【教案】 与三视图有关的计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三视图有关的计算
【知识与技能】
熟练掌握已知空间几何体的三视图求其表面 积和体积的方法.
【过程与方法】
1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力.
2.通过研究性学习,培养学生的整体性思维.
【情感态度】
通过研究三视图,研究我国著名建筑物的三视图研究,培养学生的爱国情结.
【教学重点】
观察,实践,猜想和归纳的探究过程.
【教学难点】
如何引导学生进行合理的探究.
一、复习提问
1.如何求空间几何体的表面积和体积(例如:球,棱柱,棱台等);
2.三视图与其几何体如何转化.
二、思考探究,获取新知
如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:m),求该几何体的面积和体积.
解 该几何体是正三棱柱,由正视图知正三棱柱的高为3,底面三角形的高为3.则底面边长为2,故S 底面面积=)(2cm 3232=÷
S 侧面面积=2×3×3=18 (2)
故这个几何体的表面积S = 2S 底面面积十S 侧面面积 =)(2cm 1832+
三棱柱的体积是)(3cm 3333=⨯
【教学说明】空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清 楚,然后再代公式进行计算.
求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那么请同学们动脑筋想一想,假设没 有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积呢?此时应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算
思考
如何求出四棱台的表面积和体积?
请大家回想一下,在解答的过程中,容易出错的地方是什么(让学生思考).
【总结归纳】求组合几何体的表面积的时候容易出错.
三、典例精析、掌握新知
例1 长方体的主视图与俯视图如图所示,则这个长方体的体积是( )
A.52
B.32
C.24
D.9 【分析】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、3、2,因此这个长方体的体积为4×2×3 = 24(平 方单位)
【答案】C
【教学说明】三视图问题一直是中考考查的高频考点,一般题目难度中等偏下,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高,俯视图主要反映物体的长和宽.
例2 将棱长是1的小正方体组成如图所示的几何体,那么这个几何体的表面积是( )
A. 36 2
B. 33 2
C. 30 2
D. 27 2
【分析】算表面积应该从六个方向去计算,不要忽视了底面.
【答案】A
四、师生互动,课堂小结
通过这节课的探究学习,发现由三视图求几何体的表面积和体积,要先将三视图转化为其几何体的直观图,分清楚直观图中的几何要素,然后再代公式进行计算;特别要分清几何体的侧面积与表面积;平时多动脑筋,挖掘与题目相关联的知识点.
1.布置作业:从教材习题中选取.
2.完成练习册中本课时的练习.
本节课以学生自主动手为主,教师引导学生进行合理的探究,培养学生的空间想象能力和整体性思维.。