2020-2021初三数学反比例函数的专项培优练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初三数学反比例函数的专项培优练习题
一、反比例函数
1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣
2),与y轴交于点C.
(1)m=________,k1=________;
(2)当x的取值是________时,k1x+b>;
(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.
【答案】(1)4;
(2)﹣8<x<0或x>4
(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).
∴CO=2,AD=OD=4.
∴S梯形ODAC= •OD= ×4=12,
∵S四边形ODAC:S△ODE=3:1,
∴S△ODE= S梯形ODAC= ×12=4,
即OD•DE=4,
∴DE=2.
∴点E的坐标为(4,2).
又点E在直线OP上,
∴直线OP的解析式是y= x,
∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).
【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,
即反比例函数解析式为y2= ,
将点A(4,m)代入y2= ,得:m=4,即点A(4,4),
将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,
得:,
解得:,
∴一次函数解析式为y1= x+2,
故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),
∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,
故答案为:﹣8<x<0或x>4;
【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.
2.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.
(1)k的值是________;
(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=
图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若 = ,则b的值是________.
【答案】(1)﹣2
(2)3
【解析】【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),
依题意得:,
解得:k=﹣2.
故答案为:﹣2.
(2)∵BO⊥x轴,CE⊥x轴,
∴BO∥CE,
∴△AOB∽△AEC.
又∵ = ,
∴ = = .
令一次函数y=﹣2x+b中x=0,则y=b,
∴BO=b;
令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,
解得:x= ,即AO= .
∵△AOB∽△AEC,且 = ,
∴.
∴AE= AO= b,CE= BO= b,OE=AE﹣AO= b.
∵OE•CE=|﹣4|=4,即 b2=4,
解得:b=3 ,或b=﹣3 (舍去).
故答案为:3 .
【分析】(1)设出点P的坐标,根据平移的特性写出Q点的坐标,由点P,Q均在一次函数
y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k,m,n,b的四元次一方程组,两式作差即可求出k的值;
(2)由BO⊥x轴,CE⊥x轴,找出△AOB∽△AEC.再由给定图形的面积比即可求出
==,根据一次函数的解析式可以用含b的式子表示出OA,OB,由此即可得出线段CE,AE 的长,利用OE=AE﹣AO求出OE的长,再借助反比例函数K的几何意义得出关于b的一元二次方程,解方程即可得出结论。
3.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.
(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;
(2)若y= 的值不大于2,求符合条件的x的范围;
(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;
(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.
【答案】(1)解:y=2x+1中k=2>0,
∴y随x的增大而增大,
∴当x=2时,y最小=5;当x=4时,y最大=9.
∵y= 中k=2>0,
∴在2≤x≤4中,y随x的增大而减小,
∴当x=2时,y最大=1;当x=4时,y最小= .
∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,
∴当x=1时,y最小=1;当x=4时,y最大=19
(2)解:令y= ≤2,
解得:x<0或x≥1.
∴符合条件的x的范围为x<0或x≥1
(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=
无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0
(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,
解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,
解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,
整理得:2m2﹣15m+29=0.
∵△=(﹣15)2﹣4×2×29=﹣7,无解.
∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无
最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;
【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,
y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)
①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=
无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.
4.平面直角坐标系xOy中,已知函数y1= (x>0)与y2=﹣(x<0)的图象如图所示,
点A、B是函数y1= (x>0)图象上的两点,点P是y2=﹣(x<0)的图象上的一点,且AP∥x轴,点Q是x轴上一点,设点A、B的横坐标分别为m、n(m≠n).
(1)求△APQ的面积;
(2)若△APQ是等腰直角三角形,求点Q的坐标;
(3)若△OAB是以AB为底的等腰三角形,求mn的值.
