397≥Z6.1)(lim )(lim 00==+-→→x f x f x x ,1)(lim 0=→x f x1)(lim 0-=-→x x ϕ,1)(lim 0=+→x x ϕ,)(lim 0x x ϕ→不存在.习题1-4 (A)3.(1)0; (2)0; (3)04.0lim 1=-→y x ; ∞=→y x 1lim习题1-4 (B)3.x x y cos =在),(+∞-∞上无界,但当+∞→x 时,此函数不是无穷大. 5.当1,0==b a 时,)(x f 是无穷小量; 当b a ,0≠为任意实数时,)(x f 是无穷大量.习题1-5 (A)1.(1)0; (2)1; (3)1; (4)103; (5)231aa -; (6)23x ; (7)34; (8)1-. 2.(1)43-; (2)0; (3)∞; (4)41-;(5)503020532⋅; (6) 41-.3.(1)⎪⎩⎪⎨⎧>-=<<1,11,010,1a a a ; (2)3; (3)34; (4)21-4.(1)10; (2)2)(m n mn -; (3)n m; (4)0; (5)0; (6)21; (7)43; (8)21.习题1-5 (B)1.(1)2; (2)21-; (3)561-; (4)2)13(2-a(5)23; (6)⎪⎩⎪⎨⎧<∞=>2,2,12,0k k k ; (7)2; (8)0 .2.1,1-==βα3.9=a4.1,1-==b a5.不一定.习题1-6 (A)1.(1)2; (2)3; (3)21; (4)-1; (5)a cos ; (6)2π; (7)1; (8)2; (9)1; (10)x . 2.(1)1-e ; (2)2e ; (3)2-e ; (4)2-e ; (5)1-e ; (6)2e .习题1-6 (B)1.(1)21; (2)π2; (3)1; (4)0; (5)0; (6)1; (7)0; (8)1-e . 2.(4)3; (5)251+. 习题1-7 (A)1. 当0→x 时,34x x -比32x x +为高阶无穷小.2. (1)同阶,但不是等价; (2)同阶,且为等价.3.21=α 4.m =α6.(1)23; (2)⎪⎩⎪⎨⎧>∞=<nm n m nm ,,1,0; (3)21;(4)21; (5)b a ; (6)41.习题1-7 (B)1.(1)32; (2)2e ; (3)21; (4)0; (5)1; (6)41-; (7)∞; (8)1. 5.x x x x p 32)(23++=. 6.a A ln .习题1-8 (A)1.1=a2.)(x f 在0=x 处连续3.(1)1=x 为可去间断点,补充2)1(-=f2=x 为第二类间断点(2)0=x 和2ππ+=k x 为可去间断点,补充0)2(,1)0(=+=ππk f f ;)0(≠=k k x π为第二类间断点.(3)1=x 为第一类间断点 (4)0=x 为第二类间断点.4.(1)1=x 为可去间断点,补充32)1(=f ;(2)0=x 为可去间断点,补充21)0(=f ;(3)1=x 为可去间断点,补充2)1(π-=f ;0=x 为第二类间断点;(4)2=x 为可去间断点,补充41)2(=f ;0=x 为第一类间断点;2-=x 为第二类间断点. (5)0=x 为第一类间断点; (6)a x =为第一类间断点; (7)1=x 为第一类间断点; (8)1-=x 为第二类间断点.习题1-8 (B)1. 1±=x 为第一类间断点.2. 1,0==b a3. 25=a 4. ),2,1,0(22Λ±±=-=n n a ππ5. 0,=-=b a π6. (1)当1,0≠=b a 时,有无穷间断点0=x ; (2)当e b a =≠,1时,有无穷间断点1=x .习题1-9 (A)1.连续区间为:),2(),2,3(),3,(+∞---∞ 21)(lim 0=→x f x ,58)(lim 3-=-→x f x ,∞=→)(lim 2x f x .2.连续区间为:),0(),0,(+∞-∞.3. (1) -1; (2) 1; (3) h ; (4) -1; (5) 22-; (6) -2; (7) 1; (8) 1; (9) ab ; (10) 5e ; (11) -1; (12) 2. 4. 1=a 5. 1=a习题1-9 (B)1. (1)0=x 为第一类间断点; (2)1-=x 为第一类间断点; (3)0=x 为第一类间断点; (4)1±=x 为第一类间断点; (5)无间断点.2. 1,0==b a3. (1)1-e ; (2)21-e ; (3)a e cot ; (4)0;(5)0; (6)-2; (7)21; (8)82π.4.21总复习题一一. 1. D 2. D 3. D 4. B 5. C 6. D 7. D 8. C 9. D 10. D二.1. ⎪⎩⎪⎨⎧≥<-=-0,0,)(22x x x x x x f2. ]2,2[,)1arcsin(2--x3. -14. 必要,充分5. 必要,充分6. 充分必要7.21 8. b a = 9.56 10. 第二类,第一类 三. 1. 11)(-+=x x x ϕ 2. 20051,20052004=-=βα 3. 1lim =∞→n n x 4. 4 5. 4e 6. -50 7.a ln 218. 当0≤α时,)(x f 在0=x 处不连续;当1,0-=>βα时,)(x f 在0=x 处不连续; 当1,0-≠>βα时,)(x f 在0=x 处不连续. 9. 82-部分习题选解 习题1-2 (B)1. 根据数列极限的定义证明:(1))0(1lim 时>=∞→a a nn证明:(ⅰ) 0>∀ε当1>a 时,令)0(1>+=n n n h h a n nn n n n n nh h h n n nh h a >++-++=+=∴Λ22)1(1)1( εεan na h n ><<<∴0∴取1][+=εaN ,当N n >时,有ε<<=-nah a n n 1,即1lim =∞→n n a (ⅱ)当1=a 时,显然成立. (ⅲ)当10<<a 时,令11>=ab ∴11lim lim ==∞→∞→n n nn ab∴1lim =∞→nn a 综合(ⅰ),(ⅱ),(ⅲ),∴当0>a 时,有1lim =∞→nn a . 习题1-6 (B)3.设0,00>y x ,n n n y x x =+1,21nn n y x y +=+. 证明:n n n n y x ∞→∞→=lim lim证明:2nn n n y x y x +≤Θ ),2,1,0(011Λ=≤≤∴++n y x n nnnn n n n nn n n n n y y y y x y x x x y x x =+≤+==≥=∴++2211),2,1,0(Λ=n 由此可知数列}{n x 单调增加,数列}{n y 单调减少, 又011110y y y y x x x x n n n n ≤≤≤≤≤≤≤≤≤++ΛΛ ∴}{n x 与}{n y 都是有界的.由“单调有界数列必有极限”准则, ∴}{n x ,}{n y 都收敛. 设b y a x n n n n ==∞→∞→lim ,lim由21n n n y x y +=+,2lim lim n n n n n y x y +=∴∞→∞→ b a b a b =⇒+=∴2即n n n n y x ∞→∞→=lim lim . 习题1-10 (B)3.设函数)(x f 在]1,0[上非负连续,且0)1()0(==f f , 试证:对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=. 证明:令)1,0(,)()()(∈∀+-=l l x f x f x F )(x f Θ在]1,0[上连续,)(l x f +在]1,[l l --上连续, )(x F ∴在]1,0[l -上连续.又Θ0)1()1()1()1(0)()()0()0(≥-=--=-≤-=-=l f f l f l F l f l f f F )0)((≥x f Θ 0)1()0(≤-⋅∴l F F(ⅰ)若0)0(=F ,取00=x ,即)()0(l f f = (ⅱ)若0)1(=-l F ,取l x -=10,即)1()1(f l f =- (ⅲ))01(,0)0(≠-≠l F F 0)1()0(<-⋅∴l F F 由零点存在定理,必存在一点]1,0[0l x -∈,使0)(0=x F , 即)()(00l x f x f +=. 综合(ⅰ),(ⅱ),(ⅲ),对)1,0(∈∀l ,必存在一点]1,0[0l x -∈,使)()(00l x f x f +=.总复习题一三.11.设)(x f 在],[b a 上连续,且)(x f 在],[b a 上无零点. 证明)(x f 在],[b a 上不变号.证明:(反证法) 假设)(x f 在],[b a 变号, 即],[,21b a x x ∈∃,使0)(,0)(21<>x f x f 即0)()(21<⋅x f x f Θ)(x f 在],[b a 上连续,∴)(x f 在],[21x x 上连续. 由零点存在定理知,),(),(21b a x x ⊂∈∃ξ,使0)(=ξf 即ξ是)(x f 在],[b a 上的一个零点. 这与)(x f 在],[b a 上无零点矛盾, )(x f ∴在],[b a 上不变号.。

