高考物理带电粒子在复合场中的运动各地方试卷集合汇编含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练
1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和
O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加
速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:
(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;
(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =
(2)22nqUm
B =,2(1,2,3,,1)n k =-(3)
22
22(1)t qum k -磁,2
2(1)=k m t h qU
-电 【解析】 【分析】
带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】
(1)离子经电场加速,由动能定理:
2
12
qU mv =
可得2qU
v m
=
磁场中做匀速圆周运动:
2
v qvB m r
=
刚好打在P 点,轨迹为半圆,由几何关系可知:
2
kd r =
联立解得B =
; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:
212
n nqU mv =
2n
n n
v qv B m r =
且:
2
n kd r =
解得:B =
,
要求离子第一次加速后不能打在板上,有
12
d r >
且:
2112
qU mv =
2
111
v qv B m r =
解得:2n k <,
故加速次数n 为正整数最大取21n k =- 即:
B =
2(1,2,3,
,1)n k =-;
(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
由匀速圆周运动:
22r m
T v qB
ππ=
=
22=(1)222(1)
T t n T qum k -+=-磁
电场中一共加速n 次,可等效成连续的匀加速直线运动.由运动学公式
221(1)2
k h at -=
电 qU
a mh
=
可得:22(1)=k m
t h qU -电
2.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。
两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。
不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R
由
2 1
1
v
qvB m
r
=,解得
4mv
B
qD
=
则当外切时,半径为
e
R
由
2
1
2
v
qvB m
r
=,解得
4
3
mv
B
qD
=
(2)若Ⅰ区域的磁感应强度为
22
9
32
qB L
m
U
=,则粒子运动的半径为00
10016
819
U U
U
≤≤;Ⅱ
区域的磁感应强度为2
1
2
qU mv
=,则粒子运动的半径为
2
v
qvB m
r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T1、T2,由运动公式可得:
1
1
1
2R
T
v
π
=;
3
4
r L
=
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,
Ⅰ区两段圆弧所对的圆心角相同,设为
1
θ,Ⅱ区内圆弧所对圆心角为
2
θ,圆弧和大圆的两个切点与圆心O连线间的夹角设为α,由几何关系可得:1120
θ=;
2
180
θ=;
60
α=
粒子重复上述交替运动回到H点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t1、t2,可得:r U
∝;
1
5
6
U
L
U
L
=
设粒子运动的路程为s,由运动公式可知:s=v(t1+t2)
联立上述各式可得:s=5.5πD
3.如图所示,在坐标系Oxy 的第一象限中存在沿y 轴正方向的匀强电场,场强大小为E .在其它象限中存在匀强磁场,磁场方向垂直于纸面向里.A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 的距离为L .一质量为m ,电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域.并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用.试求: (1)粒子经过C 点速度的大小和方向; (2)磁感应强度的大小B .
【来源】2007普通高等学校招生全国统一考试(全国卷Ⅱ)理综物理部分 【答案】(1)α=arctan
2h l
(2)B 2212mhE
h l q
+【解析】 【分析】 【详解】
试题分析:(1)以a 表示粒子在电场作用下的加速度,有qE ma =①
加速度沿y 轴负方向.设粒子从A 点进入电场时的初速度为0v ,由A 点运动到C 点经历的时间为t , 则有:2
12
h at =
② 0l v t =③
由②③式得02a v h
= 设粒子从C 点进入磁场时的速度为v ,v 垂直于x 轴的分量12v ah =⑤ 由①④⑤式得:2
2101
v v v +=(
)22
42qE h l mh
+⑥
设粒子经过C 点时的速度方向与x 轴的夹角为α,则有
1
v tan v α=
⑦ 由④⑤⑦式得2h arctan
l
α=⑧