【答案】(1)解:过点P、A、Q分别作PM x轴交x轴于点M,PN x轴交x轴于点N,QR AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,如图所示:
∵点A的横坐标为m,且在函数上,AP∥x轴,且点P在函数上,
∴点A(m, ),点P(-m, ),
∴MN=m-(-m)=2m,PM= ,
∴S矩形PMNA=2m╳ =8,
∵四边形PMQR、四边形ARQN是矩形,
∴S△PQM=S△PRQ, S△ANQ=S△ARQ,
∴S△APQ=S△PRQ+ S△ARQ= S矩形PMNA=4
(2)解:当PQ x轴时,则PQ=,,AP=2m,
∵PQ=AP
∴2m= ,
∴m=
∴ ,
当PQ=AQ时,则
(3)解:∵△OAB是以AB为底的等腰三角形,
∴OA=OB,
∵A(m, ),B(n, ),
∴
∴mn=4.
【解析】【分析】(1)过点P、A、Q分别作PM ⊥ x轴交x轴于点M,PN ⊥ x轴交x轴于点N,QR ⊥ AP轴交AP轴于点R,则四边形APMN、四边形PMQR、四边形ARQN是矩形,根据点A的横坐标为m,利用函数解析式表示出点A的坐标和点P的坐标,最后用三
角形的面积公式即可得出结论。
(2)分情况讨论:当PQ=AP和当PQ=AQ时,利用等腰直角三角形和AP∥x轴,建立方程求解即可;
(3)利用等腰三角形的两腰相等建立方程,即可得出结论。
5.如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD 的面积为2.
(1)求的值及 =4时的值;
(2)记表示为不超过的最大整数,例如:,,设 ,若
,求值
【答案】(1)解:设A(x0, y0),则OD=x0, AD=y0,
∴S△AOD= OD•AD= x0y0=2,
∴k=x0y0=4;
当x0=4时,y0=1,
∴A(4,1),
代入y=mx+5中得4m+5=1,m=-1
(2)解:∵,
∴=mx+5,整理得,mx2+5x-4=0,
∵A的横坐标为x0,
∴mx02+5x0=4,
当y=0时,mx+5=0,
x=- ,
∵OC=- ,OD=x0,
∴m2•t=m2•(OD•DC),
=m2•x0(- -x0),
=m(-5x0-mx02),
=-4m,
∵- <m<- ,
∴5<-4m<6,
∴[m2•t]=5
【解析】【分析】(1)根据反比例函数比例系数k的几何意义,即可得出k的值;根据反比例函数图像上的点的坐标特点,即可求出A点的坐标,再将A点的坐标代入直线y=mx+5中即可求出m的值;
(2)解联立直线与双曲线的解析式所组成的方程组,得出mx2+5x-4=0,将A点的横坐标代入得出mx02+5x0=4,根据直线与x轴交点的坐标特点,表示出OC,OD的长,由m2•t=m2•(OD•DC)=-4m,根据m的取值范围得出5<-4m<6,从而答案。
6.如图①所示,双曲线y= (k≠0)与抛物线y=ax2+bx(a≠0)交于A、B、C三点,已知B(4,2),C(-2,-4),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.
(1)求双曲线和抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;
(3)如图②所示,过点B作直线L⊥OB,过点D作DF⊥L于F,BD与OF交于点P,求的值.
【答案】(1)解:把B(4,2)代人y= (k≠0)得2= 元,解得k=8z,
∴双曲线的解析式为y= ,
把B(4,2),C(-2,-4)代入y=ax2+bx得,
,
∴,
∴抛物线的解析式为y=
(2)解:连接DB,
∵C(-2,-4),
∴直线OC的解析式为y=2x且与y= 的另一个交点D(2,4),
∴由两点间距离公式得BC= ,DB= ,CD= ,
∴BC2+DB2=CD2,
∴∠CBD=90°,
∴tan∠ BDC= .
∵∠POE+∠BCD=90°,∠BCD+∠BDC=90°,
∴∠POE=∠BDC.即tan∠POE=3.
∴P在直线y=3x或y=-3x上,故有两种情况:
解得(0,0)(舍)或(-6,-18)(舍);
,
解得(0,0)(舍)或(18,-54),
故可得出满足条件的P点有一个(18,-54);
(3)解:由B(4,2)可得直线OB解析式y= ,
由OB⊥l可得l的解析式为y=-2x+b1,把(4,2)代入求出b1=10,
∴l的解析式为y=-2x+10,
由DF⊥l, OB⊥l可得DF∥OB,
∴可设DF解析式y= x+b2,把D(2,4)代入得b2=3.