西南交大高数上册第一至第三章习题解答

西南交大高数上册第一至第三章习题解答

习题1—71.指出下列各函数的间断点以及所属的类型。

如果是可去间断点,则重新定义函数值使函数在该点连续(1)23x -x 1-x y 22+=解:1x 023x -x 2=→=+,2x =22-x 1x lim 23x -x 1-x lim y lim 1x 221x 1x -=+=+=→→→,y lim 2x →不存在 所以1x =,是函数的第一类间断点,且是可去间断点 定义当1x =,-2y =可使函数在1x = 点连续。

2x =是函数的第二类间断点(2)2x x xy 2-+=解:→⎩⎨⎧≥=-+0x 02x x 21x =,y lim 1x →不存在,所以1x =是函数的第二类间断点 (3)x x 1x -1limy 2n2nn +=∞→ 解:1x >时,x x 1x11x 1lim x x 1x -1limy 2n 2nn 2n2nn -=+-=+=∞→∞→1x =时,0x x 1x -1limy 2n 2nn =+=∞→ 1x <时,x x x 1x -1limy 2n2nn =+=∞→ -1y lim 01x =+→,1y lim 01x =-→,0y 1x ==,所以1x =是函数的第一类间断点-1y lim 01x =+-→,1y lim 01x =--→,0y 1x =-=,所以1x -=是函数的第一类间断点(4)x 1x)1(y +=解:e x )1(lim y lim x10x 0x =+=→→,0x =时,x1无意义,x 1x)1(y +=无意义,所以0x =是函数的第一类间断点。

定义0x =时,e y =可使函数在0x =处连续 2.写出函数在点x 0连续的ε—δ定义。

解:设函数x)(f 在点x 0的某邻域内有定义,0>∀ε,0>∃δ,x ∀:δ<0x -x ,使ε<)x (-(x)0f f 成立,则x)(f 在点x 0处连续3.(1)函数x)(f 在点x 0连续,而函数x)(g 在点x 0不连续,问此两函数之和在点x 0是否连续?那么此两函数的积呢?(2)在点x 0,x)(f 与x)(g 都不连续,则两函数的积是否必不连续? 解:(1)①(x)x)(g f +在x 0处不连续证明:设(x)x)(g f +在x 0处连续,则0>∀ε,01>∃δ,x ∀:10x -x δ<,2/)x ()x (-(x)x)(00ε<-+g f g f2/)x ()x (-(x )x )(2/00εε<-+<-g f g f)]x (-x )([2/)x ((x ))]x (-x )([2/000f f g g f f -<-<--εε由于x)(f 在x 0处连续,所以0>∀ε,02>∃δ,x ∀:20x -x δ<,2/)x (-x)(0ε<f f ,2/)x (-x )(2/0εε<<-f fεεεε=--<-<-]2/[2/)]x (-x )([2/)x ((x )00f f g g εεεε-=-->-->-2/2/)]x (-x )([2/)x ((x )00f f g g故: ε<-)x ((x)0g g所以0>∀ε,},m in{21δδδ=∃,x ∀:δ<0x -x ,使ε<-)x ((x)0g g 成立。