(2)粒子从C 点进入磁场后在磁场中作速率为v 的圆周运动.若圆周的半径为R ,
则有qvB =m 2
v R
⑨
设圆心为P ,则PC 必与过C 点的速度垂直,且有PC =PA R =.用β表示PA 与y 轴的夹角,由几何关系得:Rcos Rcos h βα=+⑩
Rsin l Rsin βα=-
解得
222242h l R h l hl
++=由⑥⑨式得:B 2212mhE
h l q
+
4.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。
在t =0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E 0、磁感应强度B 0、粒子的比荷
q m
均已知,且002m t qB π=,两板间距20
2
10mE h qB π=。
(1)求粒子在0~t 0时间内的位移大小与极板间距h 的比值。
(2)求粒子在板板间做圆周运动的最大半径(用h 表示)。
(3)若板间电场强度E 随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。
【来源】带电粒子的偏转
【答案】(1)粒子在0~t 0时间内的位移大小与极板间距h 的比值11
5
s h = (2)粒子在极板间做圆周运动的最大半径225h R π
= (3)粒子在板间运动的轨迹如图:
【解析】 【分析】 【详解】
(1)设粒子在0~t 0时间内运动的位移大小为s 1
2
1012s at =
① 0qE
a m
=②
又已知2002
00
102,mE m t h qB qB ππ== 联立解得:
115
s h = (2)解法一
粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。
设运动速度大小为v 1,轨道半径为R 1,周期为T ,则
10v at =
2
1101
mv qv B R =
联立解得:15h R π
=
又00
2m
T t qB π=
= 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。
在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 2
2
210012
s v t at =+
解得:235
s h =
由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:
210v v at =+
22
202
mv qv B R =
解得225h R π
=
由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。
在4t 0~5t 0时间内,粒子运动到正极板(如图所示):
因此粒子运动的最大半径225h R π
=。
解法二
由题意可知,电磁场的周期为2t 0,前半周期 粒子受电场作用做匀加速直线运动,加速度大小为:
qE a m
=
方向向上。
后半周期粒子受磁场作用做匀速圆周运动,周期为T
00
2m
T t qB π=
= 粒子恰好完成一次匀速圆周运动。
至第n 个周期末,粒子位移大小为s n
201
()2
n s a nt =
又已知
2
2
0 10
mE
h
qB
π
=
由以上各式得:
2
5
n
n
s h
=
粒子速度大小为:0
n
v ant
=
粒子做圆周运动的半径为:
n
n
mv
R
qB
=
解得:
5
n
nh
R
π
=
显然223
s R h s
+<<
因此粒子运动的最大半径
2
2
5
h
R
π
=。
(3)粒子在板间运动的轨迹如图所示:
5.如图,绝缘粗糙的竖直平面MN左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E,磁场方向垂直纸面向外,磁感应强度大小为B.一质量为m、电荷量为q的带正电的小滑块从A点由静止开始沿MN下滑,到达C点时离开MN做曲线运动.A 、C两点间距离为h,重力加速度为g.
(1)求小滑块运动到C点时的速度大小v c;
(2)求小滑块从A点运动到C点过程中克服摩擦力做的功W f;
(3)若D点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D点时撤去磁场,此后小滑块继续运动到水平地面上的P点.已知小滑块在D点时的速度大小为v D,从D点运动到P点的时间为t,求小滑块运动到P点时速度的大小v p.
【来源】2015年全国普通高等学校招生统一考试物理(福建卷带解析)
【答案】(1)E/B (2)(3)
【解析】 【分析】 【详解】
小滑块到达C 点时离开MN ,此时与MN 间的作用力为零,对小滑块受力分析计算此时的速度的大小;由动能定理直接计算摩擦力做的功W f ;撤去磁场后小滑块将做类平抛运动,根据分运动计算最后的合速度的大小;
(1)由题意知,根据左手定则可判断,滑块在下滑的过程中受水平向左的洛伦兹力,当洛伦兹力等于电场力qE 时滑块离开MN 开始做曲线运动,即Bqv qE = 解得:E v B
=
(2)从A 到C 根据动能定理:2
102
f mgh W mv -=
- 解得:2
212f E W mgh m B
=-
(3)设重力与电场力的合力为F ,由图意知,在D 点速度v D 的方向与F 地方向垂直,从D 到P 做类平抛运动,在F 方向做匀加速运动a=F /m ,t 时间内在F 方向的位移为212
x at = 从D 到P ,根据动能定理:150a a +=,其中2114
mv
联立解得:P v =
【点睛】
解决本题的关键是分析清楚小滑块的运动过程,在与MN 分离时,小滑块与MN 间的作用力为零,在撤去磁场后小滑块将做类平抛运动,根据滑块的不同的运动过程逐步求解即可.
