【精选】苏科版八年级上册数学 整式的乘法与因式分解单元测试题(Word版 含解析)
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
(1)原式=
=
=
(2)
=
=
=
∴ 能被12整除.
【点睛】
本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.
5.观察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216
............
(1)按以上等式的规律,填空:(a+b)(___________________)=a3+b3
【详解】
(1) ;
(2) ;
(3)原式
.
∵ 为正整数,
∴ 为正整数.
∴代数 的值一定是某个整数的平方.
【点睛】
本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.
2.若一个正整数 能表示成 ( 是正整数,且 )的形式,则称这个数为“明礼崇德数”, 与 是 的一个平方差分解.例如:因为 ,所以5是“明礼崇德数”,3与2是5的平方差分解;再如: ( 是正整数),所以 也是“明礼崇德数”, 与 是 的一个平方差分解.
【详解】
(1)(a+b)(a2-ab+b2)=a3+b3;
(2)(a+b)(a2-ab+b2)
=a3-a2b+ab2+a2b-ab2+b3
=a3+b3;
(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
=x3+y3-(x3-y3)
=2y3.
【点睛】
本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.
(2)利用分解因式说明: 能被12整除.
【答案】(1) ;(2)证明见解析.
【解析】
【分析】
(1)a2+2ab+ac+bc+b2可以进行分组变成(a2+2ab+b2)+(ac+bc),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.
(2)先利用平方差公式将 进行因式分解,之后即可得出答案.
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.(阅读材料)
因式分解: .
解:将“ ”看成整体,令 ,则原式 .
再将“ ”还原,原式 .
上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.
(问题解决)
(1)因式分解: ;
(2)因式分解: ;
(3)证明:若 为正整数,则代数式 的
(2)猜想: =(其中n为正整数,且 ).
(3)利用(2)猜想的结论计算: .
【答案】(1) , , ;(2) ;(3)342.
【解析】
试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;
(2)根据(1)的规律可得结果;
(3)原式变形后,利用(2)得出的规律计算即可得到结果.
(1)判断:9_______“明礼崇德数”(填“是”或“不是”);
(2)已知 ( 是正整数, 是常数,且 ),要使 是“明礼崇德数”,试求出符合条件的一个 值,并说明理由;
(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若 既是“七喜数”,又是“明礼崇德数”,请求出 的所有平方差分解.
试题解析:(1) = ;
= ;
= ;
故答案为 , , ;
(2)由(1)的规律可得:原式= ,故答案为 ;
(3)令 ,
∴
= = ,∴S=342.
考点:1.平方差公式;2.规律型.
4.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法
例如: . .
试用上述方法分解因式
【答案】(1) .(2) ;(3)见解析.
【解析】
【分析】
(1)把(x-y)看作一个整体,直接利用十字相乘法因式分解即可;
(2)把a+b看作一个整体,去括号后利用完全平方公式即可将原式因式分解;
(3)将原式转化为 ,进一步整理为(n2+3n+1)2,根据n为正整数得到n2+3n+1也为正整数,从而说明原式是整数的平方.
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.
【解析】
【分析】
(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.
∴9是“明礼崇德数”,
故答案为:是;
(2)当k=-5时, 是“明礼崇德数”,
∵当k=-5时,
,
= ,
= ,
= ,
=
= .
∵ 是正整数,且 ,
∴N是正整数,符合题意,
∴当k=-5时, 是“明礼崇德数”;
(3)由题意得:“七喜数”m=178或279,
设m= =(a+b)(a-b),
当m=178时,
∵178=2 89,
【答案】(1)是;(2)k=-5;(3)m=279, , .
【解析】
【分析】
(1)根据9=52-42,确定9是“明礼崇德数”;
(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案;
(3)确定“七喜数”m的值,分别将其平方差分解即可.
【详解】
(1)∵9=52-42,
∴ ,得 (不合题意,舍去);
当m=279时,
∵279=3 93=9 31,
∴① ,得 ,∴ ,
② ,得 ,∴ ,
∴既是“七喜数”又是“明礼崇德数”的m是279, , .
【点睛】
此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.
6.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′= ,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.
(1)原式=
=
=
(2)
=
=
=
∴ 能被12整除.
【点睛】
本题考查分组分解的因式分解方法,做题时先分析题中给的例子是解题关键.
5.观察以下等式:
(x+1)(x2-x+1)=x3+1
(x+3)(x2-3x+9)=x3+27
(x+6)(x2-6x+36)=x3+216
............
(1)按以上等式的规律,填空:(a+b)(___________________)=a3+b3
【详解】
(1) ;
(2) ;
(3)原式
.
∵ 为正整数,
∴ 为正整数.
