2019年武汉市九年级数学上期中第一次模拟试题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年武汉市九年级数学上期中第一次模拟试题含答案
一、选择题
1.如图A ,B ,C 是上的三个点,若,则等于( )
A .50°
B .80°
C .100°
D .130°
2.下列事件中,属于必然事件的是( )
A .随时打开电视机,正在播新闻
B .优秀射击运动员射击一次,命中靶心
C .抛掷一枚质地均匀的骰子,出现4点朝上
D .长度分别是3cm ,5cm ,6cm 的三根木条首尾相接,组成一个三角形
3.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a-b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
4.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A .68°
B .20°
C .28°
D .22° 5.抛物线y=﹣(x +2)2﹣3向右平移了3个单位,那么平移后抛物线的顶点坐标是
( ) A .(﹣5,﹣3) B .(﹣2,0) C .(﹣1,﹣3) D .(1,﹣3)
6.已知实数0a <,则下列事件是随机事件的是( )
A .0a ≥
B .10a +>
C .10a -<
D .210a +<
7.已知()222
226x y y x +-=+,则22x y +的值是( ) A .-2
B .3
C .-2或3
D .-2且3 8.抛物线y =2(x -3)2+4的顶点坐标是( )
A .(3,4)
B .(-3,4)
C .(3,-4)
D .(2,4) 9.如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B =135°,P′A ∶P′C =1∶3,则P′A ∶PB =( )
A .1∶2
B .1∶2
C .3∶2
D .1∶3
10.山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是中心对称图形的是( )
A .
B .
C .
D . 11.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有
A .4个
B .3个
C .2个
D .1个
12.如图,弦AB 的长等于⊙O 的半径,点C 在弧AMB 上,则∠C 的度数是( )
A .30º
B .35º
C .25º
D .60º
二、填空题
13.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.
14.如图,△ABC 内接于⊙O ,∠ACB =90°,∠ACB 的角平分线交⊙O 于D .若AC =6,BD =52,则BC 的长为_____.
15.二次函数y=ax2+bx+c的图象如图11所示,且P=|2a+b|+|3b-2c|,Q=|2a-b|-|3b+2c|,则P,Q的大小关系是______.
16.如图,矩形ABCD对角线AC、BD交于点O,边AB=6,AD=8,四边形OCED为菱形,若将菱形OCED绕点O旋转一周,旋转过程中OE与矩形ABCD的边的交点始终为M,则线段ME的长度可取的整数值为___________________.
17.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.
18.如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为¼BB ,则图中阴影部分的面积为_____.
19.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为_____.
20.如图,在△ABC中,AB=6,将△ABC绕点B按逆时针方向旋转30°后得到
△A1BC1,则阴影部分的面积为________.
三、解答题
21.(2016内蒙古包头市)一幅长20cm、宽12cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:2.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm2.
(1)求y与x之间的函数关系式;
(2)若图案中三条彩条所占面积是图案面积的2
5
,求横、竖彩条的宽度.
22.小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.23.2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.
(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?
(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
24.甲乙两人在玩转盘游戏时,把转盘A、B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针所指的两个数字之和为奇数时,甲获胜;为偶数时,乙获胜.
(1)用列表法(或画树状图)求甲获胜的概率;
(2)你认为这个游戏规则对双方公平吗?请简要说明理由.
25.已知关于x的方程220
++-=.
x ax a
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.
故选D
考点:圆周角定理
2.D
解析:D
【解析】
分析:根据事件发生的可能性大小判断相应事件的类型即可.
详解:A.是随机事件,故A不符合题意;
B.是随机事件,故B不符合题意;
C.是随机事件,故C不符合题意;
D.是必然事件,故D符合题意.
故选D.
点睛:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.
3.C
解析:C
【解析】
【分析】
利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2b a =1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a
-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断.
【详解】
∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,
∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.
∴当x=-1时,y >0,
即a-b+c >0,所以①正确;
∵抛物线的对称轴为直线x=-
2b a
=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;
∵抛物线的顶点坐标为(1,n ), ∴244ac b a
-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确;
∵抛物线与直线y=n 有一个公共点,
∴抛物线与直线y=n-1有2个公共点,
∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选C .