6.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
0t =时,一带正电、质量为m 的微粒从左边界上的1N 点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的2N 点,Q 为线段12N N 的中点,重力加速度为g ,上述d 、0E 、m 、v 、g 为已知量。
(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;
(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。
【来源】2010年普通高等学校招生全国统一考试(安徽卷)理综
【答案】(1)0
2E B v
=;(2)122d v T t t v g π=+=+;(3)min 1min 2
(21)2v T t t g π+=+。
【解析】 【分析】
根据物体的运动性质结合物理情景确定物体的受力情况。
再根据受力分析列出相应等式解决问题。
【详解】
(1)根据题意,微粒做圆周运动,洛伦兹力完全提供向心力,重力与电场力平衡, 则mg=qE 0 ①
∵微粒水平向右做直线运动,∴竖直方向合力为0. 则 mg+qE 0=qvB ② 联立①②得:q=
③B=
④
(2)设微粒从N 1运动到Q 的时间为t 1,作圆周运动的周期为t 2, 则=vt 1⑤qvB=m
⑥2πR=vt 2 ⑦
联立③④⑤⑥⑦得:t 1=,t 2=⑧ 电场变化的周期T=t 1+t 2=
+
⑨
(3)若微粒能完成题述的运动过程,要求 d≥2R ⑩ 联立③④⑥得:R=
,设N 1Q 段直线运动的最短时间t 1min ,由⑤⑩得t 1min =
,
因t 2不变,T 的最小值 T min =t 1min +t 2=。
答:(1)微粒所带电荷量q 为,磁感应强度B 的大小为。
(2)电场变化的周期T 为+。
(3)T 的最小值为。
【点睛】
运动与力是紧密联系的,通过运动情况研究物体受力情况是解决问题的一个重要思路。
7.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A
,一比荷
q
m
=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;
(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【来源】【市级联考】陕西省榆林市2019届高三第二次理科综合模拟试题(物理部分) 【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】
(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t
2
122L qE t m = 解得E=16N/C
(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0
tan v qE t m
θ=
可得θ=450粒子射入磁场时的速度大小为2v 0
粒子在磁场中做匀速圆周运动:2
v qvB m r
=
由几何关系可知22
r L = 解得B=1.6×10-2T
(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为
32π
,带负电的粒子转过的圆心角为2
π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r m
T v qB
ππ==; 带正电的粒子在磁场中运动的时间为:413
5.910s 4
t T -==⨯; 带负电的粒子在磁场中运动的时间为:421
2.010s 4
t T -=
=⨯ 带电粒子在AC 两点射入电场的时间差为4
12 3.910t t t s -∆=-=⨯
8.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D 型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D 型盒中的匀强磁场的磁感应强度为0B ,回旋加速器的半径为R ,加速电压为U ;D 型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m 、电量为e ,重力不计.真空中的光速为c ,普朗克常量为h .