高等数学(上)01-微分方程的基本概念 答案详解

高等数学(上)01-微分方程的基本概念 答案详解

4.1 微分方程的基本概念一、指出下列微分方程的阶数,并验证括号中的函数是否为微分方程的解,若是解,说明该解是通解还是特解:解析:微分方程中所出现的未知函数的最高阶导数的阶数,叫微分方程的阶满足微分方程的函数(即把函数代入微分方程能使该方程成为恒等式)叫做该微分方程的解n 阶微分方程含有n 个独立任意常数的解称为其通解,所谓独立,是指不能合并而减少个数根据其他条件确定了通解中的任意常数以后,得到微分方程不含任意常数的解称为特解,此处的定解条件称为初值条件1.xy3y 0(y Cx 3 )解:一阶(未知函数的最高阶导数的阶数为一阶)y Cx43xy y x Cx 4 Cx 3 (把函数代入微分方程能使该方程成为恒等式)3 ( 3 ) 3 0所以y Cx 3 为微分方程的解又y Cx 3 是一阶微分方程含有一个独立任意常数的解,故其为通解2.0( 1 2 )kxdx dy y kx2dy解:微分方程可写成kx ,故为一阶dx将y 1 kx2 代入方程,等式两边相等,所以 1 2y kx 为微分方程的解2 2又 1 2y kx 中不含有任意常数,故其为特解.2(注意:此处k 在微分方程中是一个确定常数,并非任意常数)3.y y 0(y C sin x)解:二阶y C x ,y C sin xcosy y C x C x ,所以y C sin x 为微分方程的解sin sin 0又y C sin x 是二阶方程只含有一个任意常数的解,故其既不是通解,也不是特解4.y 2y y 0(y x2e x )解:二阶y 2xe x x e x ,y (2x e x x2e x ) 2e x 2x e x 2x e x x 2e x 2e x 4x e x x2e x2y 2y y 2e x 4x e x x2e x 2(2x e x x2e x ) x2e x 2e x 0所以y x2e x 不是微分方程的解二、某飞机在机场降落时,为了减少滑行距离,在触地瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.设飞机的质量为m ,着陆时的水平速度为v ,减速伞打开后,飞机所受的阻力与飞机的速度成正比,比例系数k ,试表示出飞机着陆时的速度函数v(t)所满足的微分方程.分析:在实际问题中,涉及变化率的问题,如速度、加速度、增长率、衰减率等物理量的大小都可表示成某一函数导数(递增情况,导数为正)或导数的相反数(递减情况,导数为负),故可通过建立此类物理量所满足的关系式,得到以该函数为未知函数的微分方程解:由牛顿第二定律得,F ma由题意F kv ,而ad vdt故得速度函数v(t)所满足的微分方程d v m kv d t且由于着陆时的水平速度为v0 ,有初值条件v(0) v0(注:本题只要求列出微分方程即可,若需求解,可考虑分离变量法,请同学们学习完第二节之后考虑该微分方程的求解问题)。

川大版高等数学(第一册)部分课后题详细答案

川大版高等数学(第一册)部分课后题详细答案

高数第一册 第一章 习题1.13.(1)(,1)(1,)(2){|1,}1(1,1)(1,)(3)(1,1)x x x R -∞-⋃-+∞≠±∈∞-⋃-⋃+∞-或(-,)(4)22903[3,1)(1,3]10x x x x x ⎧⎫-≥⇒-⎪⎪⇒--⋃⎨⎬-⇒⎪⎪⎩⎭≤ ≤3>>1或<-12222(5)(,3)(6)sin 0,,()241(7)114(1),11(1)3x x k x k k z x x x x x x πππ-∞≠≠≠∈⎡⎤≤⇒≤⇒≤+⇒-⎢⎥++⎣⎦(8)0ln 0x x x x x ⎧⎫⇒⇒⎨⎬⇒⎩⎭> >0>1>>1(9)[1,2]-(10)21()x x x f x x x x x x x x ⎧⎫⇒⎪⎪⎪⎪=⇒⇒≠⇒∴⎨⎬⎪⎪⎪⎪⇒⎩⎭-1 <00≤≤10即0<<1 < 0和0<≤2e 1≤≤27.(1)(2)(3)(4)(5)奇函数偶函数偶函数偶函数非奇非偶(6)2()()f x f x -=+=偶函数(7)11()lnln ()11x xf x f x x x+--==-=--+奇函数)(8)2112()()2112x xx xf x f x -----===-++奇函数(9)()sin cos f x x x -=--非奇非偶 13.(1)22(())(2)24,(())2,xxxx f x f f x x Rϕϕ====∈(2)11(())(0,1)111x f f x x xx-==≠--(3)32221,()(1)3(1)256()56(1)(1)5(1)6x t f t t t t t f x x x f x x x +==---+=-+∴=-++=+-++则x=t-1,或:14.[]22(1)(0)0.(2)0,111111(3)01(4)1lg ,lg 1,lg 1,.1(5)11()(6)1log (16)y x x y x y y x y x x y y y xx y x y y x xy xx x y x x x =≤≤+∞=≥=++===≠-+==-=--=≠-+∞⎧=≤≤∞反函数反函数x=,x-1=,x=1+反函数y ,定义域反函数定义域x >0反函数,定义域(x )-<<1反函数16)<<+⎫⎪⎬⎪⎩⎭习题1.2 2。