∴代数 的值一定是某个整数的平方.
【点睛】
本题考查因式分解的应用,解题的关键是仔细读题,理解题意,掌握整体思想解决问题的方法.
2.若一个正整数 能表示成 ( 是正整数,且 )的形式,则称这个数为“明礼崇德数”, 与 是 的一个平方差分解.例如:因为 ,所以5是“明礼崇德数”,3与2是5的平方差分解;再如: ( 是正整数),所以 也是“明礼崇德数”, 与 是 的一个平方差分解.
【详解】
(1)(a+b)(a2-ab+b2)=a3+b3;
(2)(a+b)(a2-ab+b2)
=a3-a2b+ab2+a2b-ab2+b3
=a3+b3;
(3)(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
=x3+y3-(x3-y3)
=2y3.
【点睛】
本题考查了多项式乘以多项式,关键是掌握多项式乘法法则,注意观察所给例题,找出其中的规律是解决本题的基本思路.
(2)利用分解因式说明: 能被12整除.
【答案】(1) ;(2)证明见解析.
【解析】
【分析】
(1)a2+2ab+ac+bc+b2可以进行分组变成(a2+2ab+b2)+(ac+bc),则前边括号内的三项可以利用完全平方公式分解,后边的三项可以提公因式,然后再利用提公因式法即可分解.
(2)先利用平方差公式将 进行因式分解,之后即可得出答案.
一、八年级数学整式的乘法与因式分解解答题压轴题(难)
1.(阅读材料)
因式分解: .
解:将“ ”看成整体,令 ,则原式 .
再将“ ”还原,原式 .
上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法.
(问题解决)
(1)因式分解: ;
(2)因式分解: ;
(3)证明:若 为正整数,则代数式 的
(2)猜想: =(其中n为正整数,且 ).
(3)利用(2)猜想的结论计算: .
【答案】(1) , , ;(2) ;(3)342.
【解析】
试题分析:(1)根据平方差公式与多项式乘以多项式的运算法则运算即可;
(2)根据(1)的规律可得结果;
(3)原式变形后,利用(2)得出的规律计算即可得到结果.
(1)判断:9_______“明礼崇德数”(填“是”或“不是”);
(2)已知 ( 是正整数, 是常数,且 ),要使 是“明礼崇德数”,试求出符合条件的一个 值,并说明理由;
(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若 既是“七喜数”,又是“明礼崇德数”,请求出 的所有平方差分解.
试题解析:(1) = ;
= ;
= ;
故答案为 , , ;
(2)由(1)的规律可得:原式= ,故答案为 ;
(3)令 ,
∴
= = ,∴S=342.
考点:1.平方差公式;2.规律型.
4.(1)阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法
例如: . .
试用上述方法分解因式
【答案】(1) .(2) ;(3)见解析.
【解析】
【分析】
(1)把(x-y)看作一个整体,直接利用十字相乘法因式分解即可;
(2)把a+b看作一个整体,去括号后利用完全平方公式即可将原式因式分解;
(3)将原式转化为 ,进一步整理为(n2+3n+1)2,根据n为正整数得到n2+3n+1也为正整数,从而说明原式是整数的平方.
(2)利用多项式的乘法法则,证明(1)中的等式成立.
(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x-y)(x2+xy+y2)
【答案】(1)a2-ab+b2;(2)详见解析;(3)2y3.
【解析】
【分析】
(1)根据所给等式可直接得到答案(a+b)(a2-ab+b2)=a3+b3;(2)利用多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加进行计算即可得到答案;(3)结合题目本身的特征,利用(1)中的公式直接运用即可.
∴9是“明礼崇德数”,
故答案为:是;
(2)当k=-5时, 是“明礼崇德数”,
∵当k=-5时,
,
= ,
= ,
= ,
=
= .
∵ 是正整数,且 ,
∴N是正整数,符合题意,
∴当k=-5时, 是“明礼崇德数”;
(3)由题意得:“七喜数”m=178或279,
设m= =(a+b)(a-b),
当m=178时,
∵178=2 89,
【答案】(1)是;(2)k=-5;(3)m=279, , .
【解析】
【分析】
(1)根据9=52-42,确定9是“明礼崇德数”;
(2)根据题意分析N应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N平方差分解,得到答案;
(3)确定“七喜数”m的值,分别将其平方差分解即可.
【详解】
(1)∵9=52-42,
∴ ,得 (不合题意,舍去);
当m=279时,
∵279=3 93=9 31,
∴① ,得 ,∴ ,
② ,得 ,∴ ,
∴既是“七喜数”又是“明礼崇德数”的m是279, , .
【点睛】
此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.
6.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′= ,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.