2020-2021《圆柱与圆锥》单元测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021《圆柱与圆锥》单元测试题
一、圆柱与圆锥
1.看图计算.
(1)求圆柱的表面积(单位:dm)
(2)求零件的体积(单位:cm)
【答案】(1)解:3.14×10×20+3.14×(10÷2)2×2
=628+3.14×25×2
=628+157
=785(平方分米)
答:圆柱的表面积是785平方分米。
(2)解: ×3.14×(2÷2)2×3+3.14×(2÷2)2×4
= ×3.14×1×3+3.14×1×4
=3.14+12.56
=15.7(立方厘米)
答:零件的体积是15.7立方厘米。
【解析】【分析】(1)圆柱的表面积是两个底面积加上一个侧面积,根据圆面积公式计算出底面积,用底面周长乘高求出侧面积;
(2)圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式计算,用圆柱的体积加上圆锥的体积就是总体积。
2.一种圆柱形状的铁皮油桶,量得底面直径8dm,高5dm.做一个这样的铁皮油桶至少需多少平方米铁皮?(铁皮厚度不计,结果保留整数)
【答案】解:8dm=0.8m
5dm=0.5m
0.8÷2=0.4(m)
3.14×0.8×0.5+3.14×0.42×2
=1.256+3.14×0.16×2
=1.256+1.0048
=2.2608(平方米)
≈3(平方米)
答:做一个这样的铁皮油桶至少需3平方米铁皮。
【解析】【分析】1dm=0.1m;d=2r;所以做一个这样的铁皮油桶至少需要铁皮的平方米数=πdh+2πr2,据此代入数据作答即可。
3.一个圆锥形沙堆,底面积是45.9m2,高1.2m.用这堆沙在12m宽的路面上铺3cm厚的路基,能铺多少米?
【答案】解:3厘米=0.03米
×45.9×1.2÷(12×0.03)
=18.36÷0.36
=51(米)
答:能铺51米。
【解析】【分析】现根据圆锥的体积=×底面积×高求出圆锥形沙堆的体积,然后根据长方体的体积=长×宽×高,求出铺路的长度即可。
4.一个圆柱形铁皮水桶(无盖),高10dm,底面直径是6dm,做这个水桶大约要用多少铁皮?
【答案】解:3.14×6×10+3.14×(6÷2)2
=18.84×10+3.14×9
=188.4+28.26
=216.66(平方分米)
答:做这个水桶大约要用铁皮216.66平方分米。
【解析】【分析】水桶无盖,因此用底面积加上侧面积就是需要铁皮的面积,根据圆面积公式计算底面积,用底面周长乘高求出侧面积。
5.修建一个圆柱形的沼气池,底面直径是3米,深2米.在池子的四壁和下底面抹上水泥,抹水泥的面积是多少平方米?
【答案】解:3.14×3×2+3.14×(3÷2)2
=18.84+3.14×2.25
=18.84+7.065
=25.905(平方米)
答:抹水泥的面积是25.905平方米。
【解析】【分析】抹水泥的面积 =池子的底面积+池子的侧面积=π×半径²+π×直径×高。
6.计算下列图形的体积.
(1)
(2)
【答案】(1)6÷2=3
2÷2=1
3.14×(3×3﹣1×1)×5
=3.14×(9﹣1)×5
=3.14×8×5
=125.6
(2) ×3.14×(2÷2)2×3+3.14×(2÷2)2×4
=3.14×1+3.14×4
=3.14×5
=15.7(立方厘米)
【解析】【分析】(1)图形体积=π×(大圆柱半径的平方-小圆柱半径的平方)×高;(2)图形体积=圆锥体积+圆柱体积。
7.求下图(单位:厘米)钢管的体积。
【答案】解:10÷2=5(厘米);
8÷2=4(厘米);
3.14×(52-42)×100
=3.14×(25-16)×100
=3.14×9×100
=28.26×100
=2826(立方厘米).
【解析】【分析】根据题意可知,这根钢管的体积=底面积×高,底面是一个圆环,根据圆
环的面积S=π(R2-r2),据此先求出底面积,然后乘钢管的长度,即可得到这根钢管的体积,据此列式解答.
8.填写下列表格(cm)。
名称半径直径高表面积体积
圆柱54
24
205
圆锥4 2.4——
0.5 4.5——
名称半径直径高表面积体积
圆柱5104282.6314
12431.412.56
2040531406280圆锥24 2.4——10.048
0.51 4.5—— 1.1775
【解析】【分析】已知圆柱的底面半径和高,求直径,用半径×2=直径,要求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;
已知圆柱的底面直径和高,先求半径,用直径÷2=半径,求表面积,用公式:圆柱的表面积=侧面积+底面积×2,圆柱的体积=底面积×高,据此列式解答;
已知圆锥的底面直径和高,先求半径,用直径÷2=半径,求圆锥的体积,用公式:圆锥的体
积=×底面积×高,据此列式解答;
已知圆锥的底面半径和高,求圆锥的体积,用公式:圆锥的体积=×底面积×高,据此列式解答.
