宿城区高中2018-2019学年高三下学期第三次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宿城区高中2018-2019学年高三下学期第三次月考试卷数学
一、选择题
1. “x 2﹣4x <0”的一个充分不必要条件为( ) A .0<x <4 B .0<x <2 C .x >0 D .x <4 2. 已知点A (﹣2,0),点M (x ,y )
为平面区域
上的一个动点,则|AM|的最小值是( )
A .5
B .3
C .
2 D
.
3. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1
的中心,若
+
,则x 、y 的值分
别为( )
A .x=1,y=1
B .x=1,
y= C .
x=,
y= D .
x=,y=1
4. 已知函数()cos()3
f x x π
=+,则要得到其导函数'()y f x =的图象,只需将函数()y f x =
的图象( )
A .向右平移
2π个单位 B .向左平移2π
个单位 C. 向右平移23π个单位 D .左平移23
π
个单位
5. 给出下列各函数值:①sin100°;②cos (﹣100°);③tan (﹣100°);
④.其中符号为
负的是( ) A .①
B .②
C .③
D .④
6. 已知集合},052|{2
Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( ) A .1- B . C .1-或 D .1-或2-
7. 如果点P 在平面区域220,
210,20x y x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩
上,点Q 在曲线22
(2)1x y ++=上,那么||PQ 的最小值为( )
A
1 B
1-
C. 1 D
1 8. 已知数列,则5是这个数列的( ) A .第12项 B .第13项 C .第14项 D .第25项
9. 已知直线mx ﹣y+1=0交抛物线y=x 2于A 、B 两点,则△AOB ( )
A .为直角三角形
B .为锐角三角形
C .为钝角三角形
D .前三种形状都有可能
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4
B .﹣4
C .0
D .2
11.已知向量=(1,2),=(m ,1),如果向量与平行,则m 的值为( )
A .
B .
C .2
D .﹣2
12.已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β C .若m ⊥α,n ⊥α,则 m ∥n D .若 m ∥α,m ∥β,则 α∥β
二、填空题
13.当0,1x ∈()
时,函数()e 1x
f x =-的图象不在函数2
()g x x ax =-的下方,则实数a 的取值范围是___________.
【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力.
14.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .
15.抛物线2
4x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.
16.已知条件p :{x||x ﹣a|<3},条件q :{x|x 2﹣2x ﹣3<0},且q 是p 的充分不必要条件,则a 的取值范围是 .
17.已知函数2
1()sin cos sin 2f x a x x x =-+的一条对称轴方程为6
x π
=,则函数()f x 的最大值为___________.
【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.
18.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .
三、解答题
19.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.
(1)求椭圆C 的方程;
(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,
求出直线l 的方程;若不存在,说明理由.
20.已知斜率为1的直线l 经过抛物线y 2=2px (p >0)的焦点F ,且与抛物线相交于A ,B 两点,|AB|=4.
(I )求p 的值;
(II )若经过点D (﹣2,﹣1),斜率为k 的直线m 与抛物线有两个不同的公共点,求k 的取值范围.
21.(本小题满分12分)
已知函数2
1()(3)ln 2
f x x a x x =+-+. (1)若函数()f x 在定义域上是单调增函数,求的最小值;
(2)若方程2
1()()(4)02f x a x a x -+--=在区间1[,]e e
上有两个不同的实根,求的取值范围.
22.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球. (1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?
(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X ,求X 的分布列和数学期望.
23.火车站北偏东方向的
处有一电视塔,火车站正东方向的
处有一小汽车,测得
距离为31
,
该小汽车从
处以60
的速度前往火车站,20分钟后到达
处,测得离电视塔21
,问小汽车到火车站还需
多长时间?
24.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;
(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.
25.已知(+)n展开式中的所有二项式系数和为512,
(1)求展开式中的常数项;
(2)求展开式中所有项的系数之和.
26.已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;(2)求函数f(x)的极值.
宿城区高中2018-2019学年高三下学期第三次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0
∴不等式的解集为A={x|0<x<4},
因此,不等式x2﹣4x<0成立的一个充分不必要条件,
对应的x范围应该是集合A的真子集.
写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,
故选:B.
2.【答案】D
【解析】解:不等式组表示的平面区域如图,
结合图象可知|AM|的最小值为点A到直线2x+y﹣2=0的距离,
即|AM|min=.
故选:D.
【点评】本题考查了不等式组表示的平面区域的画法以及运用;关键是正确画图,明确所求的几何意义.3.【答案】C
【解析】解:如图,
++().
故选C.