(1)求正、负电子进入对撞机时分别具有的能量E 及正、负电子对撞湮灭后产生的光子频率v
(2)求从开始经回旋加速器加速到获得最大能量的过程中,D 型盒间的电场对电子做功的平均功率P
(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A 1、A 2、A 4……A n 共有n 个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d .改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如
图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B 大小
【来源】2019年天津市滨海新区塘沽一中高三三模理综物理试卷
【答案】(1) 222202e B R mc v mh h =+,222
02e B R E m = ;(2) 20e B U m
π ;(3)02sin B R n d
π
【解析】 【详解】
解:(1)正、负电子在回旋加速器中磁场里则有:2
00mv evB R
= 解得正、负电子离开回旋加速器时的速度为:00eB R
v m
=
正、负电子进入对撞机时分别具有的能量:2222
00122e B R E mv m
==
正、负电子对撞湮灭时动量守恒,能量守恒,则有:222E mc hv +=
正、负电子对撞湮灭后产生的光子频率:2222
02e B R mc v mh h
=+
(2) 从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速n 次,则有:
201
2
neU mv =
解得:22
02eB R n mU
=
正、负电子在磁场中运动的周期为:0
2m
T eB π=
正、负电子在磁场中运动的时间为:2022B R n
t T U
π==
D 型盒间的电场对电子做功的平均功率:20e B U
W E P t t m
π===
(3)设电子在匀强磁场中做圆周运动的半径为r ,由几何关系可得sin
2
d
r n
π
=
解得:
2sin
d r n
π=
根据洛伦磁力提供向心力可得:
2
mv ev
B
r
=
电磁铁内匀强磁场的磁感应强度B大小:0
2sin
B R
n
B
d
π
=
9.如图所示,在平面直角坐标系中,AO是∠xOy的角平分线,x轴上方存在水平向左的匀强电场,下方存在竖直向上的匀强电场和垂直纸面向里的匀强磁场,两电场的电场强度大小相等.一质量为m、电荷量为+q的质点从OA上的M点由静止释放,质点恰能沿AO 运动且通过O点,经偏转后从x轴上的C点(图中未画出)进入第一象限内并击中AO上
的D点(图中未画出).已知OM的长度
1
202
L=m,匀强磁场的磁感应强度大小为B =
m
q
(T),重力加速度g取10m/s2.求:
(1)两匀强电场的电场强度E的大小;
(2)OC的长度L2;
(3)质点从M点出发到击中D点所经历的时间t.
【来源】2018《单元滚动检测卷》高考物理(四川专用)精练第九章物理试卷
【答案】(1)
mg
q
E=(2)40m(3)7.71 s
【解析】
【详解】
(1)质点在第一象限内受重力和水平向左的电场,沿AO做匀加速直线运动,所以有
mg qE
=
即
mg
q
E=
(2)质点在x轴下方,重力与电场力平衡,质点做匀速圆周运动,从C点进入第一象限后做类平抛运动,其轨迹如图所示,
有:2
v qvB m R
=
由运动规律知22v aL =1 由牛顿第二定律得:2a g =
解得:202m R =
由几何知识可知OC 的长度为:L 2=2Rcos45°=40m (3) 质点从M 到O 的时间为:1=2v
t s a
= 质点做圆周运动时间为:2323 4.7142R t s s v ππ=
⨯== 质点做类平抛运动时间为:3=
1R
t s v
= 质点全过程所经历的时间为:t=t 1+t 2+t 3=7.71s 。
10.如图所示为一“匚”字型金属框架截面图,上下为两水平且足够长平行金属板,通过左侧长度为L =1m 的金属板连接.空间中有垂直纸面向里场强大小B =0.2T 的匀强磁场,金属框架在外力的作用下以速度v 0=1m/s 水平向左做匀速直线运动.框架内O 处有一质量为m =0.1kg 、带正电q =1C 的小球.若以某一速度水平向右飞出时,则沿图中虚线OO '′做直线运动;若小球在O 点静止释放,则小球的运动轨迹沿如图曲线(实线)所示,已知此曲线在最低点P 的曲率半径(曲线上过P 点及紧邻P 点两侧的两点作一圆,在极限情况下,这个圆的半径叫做该点的曲率半径)为P 点到O 点竖直高度h 的2倍,重力加速度g 取10 m /s 2.求:
(1)小球沿图中虚线OO '做直线运动速度v 大小 (2)小球在O 点静止释放后轨迹最低点P 到O 点竖直高度h
【来源】江西省名校(临川一中、南昌二中)2018-2019学年高三5月联合考理综物理试题 【答案】(1)v 4m/s =;(2)4h m =
【解析】 【详解】
解:(1)框架向左运动,产生感应电动势:0U BLv = 板间场强:0U
E Bv L
=
= 小球做匀速直线运动,受力平衡:Eq qvB mg += 可解得:v 4m/s = (2)最大速率点在轨迹的最低点 根据动能定理可得:2
102
m Eqh mgh mv -+=
- 最低点根据牛顿第二定律和圆周运动规律有:22m
m v Eq qv B mg m h
+-=
联立可解得:4h m =
11.如图甲所示,两平行金属板接有如图乙所示随时间t 变化的电压U ,两板间电场可看作均匀的,且两金属板外无电场,两金属板长L =0.2 m ,两板间距离d =0.2 m .在金属板右侧边界MN 的区域有一足够大的匀强磁场,MN 与两板中线OO ′垂直,磁感应强度为B ,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO ′连续射入电场中,已知每个粒子
速度v 0=105 m/s ,比荷
q
m
=108 C/kg ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.