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A=(-, -5)(5, +), B=[-10, 3), 写出A B, A B, A\B及A\(A\B)的表达式.解A B=(-, 3)(5, +),A B=[-10, -5),A\B=(-, -10)(5, +),A\(A\B)=[-10, -5).2. 设A、B是任意两个集合, 证明对偶律: (A B)C=A C B C.证明因为x(A B)C x A B x A或x B x A C或x B C x A C B C,所以(A B)C=A C B C.3. 设映射f : X Y, A X, B X . 证明(1)f(A B)=f(A)f(B);(2)f(A B)f(A)f(B).证明因为y f (A B )x A B , 使f (x )=y(因为x A 或x B ) y f (A )或y f (B )y f (A )f (B ), 所以 f (AB )=f (A )f (B ). (2)因为y f (A B )x A B , 使f (x )=y (因为x A 且x B ) y f (A )且y f (B ) y f (A )f (B ), 所以 f (A B )f (A )f (B ).4. 设映射f : X Y , 若存在一个映射g : Y X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个xX , 有I X x =x ; 对于每一个y Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的yY , 有x =g (y )X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1x 2, 必有f (x 1)f (x 2), 否则若f (x 1)=f (x 2)g [ f (x 1)]=g [f (x 2)]x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y X , 因为对每个y Y , 有g (y )=x X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X Y , A X . 证明:(1)f -1(f (A ))A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x A f (x )=y f (A ) f -1(y )=x f -1(f (A )),所以 f -1(f (A ))A . (2)由(1)知f -1(f (A ))A .另一方面, 对于任意的xf -1(f (A ))存在y f (A ), 使f -1(y )=x f (x )=y . 因为y f (A )且f 是单射, 所以x A . 这就证明了f -1(f (A ))A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域:(1)23+=x y ; 解 由3x +20得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 20得x 1. 函数的定义域为(-, -1)(-1, 1)(1, +). (3)211x xy --=; 解 由x0且1-x 20得函数的定义域D =[-1, 0)(0, 1].(4)241x y -=; 解 由4-x 20得 |x | 2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x 0得函数的定义D =[0, +¥).(6) y =tan(x +1);解 由21π≠+x (k =0, 1, 2, )得函数的定义域为 12-+≠ππk x (k =0, 1, 2, ). (7) y =arcsin(x -3);解 由|x -3|1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x 0且x 0得函数的定义域D =(-¥, 0)È(0, 3).(9) y =ln(x +1);解 由x +10得函数的定义域D =(-1, +¥). (10)x e y 1=.解 由x0得函数的定义域D =(-¥, 0)È(0, +¥). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x 0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, j (-2), 并作出函数y =j (x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-, 1); (2)y =x +ln x , (0, +).证明 (1)对于任意的x 1, x 2(-, 1), 有1-x 10, 1-x 20. 因为当x 1x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数xx y -=1在区间(-, 1)内是单调增加的. (2)对于任意的x 1, x 2(0, +), 当x 1x 2时, 有0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于"x 1, x 2Î(-l , 0)且x 1<x 2, 有-x 1, -x 2Î(0, l )且-x 1-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以 f (-x 2)f (-x 1), -f (x 2)-f (x 1), f (x 2)f (x 1),这就证明了对于"x1, x2Î(-l, 0), 有f(x1)f(x2), 所以f(x)在(-l, 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l, l)上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明(1)设F(x)=f(x)+g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的和是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-F(x),所以F(x)为奇函数, 即两个奇函数的和是奇函数.(2)设F(x)=f(x)×g(x). 如果f(x)和g(x)都是偶函数, 则F(-x)=f(-x)×g(-x)=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个偶函数的积是偶函数.如果f(x)和g(x)都是奇函数, 则F(-x)=f(-x)×g(-x)=[-f(x)][-g(x)]=f(x)×g(x)=F(x),所以F(x)为偶函数, 即两个奇函数的积是偶函数.如果f(x)是偶函数, 而g(x)是奇函数, 则F(-x)=f(-x)×g(-x)=f(x)[-g(x)]=-f(x)×g(x)=-F(x),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211xxy +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2p .(2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin px ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =p .14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。

