高三数学平面向量多选题复习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学平面向量多选题复习题及答案
一、平面向量多选题
1.Rt △ABC 中,∠ABC =90°,
AB =BC =1,0PA PB PC PA
PB
PC
+
+
=,以下正确的是
( ) A .∠APB =120° B .∠BPC =120° C .2BP =PC D .AP =2PC
【答案】ABCD 【分析】
根据条件作几何图形,由向量的关系可得P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形,∠APB =∠BPC =∠APC =120°,进而可确定P 为Rt △ABC 的费马点,利用相似可确定BP 、 AP 、 PC 之间的数量关系. 【详解】
在直线PA ,PB ,PC 上分别取点M ,N ,G ,使得|PM |=|PN |=|PG |=1, 以PM ,PN 为邻边作平行四边形PMQN ,则PM PN PQ +=, ∵
0PA PB PC PA
PB
PC
+
+
=,即0PM PN PG ++=,即0PQ PG +=,
∴P ,G ,Q 三点共线且PQ =1,故△PMQ 和△PNQ 均为等边三角形, ∴∠APB =∠BPC =∠
APC =120°,故A 、B 正确; ∵AB =BC =1,∠ABC =90°, ∴AC =2,∠ACB =60°,
在△ABC 外部分别以BC 、AC 为边作等边△BCE 和等边△ACD ,直线CP 绕C 旋转60°交PD 于P’,
∴120CE CB ECA BCD CA CD =⎧⎪
∠=∠=︒⎨⎪=⎩,即ECA BCD ≅,故EAC BDC ∠=∠, EAC BDC CA CD
PCA P CD ∠=∠⎧⎪
=⎨⎪'∠=∠⎩
,即CPA CP D '≅,故CP CP '=, ∴CPP '为等边三角形,120CP D CPA '∠=∠=︒,则B ,P ,D 三点共线,同理有A ,P ,E 三点共线, ∴△BPC ∽△BCD ,即
1
2
BP BC CP CD ==,即PC =2BP ,故C 正确, 同理:△APC ∽△ACB ,即AP AC
CP BC
==2,即AP =2PC ,故D 正确. 故选:ABCD.
【点睛】
关键点点睛:根据已知条件及向量的数量关系确定P 为Rt △ABC 的费马点,结合相似三角形及费马点的性质判断各项的正误.
2.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .21
2
AO AB AB ⋅=
B .OA OB OA O
C OB OC ⋅=⋅=⋅
C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则
1
1
3λ
μ
+
=
D .AH 与
cos cos AB AC AB B
AC C
+
共线
【答案】ACD 【分析】
根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定
cos cos AB AC AB B
AC C
+
与BC 垂直,从而说明D 正确.
【详解】
如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=
()
21
·cos cos ?22
AB
AO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正
确;
··OAOB OAOC =等价于()
·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,
对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中, 若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误; 设BC 的中点为D ,
则()
2111111
33333AG AD AB AC AE AF AE AF λμλμ⎛⎫=
=+=+=+ ⎪⎝⎭
, ∵E,F,G 三点共线,11133λμ∴
+=,即11
3λμ
+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+
⋅=+ ⎪⎝⎭
()
cos cos cos cos AB BC B AC BC C AB B
AC C
π⋅-⋅=
+
0BC BC =-+=,
∴
cos cos AB AC AB B
AC C
+
与BC 垂直,又AH BC ⊥,∴
cos cos AB AC AB B
AC C
+
与AH
共线,故D 正确. 故选:ACD. 【点睛】
本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.
3.下列关于平面向量的说法中正确的是( )
A .已知,a b 均为非零向量,若//a b ,则存在唯一的实数λ,使得λa
b
B .已知非零向量(1,2),(1,1)a b ==,且a 与a λb +的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
C .若a c b c ⋅=⋅且0c ≠,则a b =
D .若点G 为ABC 的重心,则0GA GB GC ++= 【答案】AD 【分析】
由向量共线定理可判断选项A ;由向量夹角的的坐标表示可判断选项B ;由数量积的运算
性质可判断选项C ;由三角形的重心性质即向量线性运算可判断选项D. 【详解】
对于选项A : 由向量共线定理知选项A 正确;
对于选项B :()()()1,21,11,2a b λλλλ+=+=++,若a 与a λb +的夹角为锐角,则
()
()122530a a b λλλλ⋅+=+++=+>解得5
3
λ>-,当a 与a λb +共线时,
()221λλ+=+,解得:0λ=,此时(1,2)a =,()1,2a b λ+=,此时a b =夹角为0,
不符合题意,所以实数λ的取值范围是()5,00,3⎛⎫-⋃+∞ ⎪⎝⎭
,故选项B 不正确; 对于选项C :若a c b c ⋅=⋅,则()
0c a b ⋅-=,因为0c ≠,则a b =或c 与a b -垂直, 故选项C 不正确;
对于选项D :若点G 为ABC 的重心,延长AG 与BC 交于M ,则M 为BC 的中点,所以()
1222
AG GM GB GC GB GC ==⨯⨯+=+,所以0GA GB GC ++=,故选项D 正确.
故选:AD 【点睛】
易错点睛:两个向量夹角为锐角数量积大于0,但数量积大于0向量夹角为锐角或0,由向量夹角为锐角数量积大于0,需要检验向量共线的情况. 两个向量夹角为钝角数量积小于0,但数量积小于0向量夹角为钝角或π.