4.【答案】B
【解析】
试题分析:函数()cos ,3f x x π⎛⎫
=+
∴ ⎪⎝
⎭()5'sin cos 36f x x x ππ⎛⎫⎛⎫
=-+=+ ⎪ ⎪⎝⎭⎝⎭
,所以函数 ()cos 3f x x π⎛
⎫=+ ⎪⎝
⎭,所以将函数函数()y f x =的图象上所有的点向左平移2π个单位长度得到
5cos cos 326y x x πππ⎛⎫⎛
⎫=++=+ ⎪ ⎪⎝⎭⎝
⎭,故选B.
考点:函数()sin y A x ωϕ=+的图象变换.
5. 【答案】B
【解析】解::①sin100°>0,②cos (﹣100°)=cos100°<0,③tan (﹣100°)=﹣tan100>0,
④∵sin
>0,cos π=﹣1,tan
<0,
∴>0,
其中符号为负的是②, 故选:B .
【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础.
6. 【答案】D 【解析】
试题分析:由{}
{}1,2,025
,0522--=⎭
⎬⎫⎩⎨⎧∈<<-
=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 7. 【答案】A 【解析】
试题分析:根据约束条件画出可行域||PQ Z =表示圆上的点到可行域的距离,当在点A 处时,求出圆心到可 行域的距离内的点的最小距离5,∴当在点A 处最小, ||PQ 最小值为15-,因此,本题正确答案是15-.
考点:线性规划求最值.
8.【答案】B
【解析】
由题知,通项公式为,令得,故选B
答案:B
9.【答案】A
【解析】解:设A(x1,x12),B(x2,x22),
将直线与抛物线方程联立得,
消去y得:x2﹣mx﹣1=0,
根据韦达定理得:x1x2=﹣1,
由=(x1,x12),=(x2,x22),
得到=x1x2+(x1x2)2=﹣1+1=0,
则⊥,
∴△AOB为直角三角形.
故选A
【点评】此题考查了三角形形状的判断,涉及的知识有韦达定理,平面向量的数量积运算,以及两向量垂直时满足的条件,曲线与直线的交点问题,常常联立曲线与直线的方程,消去一个变量得到关于另外一个变量的一元二次方程,利用韦达定理来解决问题,本题证明垂直的方法为:根据平面向量的数量积为0,两向量互相垂直.
10.【答案】A
【解析】解:由约束条件作出可行域如图,
联立,得A (6,2),
化目标函数z=x ﹣y 为y=x ﹣z ,
由图可知,当直线y=x ﹣z 过点A 时,直线在y 轴上的截距最小,z 有最大值为4. 故选:A .
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
11.【答案】B
【解析】解:向量,向量与平行,
可得2m=﹣1.
解得m=﹣. 故选:B .
12.【答案】C
【解析】解:对于A ,若 m ∥α,n ∥α,则 m 与n 相交、平行或者异面;故A 错误; 对于B ,若α⊥γ,β⊥γ,则 α与β可能相交,如墙角;故B 错误; 对于C ,若m ⊥α,n ⊥α,根据线面垂直的性质定理得到 m ∥n ;故C 正确; 对于D ,若 m ∥α,m ∥β,则 α与β可能相交;故D 错误; 故选C .
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
二、填空题
13.【答案】[2e,)-+∞
【解析】由题意,知当0,1x ∈()时,不等式2
e 1x
x ax -≥-,即21e x x a x +-≥恒成立.令()21e x
x h x x
+-=,
()()()
2
11e 'x
x x h x x
-+-=.令()1e x k x x =+-,()'1e x k x =-.∵()0,1x ∈,∴()'1e 0,x
k x =-<∴()k x 在()0,1x ∈为递减,∴()()00k x k <=,∴()()()
2
11e '0x x x h x x
-+-=
>,∴()h x 在()0,1x ∈为递增,∴
()()12e h x h <=-,则2e a ≥-.
14.【答案】 ﹣21 .
【解析】解:∵等比数列{a n }的公比q=﹣,a 6=1,
∴a 1(﹣)5
=1,解得a 1=﹣32,
∴S 6=
=﹣21
故答案为:﹣21
15.【答案】()22
12x y -+=或()2
2
12x y ++=
【解析】
试题分析:由题意知()0,1F ,设2001,
4P x x ⎛⎫ ⎪⎝⎭
,由1'2y x =,则切线方程为()200011
42y x x x x -=-,代入()0,1-得02x =±,则()()2,1,2
,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2
212
x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()22
12x y ++=.1
考点:1.圆的标准方程;2.抛物线的标准方程与几何性质.
16.【答案】 [0,2] .
【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);
命题q :x 2
﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).
∵q 是p 的充分不必要条件,
∴q ⊊p ,
∴
,
解得0≤a ≤2, 则实数a 的取值范围是[0,2].
故答案为:[0,2].
【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题
17.【答案】1 【
解
析】
18.【答案】.