∴DF的解析式为y= x+3,
把DF的解析式与l的解析式联立可得:
解得:
∴,
∴DF= ,OB=
.∵DF∥OB,
∴
【解析】【分析】(1)因为双曲线与抛物线交于点A、B、C,且B(4,2),C(-2,-4),所以用待定系数法即可求得两个函数的解析式;
(2)连接DB,因为直线CO与双曲线交于点D,所以C、D两点关于原点成中心对称,所以点D(2,4),则可将BC、CD、BD放在直角三角形中,用勾股定理求得这三边的长,然后计算可得,由勾股定理的逆定理可得∠CBD=90°,则∠BDC的正切值可求出来,由已知条件∠POE+∠BCD=90°可得∠BDC=∠POE,则tan∠BDC=tan∠POE,点P所在的直线解析式可得,将点P所在的直线解析式与抛物线的解析式联立解方程组,即可求得点P的坐标;
(3)由题意直线L⊥OB,根据互相垂直的两条直线的k值互为负倒数易求得直线l的解析式,因为DF⊥L于F,所以同理可求得直线DF的解析式,把DF的解析式与l的解析式联立可得点F的坐标,则DF和OB的长可用勾股定理求得,因为DF∥OB,所以由平行线分线
段成比例定理可得比例式;,将DF和OB的值代入即可求解。
7.如图,反比例函数的图象与一次函数y=kx+5(k为常数,且k≠0)的图象交于A (﹣2,b),B两点.
(1)求一次函数的表达式;
(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.
【答案】(1)解:把A(﹣2,b)代入,
得b=﹣ =4,
所以A点坐标为(﹣2,4),
把A(﹣2,4)代入y=kx+5,
得﹣2k+5=4,解得k= ,
所以一次函数解析式为y= x+5;
(2)解:将直线AB向下平移m(m>0)个单位长度得直线解析式为y= x+5﹣m,
根据题意方程组只有一组解,
消去y得﹣ = x+5﹣m,
整理得 x2﹣(m﹣5)x+8=0,
△=(m﹣5)2﹣4× ×8=0,
解得m=9或m=1,
即m的值为1或9.
【解析】【分析】(1)先利用反比例函数解析式求出b=4,得到A点坐标为(-2,4),然后把A点坐标代入y=kx+5中求出k,从而得到一次函数解析式;
(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=,又与反比例函数有且只有一个公共点,可组成方程组,且只有一组解,然后消去y得到关于x的一元二次方程,再根据判别式=0得到关于m的方程,最后解方程求出m的值.
8.如图,P1、P2是反比例函数y= (k>0)在第一象限图象上的两点,点A1的坐标为(4,0).若△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶
点.
(1)求反比例函数的解析式.
(2)①求P2的坐标.②根据图象直接写出在第一象限内当x满足什么条件时,经过点
P1、P2的一次函数的函数值大于反比例函数y= 的函数值.
【答案】(1)解:过点P1作P1B⊥x轴,垂足为B ∵点A1的坐标为(4,0),△P1OA1为等腰直角三角形
∴OB=2,P1B= OA1=2
∴P1的坐标为(2,2)
将P1的坐标代入反比例函数y= (k>0),得k=2×2=4
∴反比例函数的解析式为
(2)①过点P2作P2C⊥x轴,垂足为C ∵△P2A1A2为等腰直角三角形
∴P2C=A1C
设P2C=A1C=a,则P2的坐标为(4+a,a)
将P2的坐标代入反比例函数的解析式为,得
a= ,解得a1= ,a2= (舍去)
∴P2的坐标为(,)
②在第一象限内,当2<x<2+ 时,一次函数的函数值大于反比例函数的值.
【解析】【分析】(1)先根据点A1的坐标为(4,0),△P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据△P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围.
9.如图,在平面直角坐标系中,点A(-5,0),以OA为半径作半圆,点C是第一象限内圆周上一动点,连结AC、BC,并延长BC至点D,使CD=BC,过点D作x轴垂线,分别交x轴、直线AC于点E、F,点E为垂足,连结OF.
