怀来县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怀来县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )
A .相交
B .相切
C .相离
D .不能确定
2. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是
( )
A .21a 和22a
B .22a 和23a
C .23a 和24a
D .24a 和25a 3. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪N
B .M ∩N
C .∁I M ∪∁I N
D .∁I M ∩∁I N
4. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,20
5. 满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )
A.()||x f e x =
B.2()x x f e e =
C.2
(ln )ln f x x = D.1(ln )f x x x
=+
【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.
6. 设奇函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式<0的解集为( )
A .(﹣1,0)∪(1,+∞)
B .(﹣∞,﹣1)∪(0,1)
C .(﹣∞,﹣1)∪(1,+∞)
D .(﹣1,0)∪(0,1)
7. 在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ) A .众数 B .平均数 C .中位数 D .标准差
8. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15
B .30
C .31
D .64
9. 设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )
A .﹣
B .﹣
C .
D .
10.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )
A .3 B
. C .
± D .以上皆非
11.已知正三棱柱111ABC A B C -的底面边长为4cm ,高为10cm ,则一质点自点A 出发,沿着三棱 柱的侧面,绕行两周到达点1A 的最短路线的长为( )
A .16cm B
. C
. D .26cm
12.已知
22(0)
()|log |(0)
x x f x x x ⎧≤=⎨
>⎩,则方程[()]2f f x =的根的个数是( )
A .3个
B .4个
C .5个
D .6个
二、填空题
13.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若
28
108
10=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 14.若6
()mx y +展开式中3
3
x y 的系数为160-,则m =__________.
【命题意图】本题考查二项式定理的应用,意在考查逆向思维能力、方程思想.
15.设等差数列{a n }的前n 项和为S n ,若﹣1<a 3<1,0<a 6<3,则S 9的取值范围是 .
16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测
1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
17.已知,0()1,0
x e x f x x ì³ï=í<ïî,则不等式2
(2)()f x f x ->的解集为________.
【命题意图】本题考查分段函数、一元二次不等式等基础知识,意在考查分类讨论思想和基本运算能力. 18.在(
2x+
)6
的二项式中,常数项等于 (结果用数值表示).
三、解答题
19.(本题满分15分)
如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .
(1)求证:BM AD ⊥;
(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为
3
π
时,求λ的值.
【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.
20.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且bcosC=3acosB ﹣ccosB . (Ⅰ)求cosB 的值; (Ⅱ)若
,且
,求a 和c 的值.
21.2()sin 22
f x x x =+
. (1)求函数()f x 的单调递减区间;
(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,若()12
A f =,ABC ∆的面积为.
22.我市某校某数学老师这学期分别用m ,n 两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示. (Ⅰ)依茎叶图判断哪个班的平均分高? (Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;
(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
下面临界值表仅供参考:
P (K 2≥k ) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:K 2
=
,其中n=a+b+c+d )
23.(本小题满分10分)
已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θ
θ
=⎧⎨
=⎩,(α为参数),经过伸缩变
换32x x y y
'=⎧⎨'=⎩后得到曲线2C .
(1)求曲线2C 的参数方程;
(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.
24.在平面直角坐标系xOy 中,点P (x ,y )满足=3,其中=(2x+3,y ),=(2x ﹣﹣3,3y ).
(1)求点P 的轨迹方程;
(2)过点F(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程.
怀来县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】C
【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D
连接AC、BD,设AB的中点为M,作MN⊥l于N
根据圆锥曲线的统一定义,可得
==e,可得
∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)
∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离
故选:C
【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.
2.【答案】C
【解析】
考点:等差数列的通项公式.
3.【答案】D
【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},
∴M∪N={1,2,3,6,7,8},
M∩N={3};
∁I M∪∁I N={1,2,4,5,6,7,8};
∁I M∩∁I N={2,7,8},
故选:D.
4.【答案】B
【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为
800×=20,600×=15,600×=15,
故选B.
【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.
5.【答案】D.
【解析】
6.【答案】D
【解析】解:由奇函数f(x)可知,即x与f(x)异号,
而f(1)=0,则f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
【点评】本题综合考查奇函数定义与它的单调性.
7.【答案】D
【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.
B样本数据84,86,86,88,88,88,90,90,90,90
众数分别为88,90,不相等,A错.
平均数86,88不相等,B错.
中位数分别为86,88,不相等,C错
A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,
B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确
故选D.
【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.
8.【答案】A
【解析】解:∵等差数列{a n},
∴a6+a8=a4+a10,即16=1+a10,
∴a10=15,
故选:A.
9.【答案】A
【解析】解:∵=(1,2),=(1,1),
∴=+k=(1+k,2+k)
∵,∴=0,
∴1+k+2+k=0,解得k=﹣
故选:A
【点评】本题考查数量积和向量的垂直关系,属基础题.
10.【答案】C
【解析】解:∵a3,a9是方程3x2﹣11x+9=0的两个根,
∴a 3a 9=3,
又数列{a n }是等比数列,
则a
62
=a 3a 9=3,即a 6=±
.
故选C
11.【答案】D 【解析】
考
点:多面体的表面上最短距离问题.
【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题. 12.【答案】C
【解析】由[()]2f f x =,设f (A )=2,则f (x )=A,则2log 2x =,则A=4或A=1
4
,作出f (x )的图像,由数型结合,当A=
1
4
时3个根,A=4时有两个交点,所以[()]2f f x =的根的个数是5个。
二、填空题
13.【答案】2016-
14.【答案】2-
【解析】由题意,得33
6160C m =-,即3
8m =-,所以2m =-.
