fluent能量方程建立

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

fluent能量方程建立
英文回答:
Introduction.
The energy equation is a fundamental equation in fluid dynamics that describes the conservation of energy in a fluid flow. It is used to analyze a wide variety of fluid flow problems, including heat transfer, combustion, and propulsion.
Derivation of the Energy Equation.
The energy equation can be derived from the first law of thermodynamics, which states that the change in the
total energy of a system is equal to the net heat transfer into the system minus the net work done by the system. For a fluid flow, the total energy is the sum of the kinetic energy, internal energy, and potential energy. The net heat transfer is the sum of the heat transfer due to conduction,
convection, and radiation. The net work done is the sum of the work done by pressure forces and viscous forces.
The Energy Equation in Differential Form.
In differential form, the energy equation is given by:
ρ(∂e/∂t + u∂e/∂x + v∂e/∂y + w∂e/∂z) = -
p(∂u/∂x + ∂v/∂y + ∂w/∂z) + ∇⋅(k∇T) + S.
where:
ρ is the flui d density.
e is the specific energy.
u, v, and w are the velocity components in the x, y, and z directions, respectively.
p is the pressure.
T is the temperature.
k is the thermal conductivity.
S is the source term.
The Energy Equation in Integral Form.
The energy equation can also be expressed in integral form:
∫∫∫ρ(∂e/∂t + u∂e/∂x + v∂e/∂y + w∂e/∂z) dV = -∫∫∫p(∂u/∂x + ∂v/∂y + ∂w/∂z) dV + ∫∫∫∇⋅(k∇T) dV + ∫∫∫S dV.
where V is the control volume.
Applications of the Energy Equation.
The energy equation is used in a wide variety of applications, including:
Heat transfer analysis.
Combustion analysis.
Propulsion analysis.
Environmental modeling.
中文回答:
引言。

能量方程是流体力学中的一个基本方程,它描述了流体流动中能量守恒。

它用于分析广泛的流体流动问题,包括传热、燃烧和推进。

能量方程的推导。

能量方程可以从热力学第一定律推导出来,该定律指出系统总能量的变化等于传递到系统中的净热量减去系统所做的净功。

对于流体流动,总能量是动能、内能和势能的总和。

净热传递是传导、对流和辐射引起的热传递的总和。

净功是压力力和粘性力所做的功的总和。

微分形式的能量方程。

微分形式中,能量方程表示为:
ρ(∂e/∂t + u∂e/∂x + v∂e/∂y + w∂e/∂z) = -p(∂u/∂x + ∂v/∂y + ∂w/∂z) + ∇⋅(k∇T) + S.
其中:
ρ 是流体密度。

e 是比能量。

u、v 和 w 分别是 x、y 和 z 方向的速度分量。

p 是压力。

T 是温度。

k 是热导率。

S 是源项。

积分形式的能量方程。

能量方程也可以表示为积分形式:
∫∫∫ρ(∂e/∂t + u∂e/∂x + v∂e/∂y + w∂e/∂z) dV = -∫∫∫p(∂u/∂x + ∂v/∂y + ∂w/∂z) dV + ∫∫∫∇⋅(k∇T) dV + ∫∫∫S dV.
其中 V 是控制体积。

能量方程的应用。

能量方程用于广泛的应用,包括:
传热分析。

燃烧分析。

推进分析。

环境建模。

相关文档
最新文档