(1)当∠BAC=30º时,求△ABC的面积;
(2)当DE=8时,求线段EF的长;
(3)在点C运动过程中,是否存在以点E、O、F为顶点的三角形与△ABC相似,若存在,请求出点E的坐标;若不存在,请说明理由.
【答案】(1)解:∵AB是⊙O的直径,
∴∠ACB=90°,
在Rt△ABC中,AB=10,∠BAC=30°,
∴BC= AB=5,
∴AC= ,
∴S△ABC= AC⋅BC=
(2)解:连接AD,
∵∠ACB=90°,CD=BC,
∴AD=AB=10,
∵DE⊥AB,
∴AE= =6,
∴BE=AB−AE=4,
∴DE=2BE,
∵∠AFE+∠FAE=90°,∠DBE+∠FAE=90°,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB=90°,
∴△AEF∽△DEB,
∴ =2,
∴EF= AE= ×6=3
(3)解:连接EC,设E(x,0),
当的度数为60°时,点E恰好与原点O重合;
①0°< 的度数<60°时,点E在O、B之间,∠EOF>∠BAC=∠D,
又∵∠OEF=∠ACB=90°,由相似知∠EOF=∠EBD,此时有△EOF∽△EBD,
∴,
∵EC是Rt△BDE斜边的中线,
∴CE=CB,
∴∠CEB=∠CBE,
∴∠EOF=∠CEB,
∴OF∥CE,
∴△AOF∽△AEC
∴,
∴,即,
解得x= ,因为x>0,
∴x= ;
②60°< 的度数<90°时,点E在O点的左侧,
若∠EOF=∠B,则OF∥BD,
∴OF= BC= BD,
∴即解得x= ,
若∠EOF=∠BAC,则x=− ,
综上点E的坐标为( ,0) ;(,0);(−,0).
【解析】【分析】(1)根据圆周角定理求得∠ACB=90°,根据30°的直角三角形的性质求得BC,进而根据勾股定理求得AC,然后根据三角形面积公式即可求得;(2)连接AD,由垂直平分线的性质得AD=AB=10,又DE=8,在Rt△ODE中,由勾股定理求AE,依题意证明△AEF∽△DEB,利用相似比求EF;(3)当以点E、O、F为顶点的三角形与△ABC相似时,分为两种情况:①当交点E在O,B之间时;②当点E在O点的左侧时;分别求E点坐标.
10.如图,在平面直角坐标系中抛物线交x轴于点A、B,交y轴于点C, A、B两点横坐标为-1和3,C点纵坐标为-4.
(1)求抛物线的解析式;
(2)动点D在第四象限且在抛物线上,当△BCD面积最大时,求D点坐标,并求△BCD
面积的最大值;
(3)抛物线的对称轴上是否存在一点Q,使得∠QBC=45°,如果存在,求出点Q的坐标,不存在说明理由.
【答案】(1)解:由图像可知:A,B,C,三点的坐标分别是(-1,0),(3,0),(0,-4),
将A,B,C三点坐标代入抛物线
得:,解之得:
∴抛物线的解析式为:;
(2)解:如图,作DH垂直AB于H,
设D点坐标为(x,y),
则有:OC=4,OB=3,OH=x,HD=-y,HB=3-x,
∴梯形CDHO为直角梯形,
∴
即:
又∵D点在抛物线上,
∴
∴当时,△BCD面积有最大值,是,
∴
所以D点坐标为:(,-5)
(3)解:由函数关系式:化简得:,∴对称轴为:,
如图示:作出对称轴,交x轴于F点,连接CB,交对称轴于E点,
∴由B,C,的坐标分别是(3,0),(0,-4),设BC的函数解析式为:则:,解之得:
∴BC的函数解析式为:,当时,,
∴E点坐标为:(1,),
∴BF=2,FE= ,
∴,
即:
∴存在一点Q,使得∠QBC=45°,并且点Q在FE之间,
设Q点坐标为:(1,)
∴,,
∵直线BQ和BC的交角为,
∴
即:
化简得:,
∴Q点坐标为:(1,)
【解析】【分析】(1)将A,B,C三点坐标代入抛物线,即可求出;(2)作DH垂直AB于H,设D点坐标为(x,y),则有OC=4,OB=3,OH=x,HD=-y,由
,,化简即可出;(3)由函数
关系式:化简得对称轴为,作出对称轴,交x轴于F点,连接CB,交对称轴于E点,求出BC的函数解析式,则可以知道E点坐标为:(1,
),所以存在一点Q,使得∠QBC=45°,并且点Q在FE之间,设Q点坐标为:(1,),求出线段的斜率,线段的斜率,利用两直线相交交角为,得到
,化简即可。
11.综合与探究
如图,抛物线的图象经过坐标原点O,且与轴的另一交点为( ,0).