【解析】解:在△ABC中,∵6a=4b=3c
∴b=,c=2a,
由余弦定理可得cosB===.
故答案为:.
【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题.
三、解答题
19.【答案】
【解析】解:(1)依题意,可设椭圆C的方程为(a>0,b>0),且可知左焦点为
F(﹣2,0),从而有,解得c=2,a=4,
又a2=b2+c2,所以b2=12,故椭圆C的方程为.
(2)假设存在符合题意的直线l,其方程为y=x+t,
由得3x2+3tx+t2﹣12=0,
因为直线l与椭圆有公共点,所以有△=(3t)2﹣4×3(t2﹣12)≥0,解得﹣4≤t≤4,
另一方面,由直线OA与l的距离4=,从而t=±2,
由于±2∉[﹣4,4],所以符合题意的直线l不存在.
【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.
20.【答案】
【解析】解:(I )由题意可知,抛物线y 2
=2px (p >0)的焦点坐标为
,准线方程为
.
所以,直线l 的方程为…
由
消y 并整理,得
…
设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=3p ,
又|AB|=|AF|+|BF|=x 1+x 2+p=4, 所以,3p+p=4,所以p=1…
(II )由(I )可知,抛物线的方程为y 2
=2x .
由题意,直线m 的方程为y=kx+(2k ﹣1).…
由方程组
(1) 可得ky 2
﹣2y+4k ﹣2=0(2)… 当k=0时,由方程(2),得y=﹣1.
把y=﹣1代入y 2
=2x ,得
.
这时.直线m 与抛物线只有一个公共点.…
当k ≠0时,方程(2)得判别式为△=4﹣4k (4k ﹣2). 由△>0,即4﹣4k (4k ﹣2)>0,亦即4k 2
﹣2k ﹣1<0.
解得.
于是,当
且k ≠0时,方程(2)有两个不同的实根,从而方程组(1)有两组不同的解,这
时,直线m 与抛物线有两个不同的公共点,…
因此,所求m 的取值范围是
.…
【点评】本题考查抛物线的方程与性质,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
21.【答案】(1);(2)01a <<.1111] 【解析】
则
'()0f x ≥对0x >恒成立,即1
()3a x x
≥-++对0x >恒成立,
而当0x >时,1
()3231x x
-++≤-+=,
∴1a ≥.
若函数()f x 在(0,)+∞上递减,
则'()0f x ≤对0x >恒成立,即1
()3a x x
≤-++对0x >恒成立,
这是不可能的. 综上,1a ≥. 的最小值为1. 1
(2)由2
1()()(2)2ln 02
f x a x a x x =-+-+=, 得2
1()(2)2ln 2
a x a x x -+-=,
即2ln x x a x +=,令2ln ()x x r x x +=,233
1
(1)2(ln )
12ln '()x x x x x x x r x x x +-+--==, 得12ln 0x x --=的根为1,
考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.
【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题.不等
式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用①求得的最小值的.
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 22.【答案】
【解析】解:(1)设事件A 为“两手所取的球不同色”,
则P (A )=1﹣
.
(2)依题意,X 的可能取值为0,1,2,
左手所取的两球颜色相同的概率为
=
,
右手所取的两球颜色相同的概率为=.
P (X=0)=(1﹣)(1﹣)=
=
;
P (X=1)==
;
P (X=2)=
=
.
∴X 的分布列为:
EX=0×
+1×
+2×
=
.
【点评】本题考查概率的求法和求离散型随机变量的分布列和数学期望,是历年高考的必考题型.解题时要认真审题,仔细解答,注意概率知识的灵活运用.
23.【答案】
【解析】 解:由条件=
,设
,
在中,由余弦定理得
.
=.
在中,由正弦定理,得
(
)
(分钟)
答到火车站还需15分钟.
24.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,
∵PD⊥底面ABCD,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面AEC⊥平面PDB.
(Ⅱ)解:设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE∥PD,,
又∵PD⊥底面ABCD,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.
25.【答案】
【解析】解:(1)对(+)n,所有二项式系数和为2n
=512,
解得n=9;
设T r+1为常数项,则:
T r+1=C9r=C9r2r,
由﹣r=0,得r=3,
∴常数项为:C9323=672;
(2)令x=1,得(1+2)9=39.
【点评】本题考查了二项式展开式定理的应用问题,也考查了赋值法求展开式各项系数和的应用问题,是基础题.
26.【答案】
【解析】解:函数f(x)的定义域为(0,+∞),.
(1)当a=2时,f(x)=x﹣2lnx,,
因而f(1)=1,f′(1)=﹣1,
所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),
即x+y﹣2=0
(2)由,x>0知:
①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
②当a>0时,由f′(x)=0,解得x=a.
又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.
从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.
综上,当a≤0时,函数f(x)无极值;
当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.。