(1)试求带电粒子射出电场时的最大速度;
(2)任意时刻从电场射出的带电粒子,进入磁场时在MN 上的入射点和在MN 上出射点的距离是一确定的值s ,试通过计算写出s 的表达式(用字母m 、v 0、q 、B 表示).
【来源】【市级联考】肇庆市2019届高三第三次统一检测理综物理试题
【答案】(1)55210/ 1.4110/m v m s m s =⨯.方向:斜向右上方或斜向右下方,与初速度方向成45°夹角;(2)s 0
22mv Rsin qB
θ==,距离s 与粒子在磁场中运行速度的大小无关,s 为定值. 【解析】 【分析】 【详解】
(1)偏转电压由0到200V 的变化中,粒子流可能都能射出电场,也可能只有部分粒子能
射出电场,设偏转的电压为U 0时,粒子刚好能经过极板的右边缘射出,则:
2
00
1()22U
q d L md v = 解得U 0=100V
知偏转电压为100V 时,粒子恰好能射出电场,且速度最大. 根据动能定理得,
220011
222
m U mv mv q -= 55210/ 1.4110/m v m s m s =⨯=⨯.
方向:斜向右上方或斜向右下方,与初速度方向成45°夹角.
(2)设粒子射出电场速度方向与MN 间夹角为θ.粒子射出电场时速度大小为:0
v v sin θ
=
在磁场中,2
v qvB m R
= 解得R 0mv mv qB qBsin θ
=
= 因此粒子射进磁场点与射出磁场点间距离为:s 0
22mv Rsin qB
θ==
. 由此可看出,距离s 与粒子在磁场中运行速度的大小无关,s 为定值.
12.磁流体发电的工作原理示意如图.图中的长方体是发电导管,其中空部分的长、高、宽分别为l a b 、、,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R 相连.整个发电导管处于匀强磁场中,磁感应强度为B ,方向如图垂直前后侧面.发电导管内有电阻率为ρ的高温高速电离气体沿导管向右流动,并通过专用管道导出.由于运动的电离气体受到磁场作用,产生了电动势.已知气体在磁场中的流速为v ,
求:(1)磁流体发电机的电动势E 的大小;
(2)磁流体发电机对外供电时克服安培力做功的功率P 安多大; (3)磁流体发电机对外供电时的输出效率η.