(1)求抛物线的解析式;
(2)若直线与抛物线相交于点A和点B(点A在第二象限),设点A′是点A关于原点O的对称点,连接A′B,试判断ΔAA′B的形状,并说明理由;
(3)在问题(2)的基础上,探究:平面内是否存在点P,使得以点A,B,A′,P为顶点的四边形是菱形?若存在直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)解:∵抛物线y=x2+bx+c的图象经过点(0,0)和( ,0),
∴,
解得:;
∴ .
(2)解:ΔAA′B是等边三角形;
∵,
解得:,
∴A( ),B( ),
过点A分别作AC⊥轴,AD⊥A′B,垂足分别为C,D,
∴AC= ,OC= ,
在RtΔAOC中
OA= ,
∵点A′与点A关于原点对称,
∴A′( ),AA′= ,
∵B( ),
∴A′B=2-(- )= ,
又∵A( ),B( ),
∴AD= ,BD= ,
在RtΔABD中
AB= ,
∴AA′=A′B=AB,
∴ΔAA′B是等边三角形
(3)解:存在正确的点P,且以点A、B、A′、P为顶点的菱形分三种情况;设点P的坐标为:(x,y).
①当A′B为对角线时,有,
解得:,
∴点P为:;
②当AB为对角线时,有,
解得:,
∴点P为:;
③当AA′为对角线时,有,
解得:,
∴点P为:;
综合上述, , ,
【解析】【分析】(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(2)先求出点A、B的坐标,利用对称性求出点A′的坐标,利用两点间的距离公式(勾股
定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;(3)根据等边三角形的性质结合菱形的性质,可得出存在正确得点P,设点P的坐标为(x,y),分三种情况考虑:①当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P 的坐标;②当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;
③当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
12.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;
(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;
(3)当m=4时,抛物线上有两点M(x1, y1)和N(x2, y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.
【答案】(1)解:抛物线 y=-x2+mx+n的对称轴为直线x=-3,AB=4.
∴点 A(-5,0),点B(-1,0).
∴抛物线的表达式为y=-(x+5)( x+1)
∴y=-x2-6x-5.
(2)解:如图1,
依题意,设平移后的抛物线表达式为:y=-x2+bx.
∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).
∴b>0.
记平移后的抛物线顶点为P,
∴点P的坐标(,),
∵△OCP是等腰直角三角形,
∴ =
∴b=2.
∴点P的坐标(1,1).
(3)解:如图2,
当m=4时,抛物线表达式为:y=-x2+4x+n.
∴抛物线的对称轴为直线 x=2.
∵点M(x1, y1)和N(x2, y2)在抛物线上,
且x1<2,x2>2,
∴点M在直线x=2的左侧,点N在直线x=2的右侧.
∵x1+x2>4,
∴2-x1<x2-2,
∴点M到直线x=2的距离比点N到直线x=2的距离近,
∴y1>y2.
【解析】【分析】(1)先根据抛物线和x轴的交点及线段的长,求出抛物线的解析式;(2)根据平移后抛物线的特点设出抛物线的解析式,再利用等腰直角三角形的性质求出抛物线解析式;(3)根据抛物线的解析式判断出点M,N的大概位置,再关键点M,N的横坐标的范围即可得出结论.。