高等数学第一章1-3节参考答案

高等数学第一章1-3节参考答案

第一章 函数与极限第一节 函数教材习题1-1答案(上册P17) 1. 解:(1)(]2,6x ∈.(2)911,21010x ⎛⎫∈ ⎪⎝⎭. (3). (,100)(100,)x ∈-∞-⋃+∞.(4). (0.99,1)(1,1.01)x ∈⋃.2.解:由2212x x εε-<⇒-<.又因(1,)x U δ∈,即该邻域以1为中心, δ为半径,所以2εδ=.当0.1ε=时, 0.05δ=;当0.01ε=时, 0.005δ=.3.解: (1)不同. ()f x 的定义域为0x ≠,而()g x 的定义域为0x >. (2) 不同.对应法则不同: ()f x x =,而()g x x =. (3)相同. ()()f x g x ==.(4)不同.对应法则不同: ()sin f x x ∈而()sin g x x =.4.解(1) {}110x x x -≤≤≠且 . (2) {}12x x ≠≠且 . (3) {}24x x ≤≤ . (4) {}30x x x ≤≠且. (5) {}1x x >- . (6) {}0x x ≠.5.解: (0)2f ==,(1)f ==(1)f -==1()f a ==0()f x =0()f x h +=6.解: ()sin 66ππϕ==12,()()sin4442πππϕϕ=-==, (2)0ϕ-=.7.证: 2211251()2()5()()11()()f f t ttt tt=+++=.# 8.证:(1)左边=()()()xyx yF x F y e e eF x y +=⋅==+=右边(2)左边= ()()()x x yyF x e e f x y F y e-==-=右边.#9. 证:(1)左边=()()ln ln ln()()G x G y x y xy G xy +=+===右边(2)左边= ()()ln ln ln()()x xG x G y x y G y y-==-===右边.#10.解(1)偶函数 . (2) 既非奇函数又非偶函数 . (3) 奇函数. (4) 偶函数.(5) 既非奇函数又非偶函数. (6) 既非奇函数又非偶函数. 11.证:(1)设12(),()f x f x 都是偶函数, 12(),()g x g x 都是奇函数.令12()()(),F x f x f x =+12()()(),G x g x g x =+则12()()()F x f x f x -=-+-=12()()()f x f x F x +=,所以()F x 为偶函数.12()()()G x g x g x -=-+-=12()(())g x g x -+-=12(()())g x g x -+=()G x -,所以()G x为奇函数. #12.证: ()12,,0,x x l ∀∈- 不妨设12x x <,,则()12,0,,x x l --∈且12x x ->-,因为()()0,f x l 在内单调更加,所以12()()f x f x ->-.又因为()f x 为奇函数,所以12()()f x f x ->-,即12()()f x f x <.所以()(),0f x l -在内单调更加. #13.解:(1) 周期2T π= . (2) 22T ππ== . (3)不是周期函数 . (4) 21cos 2sin 2xy x -==,22T ππ∴==.14.解(1)由11x y x-=+得11y x y-=+,则11x y x -=+的反函数为11x y x-=+.(2) 由2sin 3y x =得1arcsin 32y x =,则2sin 3y x =的反函数为1arcsin 32x y =.(3) 由1ln(2)y x =++得2yex e =-,则所求的反函数为12x y e-=-.(4) 由221xxy =+得2log 1yx y=-,则所求的反函数为2log 1x y x=-.15.解(1)复合函数为2()sin y f x x ==,则1()6y f π=2sin 6π==14,2()3y f π=23sin34π== (2) 复合函数为()y f x ==,则1(1)y f ===,2(2)y f ===(3) 复合函数为2()xy f x e ==,则01(0)1y f e ===,12(1)y f e e ===.(4) 复合函数为22()()x x y f x e e ===,则21(1)y f e ==,22(1)y f e -=-=.16.解:此函数为分段函数: 10.15(50)()0.1550(50)(50)x x y x x x ⎧≤⎪=⎨⨯+->⎪⎩为正整数.图形略.17.解:总数为一年期存款为A 时:一年后连本带息共有0.042(10.042)A A A +=+;将(10.042)A +再存一年即两年后连本带息共有2(10.042)(10.042)(10.042)A A ++=+;半年期存款时:半年后连本带息共有(10.02),A +一年后连本带息共有2(10.02)(10.02)(10.02)A A ++=+,一年半后可取出3(10.02)(10.02)(10.0A A +++=+,两年后可取出4(10.02)(10.02)(10.2)A A ++++=+,所以存一年期的定期收益较多,多了24(10.042)(10.02)0.0033A A A +-+=.第二节 数列的极限教材习题1-2答案(上册P27) 1. 解(1)收敛, 1lim lim02n nn n x →∞→∞==. (2) 收敛, 1lim lim (1)0nn n n x n →∞→∞=-=. (3) 收敛, 21lim lim (2)2n n n x n→∞→∞=+=.(4) 收敛, 12lim limlim (1)111n n n n n x n n →∞→∞→∞-==-=++.(5)发散,因为当n 为偶数时, n x =n ,n →∞时, n x →+∞;当n 为奇数时, n x =-n ,n →∞ 时, n x →-∞. 2. 解:1lim limcos 02n n n n x nπ→∞→∞==. 对0,ε∀>要使11cos02n nnπε-≤<,只需使1n ε>,即取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,有0n x ε-<.所以当0.001ε=时, 110000.001N ⎡⎤==⎢⎥⎣⎦. 3.证:(1) 对0,ε∀>要使221100n a nnε-=-=<,只需使21n ε>,即n >.于是对0,ε∀>取N=,当n N >时,都有2100n a n ε-=-<.由数列极限的定义21lim0n n→∞=.#(2)331311221221n n a n n n+-=-<<++ ,要使313212n n ε+-<+,只需1nε<,即1n ε>.于是对0,ε∀>取1N ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有313212n n ε+-<+, 由313lim212n n n →∞+∴=+.#(3) 2211n aa nn-==<<故对0,ε∀>1ε<,只需2anε<,即2an ε>.于是对0,ε∀>取2a n ε⎡⎤=⎢⎥⎣⎦,当n N >时,1ε<,.lim1n n→∞∴=.#(4) 110.9999110n na -=⋅⋅⋅-=n 个,故对0,ε∀>要使1n a ε-<,只需110nε<,即1lgn ε>.于是对0ε∀>(1)ε<,取 1lg n ε⎡⎤=⎢⎥⎣⎦,当n N >时,都有,10.99991,n a ε-=⋅⋅⋅-<lim 0.99991n →∞∴⋅⋅⋅=n 个. # 4. 证:lim n n u a →∞= ,∴对0ε∀>,,N Z +∃∈当n N >时, n n u a u a ε-≤-<,∴lim n n u a →∞=.#例如: 若()1nn u =-,则1n u =,lim 1n n u →∞=,而数列{}n u 没有极限.第三节 函数的极限教材习题1-3答案(上册P36)1. 证:(1) ()(31)833f x A x x -=--=- ,要想使33x ε-<,即33x ε-<, 0ε∴∀>,取03εδ=>,当03x δ<-<时, 总有(31)8333,x x δε--=-<=由函数极限的定义3lim (31)8x x →-=.#(2)24()(4)24(2)2x f x A x x x --=--=-+=--+ ,要想使24(4)2x x ε---<+,即(2)x ε--<,0ε∴∀>,取0δε=>,当0(2)x δ<--<时, 总有24(4)24(2)2x x x x ε---=-+=--<+,由函数极限的定义224lim42x x x →--=-+. #2. 证:(1) 333111()222x f x A xx+-=-=,要想使331122x xε+-<,即312xε<,亦即 x >0ε∴∀>,取0M =>,当x M >时,总有333311112222x xMxε+-=<=,由函数极限的定义,3311lim22x x x→∞+=. #(2) ()0f x A-=-≤,0ε-<,ε<,亦即21x ε>,0ε∴∀>,取210M ε=>,当x M >时,0ε<,∴sin limx x →+∞=.#3. 解: 222lim 4422x x x x x →=⇔-=+⋅- ,要想使24x ε-<,即2222221144lim11333x x x x x x x→∞--=⇔-=<+++ 22x x ε+⋅-<,(此时13x <<),亦即52x ε-<25x ε⇒-<,0ε∴∀>,取m in(1,)5εδ=,当02x δ<-<时, 总有24225x x x δε-=+⋅-<=.#若取0001ε=⋅,则0001m in(1,)000025δ⋅==⋅.4. 解: 2222221144lim11333x x x x x x x→∞--=⇔-=<+++ ,要想使22113x x ε--<+,即24xε<⇒x >,0ε∴∀>,取X =,当x X >时,222221444133x x x xXε--=<<=++. # 若取001ε=⋅,则20,X ==即当20x >时,就有22110.013x x --<+.5. 证: ()0,f x A x x -=-= 要想使0,x ε-<即,x ε<0ε∴∀>,取0δε=>,当00x δ<-<时,()()00,f x A f x x x δε-=-=-=<=由函数极限的定义 0lim 0x x →=.#6.解: 0lim ()limlim 11x x x x f x x+++→→→=== ,0lim ()lim lim 11x x x x f x x---→→→===,0lim ()1x f x →∴=.而0lim ()lim lim 11,x x x x x xϕ+++→→→===0lim ()lim lim lim (1)1,x x x x x x x xxϕ----→→→→-===-=-由于lim ()lim ()x x x x ϕϕ-+→→≠,所以0lim ()x x ϕ→不存在.。