4.设O ,A ,B 是平面内不共线的三点,若()1,2,3n OC OA nOB n =+=,则下列选项正确的是( )
A .点1C ,2C ,3C 在同一直线上
B .123O
C OC OC ==
C .123OC OB OC OB OC OB ⋅<⋅<⋅
D .123OC OA OC OA OC OA ⋅<⋅<⋅
【答案】AC 【分析】
利用共线向量定理和向量的数量积运算,即可得答案; 【详解】
()
12212()C C OC OC OA OB OA OB OB =-=+-+=,()()2332
32C C OC OC OA OB OA OB OB =-=+-+=,所以1
2
23C C
C C =,A 正确.
由向量加法的平行四边形法则可知B 不正确.
21OC OA OC OA OA OB ⋅-⋅=⋅,无法判断与0的大小关系,而()
2
1OC OB OA OB OB OA OB OB ⋅=+⋅=⋅+,
()2
2
22OC OB OA OB OB OA OB OB
⋅=+⋅=⋅+,
同理2
33OC OB OA OB OB ⋅=⋅+,所以C 正确,D 不正确. 故选:AC . 【点睛】
本题考查向量共线定理和向量的数量积,考查逻辑推理能力、运算求解能力.
5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,
2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )
A .//P
B CQ B .1233
BP BA BC =
+ C .0PA PC ⋅> D .4S =
【答案】BD 【分析】
利用向量的共线定义可判断A ;利用向量加法的三角形法则以及向量减法的几何意义即可判断B ;利用向量数量积的定义可判断C ;利用三角形的面积公式即可判断D. 【详解】
由20PA PC +=,2QA QB =,
可知点P 为AC 的三等分点,点Q 为AB 延长线的点, 且B 为AQ 的中点,如图所示:
对于A ,点P 为AC 的三等分点,点B 为AQ 的中点, 所以PB 与CQ 不平行,故A 错误; 对于B ,()
2212
3333
BP BA AP BA AC BA BC BA BA BC =+=+=+-=+, 故B 正确;
对于C ,cos 0PA PC PA PC PA PC π⋅==-<,故C 错误; 对于D ,设ABC 的高为h ,1
32
ABC
S AB h =
=,即6AB h =, 则APQ 的面积12122
26423233
APQ
S AQ h AB h =
⋅=⋅⋅=⨯=,故D 正确; 故选:BD 【点睛】
本题考查了平面向量的共线定理、共线向量、向量的加法与减法、向量的数量积,属于基础题
6.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( ) A .||||||a b a b ⋅≤
B .若a b c b ⋅=⋅且0b ≠,则a c =
C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向
D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是
5,3⎛⎫-+∞ ⎪⎝⎭
【答案】AC 【分析】
根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】
对于A ,由平面向量数量积定义可知cos ,a b a b a b ⋅=,则||||||a b a b ⋅≤,所以A 正确,
对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,
对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即
22||||a b a b -⋅=,cos 1θ=-,
则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ⋅+>即2||0a a b λ+⋅>可得530λ+>,解得5
3
λ>-
, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+⇒= 所以a 与a b λ+的夹角为锐角时5
3
λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】
本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.
7.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .
12
C .1
D .-1
【答案】ABD 【分析】
若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】
若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,
故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】
本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.
8.关于平面向量有下列四个命题,其中正确的命题为( ) A .若a b a c ⋅=⋅,则b c =;
B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;
C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;
D .0||||||||a b a b a b a b ⎛⎫⎛⎫
+⋅-= ⎪ ⎪⎝⎭⎝⎭
【答案】BCD 【分析】
通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确. 【详解】
对A ,当0a = 时,可得到A 不成立; 对B ,//a b 时,有
3
26
k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形,
a b + 是这个等边三角形一条角平分线,故C 正确.
对D ,
22(
)()()()110||||||||||||
a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD . 【点睛】
本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.
二、立体几何多选题
9.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )
A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MAT
B .当(
)
3,2x ∈
时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD
C .若使点M 在平面ABC
D 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥
M HAB -的外接球半径与内切球半径的比值为
6322
++
【答案】BCD 【分析】
对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x =-=-,验证当(
)
3,2
x ∈时,无解即可; 对于C ,利用体积公式21
233
V x x =
⨯⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为
2
323
r =
++,即可作出比值.
【详解】
对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.
此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.
若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=-, 当(
)
3,2x ∈
时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面
ABCD
故B 正确;
对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,()
0,3x ∈,
所以()
2
2
22222
1223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭
当且仅当223x x =-,即6
x =
时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =
因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以
1R =,
由等体积法,可求得内接圆半径为2323
r =++,故6132
2R r +=,故D 正确.
故选:BCD .
【点睛】
本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.
10.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PAC
B .当P 为11A
C 的中点时,四棱锥P ABC
D -外接球半径为72
C .三棱锥A PC
D -体积为定值
D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】
利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】
对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,
1BD AA ∴⊥,
1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;
对于B 选项,当点P 为11A C 的中点时,PA ===
同理可得PB PC PD ===
因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN
上,
设该四棱锥的外接球半径为R ,由几何关系可得2
22PN R AN R -+=, 即2
288R R -+=,解得9
2
R =,B 选项错误; 对于C 选项,211
4822
ACD
S
AD CD =
⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,1164
33
A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;
对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点,
连接EN 、MN ,则11
42EN DD =
=,122
MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,
MN ⊂平面ABCD ,EN MN ∴⊥,2225EM EN MN ∴=+=.
过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为
d ,
直线EM 与平面α所成的角为θ,则sin 25sin 25d EM θθ==≤, 当且仅当2
π
θ=
时,等号成立,
长方体1111ABCD A B C D -的外接球半径为222
126AB AD AA R ++'==,
所以,截面圆的半径()()
2
2
2226252r R d '=
-≥
-=,
因此,截面圆面积的最小值为4π,D 选项正确.
故选:ACD. 【点睛】
方法点睛:求空间多面体的外接球半径的常用方法:
①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;
②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.。