9.下图是一个圆柱体“牛肉罐头”的表面展开图。
请你算一算,这个圆柱体“牛肉罐头”的容积是多少?(铁皮的厚度忽略不计)
【答案】解:25.12÷3.12÷2=4(厘米)
3.14×4²×10
=3.14×160
=502.4(立方厘米)
答:这个圆柱体“牛肉罐头”的容积是502.4立方厘米。
【解析】【分析】圆柱的底面周长是25.12厘米,用底面周长除以3.14再除以2求出底面半径,然后用底面积乘高求出容积。
10.做一个底面直径是4分米,高是5分米的圆柱形铁皮油桶,
(1)做这个铁皮油桶,至少要用铁皮多少平方分米?(得数用进一法保留整平方分米)
(2)这个油桶里装了的油,这些油重多少千克?(每升油重0.85千克,得数保留整千克数)
【答案】(1)解:3.14×4×5+3.14×(4÷2)2×2
=62.8+3.14×4×2
=62.8+25.12
=87.92
≈88(平方分米)
答:至少要用铁皮88平方分米。
(2)解:3.14×(4÷2)2×5
=3.14×4×5
=62.8(立方分米)
62.8立方分米=62.8升
0.85×62.8× =42.794≈43(千克)
答:这个油桶能装油43千克。
【解析】【分析】(1)根据圆面积公式计算底面积,用底面周长乘高求出侧面积,用底面积的2倍加上侧面积就是需要铁皮的面积;
(2)用底面积乘高求出油桶的容积,然后用油桶的容积乘每升油的重量求出装满油的总
重量,用总重量乘即可求出装油的重量。
11.一个圆柱形游泳池,底面周长为62.8米,深2米。
(1)在池内侧面和池底抹上水泥,抹水泥的面积多少平方米?
(2)水面离池口0.5米,这时池里的水有多少立方米?
【答案】(1)解:62.8÷3.14÷2=10(米)
3.14×10²+62.8×2
=314+125.6
=439.6(平方米)
答:抹水泥的面积是439.6平方米。
(2)解:3.14×10²×(2-0.5)
=314×1.95
=612.3(立方米)
答:这时池里的水有612.3立方米。
【解析】【分析】(1)用底面周长除以3.14再除以2求出底面半径,用底面积加上侧面积就是抹水泥部分的面积;(2)用底面积乘水面的高度即可求出水的体积。
12.
(1)请在下图中画出三角形ABC,已知其三个顶点的位置分别是:A(4,3),B(-2,0),C(4,0)。
(2)如果每个小方格的边长为1 cm,那么三角形ABC绕BC边旋转一周所得的立体图形的体积是多少?
【答案】(1)解:如图:
(2)解:立体图形为圆锥,BC=2+4=6 cm AC=3 cm
答:所得的立体图形的体积是56.52立方厘米.
【解析】【分析】(1)数对中第一个数表示列,第二个数表示行,根据所在的列与行确定各点的位置后画出图形;(2)这个三角形是直角三角形,沿着一条直角边旋转一周后得到一个圆锥,圆锥的高是BC的长,底面半径是AC的长,根据圆锥的体积公式计算体积即可.
13.
(1)计算下面立体图形的表面积
(2)计算下面立体图形的体积
【答案】(1)244.92dm2
(2)56.52m3
【解析】【解答】解:(1)先计算出圆柱的半径:18.84÷3.14÷2=3dm;再计算圆柱的两个底面积:3×3×3.14×2=56.52dm2;接着计算圆柱的侧面积:18.84×10=188.4dm2;最后圆柱的表面积为:56.52+188.4=244.92dm2;(2)先计算出圆锥的半径:6÷2=3m;再计算圆锥的
体积为:×3×3×3.14×6=56.52m3。
故答案为:(1)244.92dm2;(2)56.52m3。
【分析】圆柱的表面积=底面积×2+侧面积;圆锥的体积=×底面积×高。
14.计算下面图形的体积。
(单位:cm)
(1)
(2)
【答案】(1)解:3.14×32×5.4=152.604(cm3)
(2)解:3.14×(8÷2)2×6×
=3.14×16×2
=100.48(cm3)
【解析】【分析】圆柱的体积=底面积×高,圆锥的体积=底面积×高×,根据公式分别计算即可.
15.解答.
(1)三角形顶点A用数对表示是________.
(2)如果AC=4厘米,BC=3厘米,AB=5厘米,把三角形绕C点顺时针每次旋转90°,转动一圈后,A点走过的图形是________形,它的面积是________平方厘米.
(3)将三角形按3:1放大,画出放大后的图形.
(4)把这个图形绕AC轴旋转一圈形成的物体是________形,体积是________立方厘米.
【答案】(1)(10,5)
(2)圆
;50.24
(3)解:如图,
(4)圆锥体
;37.68
【解析】【解答】解:(1)因为,A点在图中丛列上对应的数是10,横行对应的数是5,所以,A点用数对表示(10,5);
(2)A点走过的图形是以C为圆心,以4厘米为半径的圆形;
所以,该图形的面积是:3.14×4×4=50.24(平方厘米);
(4)因为形成的图形是以底面半径为3厘米,高为4厘米的圆锥体,
所以,该图形的体积是: ×3.14×32×4,
=9.42×4,
=37.68(立方厘米);
故答案为:(10,5);圆,50.24;圆锥体,37.68.
【分析】(1)看A点在图中丛列上对应的数就是数对中的第一个数;横行对应的数就是数对中的第二个数;(2)根据题意知道A点走过的图形是以C为圆心,以4厘米为半径的圆形;利用圆的面积公式,S=πr2代入数据解决问题;(3)将三角形ABC的AC边和BC 边分别扩大3倍,在图中画出即可;(4)把这个三角形绕AC轴旋转一圈形成的图形是以
底面半径为3厘米,高为4厘米的圆锥体,根据圆锥的体积公式V= sh= πr2h,代入数据解决问题.根据各个问题的不同,利用相应的公式解决问题.。