四川广安市七年级数学上册第一单元《有理数》-填空题专项经典测试题(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题
1.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.
32【分析】观察
分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n
解析:32
【分析】
观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.
【详解】
解:观察、分析题图中数的排列规律可知:第n行第一列是2n,且第n行第一列到第n列
-=-=.
的数从左往右依次减少1,所以第六行第五个数是26436432
故答案为:32.
【点睛】
本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.
2.某工厂在2018年第一季度的效益如下:一月份获利润150万元,二月份比一月份少获利润70万元,三月份亏损5万元.则:
(1)一月份比三月份多获利润____万元;
(2)第一季度该工厂共获利润____万元.225【分析】(1)根据有理数的加减运算即可求出答案;(2)把三个月的利润相加即可得到答案【详解】解:(1)根据题意则150(5)=155(万元);故答案为:155;(2)二月份获利为:15070= 解析:225
【分析】
(1)根据有理数的加减运算,即可求出答案;
(2)把三个月的利润相加,即可得到答案.
【详解】
解:(1)根据题意,则
150-(-5)=155(万元);
故答案为:155;
(2)二月份获利为:150-70=80(万元),
∴第一季度该工厂共获利润:150+80+(5-)=225(万元);
故答案为:225;
【点睛】
本题考查了有理数的加减混合运算,解题的关键是熟练掌握运算法则进行解题.3.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;
(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;
(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解
解析:(1)5.6 (2)2000 (3)36.55
【分析】
(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;
(2)把十分位上的数字5进行四舍五入即可;
(3)把千分位上的数字7进行四舍五入即可.
【详解】
解:(1)5.649≈5.6.
(2)1999.58≈2000
(3)36.547≈36.55
故答案为:5.6;2000;36.55
【点睛】
本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.
4.计算:(-0.25)-
1
3
4
⎛⎫
-