高数上习题答案

高数上习题答案

高数上习题答案作业11、填空题:1)的定义域为;2)的定义域为;3)设,则;4)的周期为;5)的反函数为。

2、设对任意实数,均有,且,证明:。

证明:取则有。

两边平方得3、判定下列函数的奇偶性1)解:因为所以此函数为奇函数。

2)解:当时,,;当时,,;所以此函数为奇函数。

4、设为定义在内的奇函数,若在内单调增加,证明:在内也点调增加。

证明:对于任给的,且,我们有,因为在内单调增加,所以。

又因为为定义在内的奇函数,所以,即在内也点调增加。

5、设的定义域为,求函数的定义域。

解:的定义域为,的定义域为当时,即时,的定义域为空集;当时,即时,的定义域为6、设,,求。

解:作业21、观察下列数列的变化趋势,写出它们的极限:1)3)2、用数列极限定义证明1)证明:取,当时,恒有所以2)证明:,无妨设取,当时,恒有所以。

3、若,证明。

并举例说明:如果数列有极限,但数列未必有极限。

证明:,因为,所以存在,当时,恒有此时恒有所以。

例:,但不存在。

4、设数列有界,又,证明:。

证明:因为有界,所以存在正数,对任给的有对任给的,由于,一定存在,当时,恒有此时恒有(注意也可以取到任意下的正数)因此。

5、设两个数列有相同的极限,求证:若,则。

证明:,因为,所以存在,当时,恒有又因为,所以存在,当时,恒有(注意也可以取到任意下的正数)所以作业31、根据函数极限的定义证明:1)证明:取,当时,恒有所以2)证明:无妨设,则有取,当时,恒有所以2、设,研究在处的左极限、右极限及当时的极限。

解:1),当时取,当时,恒有所以2),当时取,当时,恒有所以3)因为,所以。

因为,所以存在,当时,恒有又因为,所以存在,当时,恒有取,则当时,恒有所以。

4、试给出时函数的局部有界性定理,并加以证明。

解:如果,则存在和,当时,恒有。

下面给予证明。

取,因为,所以一定存在,当时,恒有只需取,命题结论得证。

5、如果时,函数的极限存在。

证明:的极限是唯一的。

证明:既要证明:如果数是函数当时的极限,则一定有。

高等数学上习题及答案

高等数学上习题及答案

高等数学上习题及答案高等数学是大多数理工科学生必修的一门课程,也是他们学习和研究其他学科的基础。

在学习高等数学的过程中,习题是非常重要的一环。

通过解习题,学生可以巩固所学的知识,提高解题能力。

本文将介绍一些高等数学上的习题及其答案,帮助读者更好地理解和掌握这门学科。

1. 极限与连续1.1 计算以下极限:a) lim(x→0) (sinx/x)b) lim(x→∞) (1+1/x)^xc) lim(x→1) (x^2-1)/(x-1)答案:a) 1b) ec) 21.2 证明以下函数在给定区间上连续:a) f(x) = x^2, 在区间[0, 1]b) g(x) = sinx, 在区间[0, π/2]答案:a) 对于任意ε>0,取δ=√ε即可。

b) 对于任意ε>0,取δ=ε即可。

2. 导数与微分2.1 求以下函数的导数:b) g(x) = e^x + ln(x)答案:a) f'(x) = 3x^2 - 4x + 3b) g'(x) = e^x + 1/x2.2 求以下函数在给定点处的导数:a) f(x) = x^2 + 2x - 3, 在点x=1处b) g(x) = sinx + cosx, 在点x=π/4处答案:a) f'(1) = 4b) g'(π/4) = 03. 积分与微积分基本定理3.1 计算以下定积分:a) ∫(0, 1) x^2 dxb) ∫(0, π/2) sinx dx答案:a) 1/3b) 13.2 计算以下不定积分:a) ∫(x^2 + 2x - 3) dxb) ∫(sinx + cosx) dx答案:b) -cosx + sinx + C4. 级数与幂级数4.1 讨论以下级数的敛散性:a) ∑(n=1, ∞) 1/nb) ∑(n=1, ∞) (-1)^(n+1)/n答案:a) 发散b) 收敛(调和级数的交错形式)4.2 计算以下幂级数的收敛域:a) ∑(n=0, ∞) x^nb) ∑(n=0, ∞) n!x^n答案:a) 当|x|<1时收敛,即(-1, 1)b) 当x=0时收敛,当x≠0时发散通过解答以上习题,我们可以更好地理解和掌握高等数学的相关知识。

大学教材高等数学上答案

大学教材高等数学上答案

大学教材高等数学上答案第一章:极限与连续性1.1 极限的概念与性质1.2 无穷大与无穷小1.3 极限存在准则1.4 极限运算法则1.5 两个重要极限1.6 函数连续性第二章:导数与微分2.1 导数的概念2.2 导数的基本公式2.3 常见函数的导数2.4 高阶导数2.5 隐函数与参数方程2.6 微分与微分近似第三章:微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 导数的应用3.3 泰勒公式与多项式逼近3.4 曲线凹凸性与拐点3.5 最值与最优化问题第四章:不定积分4.1 不定积分的概念与性质4.2 基本积分公式与常见积分4.3 积分方法与换元积分法4.4 分部积分法与三角函数积分4.5 有理函数的积分4.6 径向函数的积分第五章:定积分5.1 定积分的概念与性质5.2 牛顿-莱布尼茨公式5.3 定积分的计算5.4 反常积分5.5 曲线的弧长与曲面的面积第六章:定积分的应用6.1 几何应用6.2 物理应用6.3 概率统计应用6.4 空间曲线的长度6.5 平面曲线的面积6.6 周期函数的平均值与均值公式第七章:常微分方程7.1 基本概念与术语7.2 可分离变量方程7.3 一阶线性微分方程7.4 高阶常系数线性微分方程7.5 非齐次线性微分方程7.6 二阶常系数线性微分方程7.7 模拟与改进第八章:多元函数微分学8.1 多元函数的极限与连续性8.2 偏导数与全微分8.3 隐函数与逆函数8.4 方向导数与梯度8.5 高阶导数与泰勒展开8.6 多元函数的极值与条件极值第九章:多元函数积分学9.1 二重积分的概念与性质9.2 二重积分的计算9.3 二重积分的应用9.4 三重积分的概念与性质9.5 三重积分的计算9.6 三重积分的应用第十章:曲线积分与曲面积分10.1 第一类曲线积分10.2 第二类曲线积分10.3 基本的曲线积分计算10.4 曲线积分的应用10.5 第一类曲面积分10.6 第二类曲面积分10.7 张量计算第十一章:向量场与无散场11.1 向量场11.2 梯度场与势函数11.3 散度与无散场11.4 协变导数与无旋场第十二章:级数12.1 数项级数的概念与性质12.2 正项级数的审敛法12.3 一般级数12.4 幂级数与函数展开12.5 函数与级数之间的转换本文是关于大学教材高等数学上的答案整理,按照教材的章节顺序进行内容概述,考虑到篇幅限制,只给出了每一章的主要内容。