15.【答案】 (﹣3,21) .
【解析】解:∵数列{a n }是等差数列,
∴S 9=9a 1+36d=x (a 1+2d )+y (a 1+5d )=(x+y )a 1+(2x+5y )d , 由待定系数法可得
,解得x=3,y=6.
∵﹣3<3a 3<3,0<6a 6<18, ∴两式相加即得﹣3<S 9<21. ∴S 9的取值范围是(﹣3,21). 故答案为:(﹣3,21).
【点评】本题考查了等差数列的通项公式和前n 项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题.
16.【答案】 y=﹣1.7t+68.7
【解析】解: =
, =
=63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.
=4+1+0+1+2=10.
∴
=﹣
=﹣1.7.
=63.6+1.7×3=68.7.
∴y 关于t 的线性回归方程为y=﹣1.7t+68.7. 故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
17.【答案】(
【解析】函数()f x 在[0,)+?递增,当0x <时,220x ->,解得0x -<<;当0x ³时,22x x ->,
解得01x ?,综上所述,不等式2
(2)()f x f x ->的解集为(-.
18.【答案】 240
【解析】解:由(2x+
)6
,得
=
.
由6﹣3r=0,得r=2. ∴常数项等于.
故答案为:240.
三、解答题
19.【答案】(1)详见解析;(2)3λ=.
【解析】(1)由于2AB =,AM BM ==,则AM BM ⊥,
又∵平面⊥ADM 平面ABCM ,平面 ADM 平面ABCM =AM ,⊂BM 平面ABCM , ∴⊥BM 平面ADM ,…………3分
又∵⊂AD 平面ADM ,∴有BM AD ⊥;……………6分
20.【答案】
【解析】解:(I )由正弦定理得a=2RsinA ,b=2RsinB ,c=2RsinC , 则2RsinBcosC=6RsinAcosB ﹣2RsinCcosB , 故sinBcosC=3sinAcosB ﹣sinCcosB , 可得sinBcosC+sinCcosB=3sinAcosB , 即sin (B+C )=3sinAcosB , 可得sinA=3sinAcosB .又sinA ≠0,
因此.
(II )解:由
,可得accosB=2,
,
由b 2=a 2+c 2
﹣2accosB , 可得a 2+c 2
=12,
所以(a ﹣c )2
=0,即a=c ,
所以.
【点评】本题考查了正弦定理、余弦定理、两角和与差的正弦公式、诱导公式、向量数量积的定义等基础知识,考查了基本运算能力.
21.【答案】(1)5,3
6k k π
πππ⎡
⎤
++
⎢⎥⎣
⎦
(k ∈Z );(2)【解析】
试题分析:(1)根据32222
6
2
k x k π
π
π
ππ+≤-
≤+
可求得函数()f x 的单调递减区间;(2)由12A f ⎛⎫
= ⎪⎝⎭
可得3
A π
=
,再由三角形面积公式可得12bc =,根据余弦定理及基本不等式可得的最小值. 1
试题解析:(1)111()cos 22sin(2)2262
f x x x x π=
-=-+,
令3222262k x k π
π
πππ+
≤-
≤+
,解得536
k x k ππππ+≤≤+,k Z ∈,
∴()f x 的单调递减区间为5[,]36
k k ππ
ππ++
(k Z ∈).
考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用. 22.【答案】
【解析】
【专题】综合题;概率与统计.
【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得
ξ的分布列和数学期望;
(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K 2
,从而与临界值比较,即可得到结论.
【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所
以乙班的平均分高┉┉┉┉┉┉
(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2
P (ξ=0)=
=
,P (ξ=1)=
=
,P (ξ=2)=
=
┉┉┉┉┉┉
则随机变量ξ的分布列为
ξ
0 1
2
P
数学期望Eξ=0
×+1
×+2
×
=人﹣┉┉┉┉┉┉┉┉
(Ⅲ)2×2列联表为
甲班乙班合计优秀 3 10 13 不优秀17 10 27 合计20 20 40 ┉┉┉┉┉
K2
=≈5.584>5.024
因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉
【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.
23.【答案】(1)
3cos
2sin
x
y
θ
θ
=
⎧
⎨
=
⎩
(为参数);(2
【解析】
试题解析:
(1)将曲线
1
cos :
sin x
C
y
α
α=
⎧
⎨
=
⎩
(α为参数),化为
221
x y
+=,由伸缩变换
3
2
x x
y y
'=
⎧
⎨'
=
⎩
化为
1
3
1
2
x x
y y
⎧'
=
⎪⎪
⎨
⎪'
=
⎪⎩
,
代入圆的方程
2
11
1
32
x y
⎛⎫⎛⎫
''
+=
⎪ ⎪
⎝⎭⎝⎭
,得到
()()
22
2
:1
94
x y
C
''
+=,
可得参数方程为
3cos
2sin
x
y
α
α
=
⎧
⎨
=
⎩
;
考点:坐标系与参数方程.
24.【答案】
【解析】解:(1)由题意,=(2x+3)(2x﹣3)+3y2=3,
可化为4x2+3y2=12,即:;
∴点P的轨迹方程为;
(2)①当直线l的斜率不存在时,|AB|=4,不合要求,舍去;
②当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),
代入椭圆方程可得:(4+3k2)x2+6kx﹣9=0,
∴x1+x2=,x1x2=,
∴|AB|=•|x1﹣x2|==,
∴k=±,
∴直线l的方程y=±x+1.
【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题.。