【来源】【全国百强校】天津市实验中学2019届高三考前热身训练物理试题
【答案】(1)Bav(2)
222
B a v
a
R
bl
ρ
+
(3)
100%
R
a
R
bl
ρ
⨯
+
【解析】
【详解】
解:(1)磁流体发电机的电动势:E Bav
=
(2)回路中的电流:
E
I
R r
=
+
发电机内阻:
a
r
bl
ρ
=
受到的安培力:F BIa
=
克服安培力做功的功率:P安v
F
=
克服安培力做功的功率:P安
222
B a v
a
R
bl
ρ
=
+
(3)磁流体发电机对外供电时的输出效率:
UI
EI
η=
外电压:U IR
=
磁流体发电机对外供电时的输出效率:
100%
R
a
R
bl
η
ρ
=⨯
+
13.如图所示,ABCD与MNPQ均为边长为l的正方形区域,且A点为MN的中点。
ABCD 区域中存在有界的垂直纸面方向匀强磁场,在整个MNPQ区域中存在图示方向的匀强电场。
质量为m、电荷量为e的电子以大小为的初速度垂直于BC射入正方形ABCD区域,且都从A点进入电场,已知从C点进入磁场的粒子在ABCD区域中运动时始终位于磁场中,不计电子重力,求:
(1)匀强磁场区域中磁感应强度B的大小和方向;
(2)要使所有粒子均能打在PQ边上,电场强度E至少为多大;
(3)ABCD区域中磁场面积的最小值是多少。
【来源】【全国百强校】天津市耀华中学2019届高三高考一模物理试题
【答案】(1) ,方向为垂直纸面向外;(2) ;(3)
【解析】
【详解】
解:(1)由洛伦磁力提供向心力可得:
由题意则有:
解得:,方向为垂直纸面向外
(2)在匀强电场中做内平抛运动,则有:
解得:
(3)图中阴影部分为磁场面积最小范围,由几何关系可知:
14.在空间中存在垂直于纸面向里的匀强磁场,其竖直边界AB、CD的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场,现有质量为m、带电量为+q的粒子(不计重力)从P点以大小为v0的水平初速度射入电场,随后与边界AB成45°射入磁场,若粒子能垂直CD边界飞出磁场,试求:
(1)匀强磁场的磁感应强度B;
(2)从进入电场到穿出磁场的总时间。
【来源】陕西省汉中市汉台区2019届高三年级教学质量第一次检测考试物理试题
【答案】(1)匀强磁场的磁感应强度B 为0mv qd ;(2)从进入电场到穿出磁场的总时间为00
4π+mv d qE v 。
【解析】
【详解】
(1)粒子进入磁场时的速度为:002cos 45v v v =
=︒
粒子运动轨迹如图所示,
由几何知识得:2sin 45==︒
d r d 粒子在磁场中做圆周运动,洛伦兹力提供向心力,由牛顿第二定律得:2
v qvB m r = 解得:0mv B qd
=; (2)粒子在电场中做类平抛运动,粒子进入磁场时的竖直分速度为:v y =v sin45°=v 0= 1qE t m
, 解得,粒子在电场中的运动时间为:01mv t qE =
; 粒子在磁场中做匀速运动的周期为:2m T qB
π= ;
粒子在磁场中转过的圆心角我:θ=45°, 粒子在磁场中的运动时间为:23604θπ==︒m
t T qB ,
粒子从进入电场到穿出磁场的总时间为:0120
4π=+=+mv d t t t qE v
15.在如图所示的竖直平面内,水平轨道CD 和倾斜轨道GH 与半径r=944
m 的光滑圆弧轨道分别相切于D 点和G 点,GH 与水平面的夹角θ=37°.过G 点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度B=1.25T;过D 点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度E=1×104N/C .小物体P 1质量m=2×10-3kg 、电荷量q=+8×10-6C,受到水平向右的推力F=9.98×10-3N 的作用,沿CD 向右做匀速直线运动,到达D 点后撤去推力.当P 1到达倾斜轨道底端G 点时,不带电的小物体P 2在GH 顶端静止释放,经过时间t=0.1s 与P 1相遇.P 1和P 2与轨道CD 、GH 间的动摩擦因数均为μ=0.5,取g=10m/s 2,sin37°=0.6,cos37°=0.8,物体电荷量保持不变,不计空气阻力.求:
(1)小物体P 1在水平轨道CD 上运动速度v 的大小;
(2)倾斜轨道GH 的长度s .
【来源】【全国百强校】2017届浙江省温州中学高三3月高考模拟物理试卷(带解析)
【答案】(1)4m/s (2)0.56m
【解析】
【分析】
【详解】
(1)设小物体P 1在匀强磁场中运动的速度为v ,受到水平外力F ,重力mg ,支持力N ,竖直向上的洛伦兹力F 1,滑动摩擦力f
则F 1=qv B①
N mg qvB =-,f N μ=②
匀速直线运动,物体处于平衡状态;0F f -=③
解得4v =m/s④
说明:①③各1分,②④各2分
(2)设物体P 1在G 点的速度为1v ,由于洛伦兹力不做功
由动能定理知22111sin 37(1cos37)22
qEr mgr mv mv ︒--︒=-⑤。