高数上答案详解

高数上答案详解

第一章习题1-11.(1) 23,sin 02400,16044,x x x x x x x πππππ⎫⎧⎧-≤≤-⎪⎪⎪≥⇒⎪⎨⎪⇒-≤≤-≤≤⎨⎬⎪≤≤⎩⎪⎪⎪⎪-≥⇒-≤≤⎩⎭或; (2)22255lg 01541444x x x x x x x ⎛⎫--≥⇒≥⇒-+⇒≤≤ ⎪⎝⎭; (3)sin cos 0sin cos 4x x x x x n ππ-≠⇒≠⇒≠+.2.(1)20111x x ≤≤⇒-≤≤;(2)[]0sin 12,(21),0,1,2,x x n n n ππ≤≤⇒∈+=±±;(3)[]01,1x a x a a ≤+≤⇒∈--;(4)[]10,,1,01120111,.2a x a a x a a x a x a a x a a x φ⎧<<∈-⎪≤+≤⇒-≤≤-⎧⎧⎪⇒⎨⎨⎨≤-≤⇒≤≤+⎩⎩⎪>∈⎪⎩①② 3.令1x t +=,则1x t =-,故()22()13(1)256f t t t t t =---+=-+,故()222()56,(1)15(1)6712f t x x f x x x x x =-+-=---+=-+.4.(1)能,()3sin ,(,)y t t =∈-∞+∞; (2)不能,sin 20x -<因为; (3)能,(,0]y x =∈-∞;(4)能,2ln(2),(,[2,)y x x =-∈-∞+∞;5.(1)2121112log 2211x xx xy y x y y y+==+⇒=⇒=--; 故反函数为:2log 1xy x=-; (2)22222110101101221011111011011011010x x x x x x x x x y y ++-+-=⇒-===+----,22211210lg lg 10122222x x y y x y x y y y x -=⇒=⇒=⇒=----. 6. (1)(3)(3)333x x y x x x +-==-≠-+且;(2)1,0,11,0;x x y x x x -≥⎧=-=⎨+<⎩(3) 1,01,()1,12,0,0 2.x x f x x x x x -≤≤⎧⎪=-<<⎨⎪<>⎩或7.略8. (1)221=sin ,;1x y u u v x +==- (2) 2210,arctan ,, 1.y u u v v w w x x ====++ 9.设y 为摄氏温标,x 为华氏温标,y ax b =+, 把(32,0),(212,100)代入得5(32)9y x =-. 10. 22222,222222,0V V V R h S R Rh R R R R R Rπππππππ==+=+⋅=+>. 11.扇形的弧长为RQ ,此弧长为圆锥的底的周长,故底的半径2RQr π=,高h ===,故222211[0,2]334R V r h θππθππ===∈. 12.,1(1),1,22()2[(1)][()],(1)(),0.LM BM x CM x b BCLM b x CM BC BM BM h b h h BCBC BC x P LM x b x hb h b x h h x bS LM x b x h x x x h h h⎧=⎪⎪⇒=-⇒=-⎨-⎪===-⎪⎩=+=-+=+-=⋅=-=-<< 13.0,0,3,01,3,12,()21,23,5,34,1,45,6,5.x x x x S x x x x x x x ≤⎧⎪<≤⎪⎪<≤⎪=-<≤⎨⎪<≤⎪+<≤⎪⎪>⎩习题1-21. 2lim ()lim 0;lim ()lim(1)0,x x x x f x x f x x ++--→→→→===+=故0lim ()x f x →不存在. 2. 1,0,()1,0;()1,0,x xf x x x x x φ≥⎧==≠=⎨-<⎩ +lim ()lim ()1;lim ()1,lim ()=1lim ()=1lim ()x x x x x x f x f x x x f x x φφφ-+-→→→→→→===-故,不存在. 3. (1)0; (2)0; (3)0.4. (1)当1x →时为无穷大,当2x →-时为无穷小; (2)当0x +→及x →+∞时为无穷大,当1x →时为无穷小; (3)当0x →时为无穷大,当2x →-及x →∞时为无穷小.习题1-3 1.(1)2030203020302030502030203050(23)(32)(23)(32)2323lim lim (51)(51)(51)555x x x x x x x x x →∞→∞-+-+⋅=⋅=⋅=+++;(2)原式=11121013lim 31210333n n nn n ++→∞+++==++; (3)原式=322332220033limlim333h h x x h xh h x x xh h x h→→+++-=++=; (4)原式=211(1)11limlim 112x x x x x →→---==--+;(5)原式=0011lim lim 111x x x x x x --→→--⋅==-++; (6)原式=3223222(21)(21)1lim lim (21)(21)(21)(21)4x x x x x x x x x x x x →∞→∞+--+==-+-+;(7) 111/12224lim 233111/133n n n →∞⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦=⋅=⎡⎤⎛⎫⎛⎫--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦; (8)原式=112lim lim 222(2)2n n n n n n nn →∞→∞+⎛⎫⋅ ⎪⎛⎫--==- ⎪ ⎪++⎝⎭ ⎪⎝⎭; (9)原式=2233()arctan 10lim031x x x xx x x x x →∞+⋅⨯==-+. 2.(1)原式=222sinlim 2n n R R nππππ→∞⋅=;(2)原式=sin()lim 1x x xπππ→-=-;(3)原式=003arctan 222lim lim sin 3333x x x x x x x x →→⋅==;(4)原式=0lim x +→=(5)原式=20011[1(4)]2lim lim88sin sin x x x x x x x x x→→--⋅==⋅⋅;(6)原式=222222111sin (1)(1)212limlim 1lim 110(1)111x x x x x x x x x x x →→→+--+⋅==--=---+. 3.