⎝⎭
+2.75-
1
7
2
⎛⎫
+

⎝⎭
=___.-175【分析】根据减法法则将减
法全部转化为加法同时把分数化成小数然后利用加法的交换结合律进行计算【详解】解:原式=-025+325+275-75=(-025-75)+(325+275)=-775+
解析:-1.75
【分析】
根据减法法则将减法全部转化为加法,同时把分数化成小数,然后利用加法的交换结合律进行计算.
【详解】
解:原式=-0.25+3.25+2.75-7.5
=(-0.25-7.5)+( 3.25+2.75)
=-7.75+6
=-1.75.
故答案为:-1.75.
【点睛】
本题考查了有理数加减混合运算,一般思路是先把加减法统一为加法,然后利用加法的运算律进行计算.
5.若2
(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质
解析:-1
【分析】
直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.
【详解】
由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.
故答案为-1.
【点睛】
本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.
6.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则
200720082009()()()a a b cd b
++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运
解析:2
【分析】
利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.
【详解】
解:根据题意得:a+b=0,cd=1,
1a b =- 则原式=0+1-(-1)=2.
故答案为:2.
【点睛】
此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
7.一个数的25是165-,则这个数是______.−8【分析】把这个数看成单位1它的对应的数量是求这个数用除法【详解】()÷=−8故答案为−8【点睛】此题考查有理
数的除法解题关键在于这个数看成单位1 解析:−8
【分析】
把这个数看成单位“1”,它的2
5
对应的数量是
16
5
-,求这个数用除法
【详解】
(
16
5
-)÷
2
5
=−8.
故答案为−8.
【点睛】
此题考查有理数的除法,解题关键在于这个数看成单位“1”
8.如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数
解析:﹣48
【分析】
数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是1
4
cm,即 1cm表示 4个
单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.
【详解】
数轴左边 12 厘米处的点表示的有理数是﹣48.
故答案为﹣48.
【点睛】
本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.
9.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的
解析:-5或1
【分析】
根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.
【详解】
分为两种情况:
①当点在表示-2的点的左边时,数为-2-3=-5;
②当点在表示-2的点的右边时,数为-2+3=1;
故答案为-5或1.
【点睛】
本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.
10.点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题
解析:-4
【解析】
试题
两点的距离为8,则点A、B距离原点的距离是4,
∵点A,B互为相反数,A在B的右侧,
∴A、B表示的数是4,-4.
11.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=
1051×107故答案为:1051×107【点睛】本题考查了科学
解析:051×107
【分析】
绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.
【详解】
解:1051万=10510000=1.051×107.
故答案为:1.051×107.
【点睛】
本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,
12.下列各组式子:①a﹣b与﹣a﹣b,②a+b与﹣a﹣b,③a+1与1﹣a,④﹣a+b与a ﹣b,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a-b与-a-b=-(a+b)不是互为相反数②a+b与-a-b是互为相反数③a+1与1-a不是相反数④-a+b与a-b是互为相反数故答案
解析:②④
【分析】
直接利用互为相反数的定义分析得出答案.
【详解】
解:①a-b与-a-b=-(a+b),不是互为相反数,
②a+b与-a-b,是互为相反数,
③a+1与1-a,不是相反数,
④-a+b与a-b,是互为相反数.
故答案为:②④.
【点睛】
本题考查了互为相反数,正确把握相反数的定义是解题的关键.
13.气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的
解析:-70
【分析】
先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.
【详解】
解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.
∵-20-50=-20+(-50)=-70
∴答案为:-70.
【点睛】
本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.
14.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题
解析:24
【分析】
找出绝对值小于4.5的所有负整数,求出之积即可.
【详解】
解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,
-⨯-⨯-⨯-=,
∴积为:4(3)(2)(1)24
故答案为:24.
【点睛】
此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.
15.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所
-,若ABC绕着顶点顺时针方向在数轴上翻转1次示,点A,B对应的数分别为0和1
后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.
4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的
解析:4
【分析】
结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.
【详解】
根据题意可知每3次翻转为一个循环,
∴再翻转3次后,点C在数轴上,
+⨯=.
∴点C对应的数是1134
故答案为:4.
【点睛】
本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.
16.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积
abcde=,则它们的和a b c d e
2000
++++的最小值为__.【分析】先把
abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:
abcde=2000=
解析:【分析】
先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.
【详解】
解:abcde=2000=24×53,
为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.
故答案为:23.
【点睛】
本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.17.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语
解析:4460
【分析】
工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.
【详解】
++-⨯=(元).
根据题意,得他九月份工资为4000300(1320010000)5%4460
故答案为:4460.
【点睛】
主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.
18.一个班有45个人,其中45是_____数;大门约高1.90 m,其中1.90是_____数.准确近似【分析】根据准确数和近似数的定义对数据进行判断【详解】一个班有45个人其中45是准确数;大门约高190m其中190是近似数故答案为:准确;近似【点睛】本题考查了近似数近似数与精确数的接近程度
解析:准确近似
【分析】
根据准确数和近似数的定义对数据进行判断.
【详解】
一个班有45个人,其中45是准确数;大门约高1.90 m,其中1.90是近似数.
故答案为:准确;近似.
【点睛】
本题考查了近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位.
19.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中
解析:68和10 14亿和31.4
【分析】
准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.
【详解】
我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4
故答案为:68和10;14亿和31.4
【点睛】
理解“准确数”和“近似数”的意义是解决此题的关键.
20.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为
,则计算结果为________.73xy3=-2【分析】首先确定使
用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40
解析:73,x y ,3,= -2
【分析】
首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.
【详解】
解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.
【点睛】
此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 21.计算:3122
--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数
解析:-2 4
【分析】
直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.
【详解】
3122--=-42
=-2;︱-9︱-5==9-5=4, 故答案为-2,4.
【点睛】
本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 22.把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答
解析:90
【分析】
要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.
【详解】
解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,
故答案为:35.90.
【点睛】
本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.
23.填空:
166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案
【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则
解析:1 6 6 -18 -18 0 0
【分析】
由有理数的乘法和除法运算法则进行计算,即可得到答案.
【详解】
解:根据题意,则
331÷=,1313
⨯=; (12)(2)6-÷-=,1(12)()62
-⨯-=; 1(9)182
-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-
=; 故答案为:1;1;6;6;-18;-18;0;0.
【点睛】
本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.
24.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者
之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:
解析:46×108
【分析】
本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.
【详解】
解:依题意得:820×300000=246000000=2.46×108.
故答案为:2.46×108.
【点睛】
此题主要考查科学记数法的表示方法.科学记数法的表示形式为10n
a 的形式,其中
1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
25.数轴上A、B两点所表示的有理数的和是 ________.
-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1
解析:-1
【解析】
由数轴得,点A表示的数是﹣3,点B表示的数是2,
∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,
故答案为-1.
26.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.
012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012
解析:0,1,2
【分析】
根据题意可以确定被污染部分的取值范围,继而求出答案.
【详解】
设被污染的部分为a,
由题意得:-1<a<3,
在数轴上这一部分的整数有:0,1,2.
∴被污染的部分中共有3个整数,分别为: 0,1,2.
故答案为0,1,2.
【点睛】
考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念. 27.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值大于10时n 是正数;当原数的绝对
解析:71.610⨯
【解析】
科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.
16000000 =71.610⨯.
28.2
3(2)0x y -++=,则x y 为______.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方
解析:﹣8
【分析】
根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.
【详解】
解:∵23(2)0x y -++=,
∴x-3=0,y+2=0,
解得:x=3,y=﹣2,
∴x y =3(2)-=﹣8,
故答案为:﹣8.
【点睛】
本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.
29.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1
解析:3; -1,0,1等.
【分析】
当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.
【详解】
绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.
故答案为(1). 3; (2). -1,0,1等.
【点睛】
本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.
30.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线
解析:2020或2021
【分析】
分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度
+1,不重合时盖住的整点是线段的长度,由此即可得出结论.
【详解】
若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点
+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021
长的线段AB盖住2020或2021个整点.
故答案为:2020或2021.
【点睛】
本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.。

相关文档
最新文档