(1)原式=22111lim lim11+11x x x x xxex x ++→∞→∞⎛⎫ ⎪== ⎪ ⎪⎡⎤⎛⎫⎝⎭+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)原式=22121221221lim lim 12121x x x x x x x x x e-++-→∞→∞⎡⎤+-⎛⎫⎛⎫⎢⎥=-=⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦;(3)原式=()tan cot 1lim 1tan tan x xx x e x ⋅→∞⎡⎤+=⎢⎥⎣⎦;(4)原式=()3cos sec 321lim 1cos cos x xx x e x π⋅→⎡⎤+=⎢⎥⎣⎦.4.(1)原式=0sin lim lim 2x x axax++→→==; (2)原式=()()201sin sin 222lim x a b x a b x x→+-⎡⎤⎡⎤-⎢⎥⎢⎥⎣⎦⎣⎦ ()220sin 211lim()22282x a b x a b a b b a a b x →+⎡⎤⎢⎥+-⎣⎦=-⋅⋅=-+⋅. 5.(1)令arcsin x y =, 则sin x y =, 00arcsin limlim 1sin x x x yx y→→==,故0x →时,a r c s i n ~x x ; (2)令arctan x y =, 则tan x y =, 000arctan lim lim lim cos 1tan sin x y y x y yy x y y→→→==⋅=,故得证.习题1-4 1.(1) 0x =为可去间断点,补充定义1(0)2f =; (2) 0x =为跳跃间断点(因0011lim arctan lim arctan 22x x x x ππ-+→→=-±=); (3)因0x -→时,1lim xx e --→=+∞,故0x =是第二类间断点;(4)因x=0时无定义,故x=0为可去间断点,且0tan 2lim 22x x→=,故可补充定义(0=2f ),又当4x n ππ=±时,tan 2x 为无穷大,故4x n ππ=±时,为第二类间断点;(5)0lim ()0lim ()x x f x f x -+→→== 可去间断点,改变定义(0=0f );(6)000sin sin lim ()lim 1lim ()lim ()1x x x x x xf x f x f x x x++--→→→→==≠==--, 跳跃间断点;(7)0lim ()1lim ()1x x f x f x +-→→=≠=-, 跳跃间断点; (8)111lim ()lim(1)0lim cos 0(1)2x x x f x x x f π++-→→→=-====, 故x=1为连续点;1111lim ()lim (1)2,lim ()lim cos1.2x x x x f x x f x x π--++→→-→-→-=--===- 跳跃间断点;(9)0lim ()1lim ()1x x f x f x +-→→=≠=-, 故0x =为跳跃间断点; 111lim ()lim ()2x x f x f x ++→→==, 故1x =为可去间断点,1(1)2f =; 1lim ()x f x +→-=-∞, 故1x =-为第二类间断点.2.(1)24416limlim(4)(4)84x x x x f a a x →→-=+==⇒=-; (2)0lim 1lim()(0)1xx x e x a a f a -+→→==+==⇒=. 3.(1)原式=lim ln(1)lim x x aax x a x x→+∞→+∞⋅+=⋅=; (2)原式=2+342lim2x →--=; (3)原式=201112lim 24x x x x →++-=;(4)原式=122131(2)2lim 13x x x -→--+=-(5)原式=1lim arccos lim arccos 23x x π→+∞→+∞⎛⎫==; (6)原式=0tan lim2tan 1(1)2x xx →=--+;(7)原式=lim sin12x π→+∞=;(8)原式=0lim2x x xx→+=; (9)原式=24n =.习题1-5 1.略2.反函数为arcsin ,[1,1]y x x =∈-.3.1()(())(1)1()f x f f x x x f x -==≠-+.4.(1)原式=2lim ln10x π→=;(2)原式;(3)原式=212e --+;(4)原式=414x →=; (5)原式=9lim ln10x π→=;(6)原式=0limx axa x→=.自测题一1.(1)B ; (2)C; (3)C.2.lim ()1000x f x →∞=.3.(1)()1()1x x f x f x =≠=-,为跳跃间断点;(2)11lim(0lim cos (1)32x x x x f π+-→→-==≠=,故x=1为可去间断点, f(1)=0.4.(1)2339limlim(3)63x x x x x →→-=+=-;(2)23327limlim 33x x x x x →→-==∞--; (3)22141lim()242x x →-=-∞=-∞-; (4)00132lim 123x x xx →→==. 5.(1)原式=3lim2x =;(2)原式=16646411322lim lim 312233x x x x x →→-==-; (3)原式=32;(4)原式=211123...(1lim 12 (12)n x x x nx n n n -→+++++=+++=);(5)原式=313lim2(1)2n n n →∞--=-+;(6)原式=11111lim111n n n qp q pq p++→∞---=---; (7)原式=033lim44x x x →=;(8)原式=2002cos sin lim lim 0sin 2sin sin cos x x x x x x x x →→⎛⎫-== ⎪⎝⎭; (9)原式=12142132lim41(21)22x x x -→--=-+⋅; (10)原式=101lim 1()1xx e x -→+∞⎡⎛⎫-==⎢ ⎪⎝⎭⎢⎥⎣⎦;(11)原式=220112lim 2x xx →=;(12)原式=2222lim 1x aa a x a x a e x a x a -→∞⎡⎤⋅⎛⎫⎢⎥+= ⎪⎢⎥--⎝⎭⎣⎦; (13)原式=222200sin cos 132224lim lim4x x x x x x x x x →→--+==. 6.(1)由题意知112200111limlim ()(0)222x x a x a f ----→→=-===, 所得1a =.(2)显然当1(0)a a ≠>时,f(x)在x=0处不连续,cos 1lim 22x x x +→=+, 当1a ≠时,01lim 2x -→≠,综上可知:1(0)a a ≠>时,x=0为f(x)的跳跃间断点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档