【点睛】
本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.
4.D
解析:D
【解析】
试题解析:∵四边形ABCD 为矩形,
∴∠BAD=∠ABC=∠ADC=90°,
∵矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α,
∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,
∵∠2=∠1=112°,
而∠ABD=∠D′=90°,
∴∠3=180°-∠2=68°,
∴∠BAB′=90°-68°=22°,
即∠α=22°.
故选D .
5.D
解析:D
【解析】试题分析:原抛物线的顶点坐标为(-2,-3),向右平移三个单位后顶点纵坐标不变,横坐标加3,所以平移后抛物线的顶点坐标是(1,-3)。
故选D
6.B
解析:B
【解析】
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;
B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;
C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;
D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意;
故选:B .
【点睛】
本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
7.B
解析:B
【解析】
试题分析:根据题意,先移项得()2222260x y y x +---=,即
()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得
2222(2)(3)0x y x y +++-= ,由此解得22x y +=-2(舍去)或223x y +=.
故选B.
点睛:此题主要考查了高次方程的解法,解题的关键是把其中的一部分看做一个整体,构造出简单的一元二次方程求解即可.
8.A
解析:A
【解析】
根据2()y a x h k =-+ 的顶点坐标为(,)h k ,易得抛物线y=2(x ﹣3)2+4顶点坐标是
(3,4).故选A.
9.B
解析:B
【解析】
【分析】
【详解】
解:如图,连接AP ,∵BP 绕点B 顺时针旋转90°到BP ′,∴BP =BP ′,∠ABP +∠ABP ′=90°,又∵△ABC 是等腰直角三角形,∴AB =BC ,∠CBP ′+∠ABP ′=90°,∴∠ABP =∠CBP ′,
在△ABP 和△CBP ′中,∵BP =BP ′,∠ABP =∠CBP ′,AB =BC ,
∴△ABP ≌△CBP ′(SAS ),∴AP =P ′C ,
∵P ′A :P ′C =1:3,∴AP =3P ′A ,连接PP ′,
则△PBP ′是等腰直角三角形,
∴∠BP ′P =45°,PP ′=2PB , ∵∠AP ′B =135°,∴∠AP ′P =135°﹣45°=90°,
∴△APP ′是直角三角形,
设P ′A =x ,则AP =3x ,根据勾股定理,PP ′=22'AP P A -=22(3)x x -=22x , ∴PP ′=2PB =22x ,解得PB =2x ,∴P ′A :PB =x :2x =1:2.
故选B .
【点睛】
本题考查了旋转的性质,全等三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形以及直角三角形,把P ′A 、P ′C 以及P ′B 2倍转化到同一个直角三角形中是解题的关键.
10.B
解析:B
【解析】
【分析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
解:A 、不是中心对称图形,故本选项不符合题意;
B 、是中心对称图形,故本选项符合题意;
C 、不是中心对称图形,故本选项不符合题意;
D 、不是中心对称图形,故本选项不符合题意.
故选B .
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
11.B
解析:B
【解析】
分析:根据圆中的有关概念、定理进行分析判断.
解答:解:①经过圆心的弦是直径,即直径是弦,弦不一定是直径,故正确; ②当三点共线的时候,不能作圆,故错误;
③三角形的外心是三角形三边的垂直平分线的交点,所以三角形的外心到三角形各顶点的距离都相等,故正确;
④在同圆或等圆中,能够互相重合的弧是等弧,所以半径相等的两个半圆是等弧,故正确.
故选B .
12.A
解析:A
【解析】
【分析】
连OA ,OB,可得△OAB 为等边三角形,可得:60∠=o ,
AOB 即可得∠C 的度数. 【详解】
连OA ,OB ,如图,
∵OA=OB=AB ,
∴△OAB 为等边三角形,
60AOB ∴∠=o ,
又12
C AOB ∠=∠Q , 16030.2
C ∴∠=⨯=o o 故选:A .
【点睛】
本题考查了圆周角的性质,掌握圆周角的性质是解题的关键.
二、填空题
13.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率
解析:
5 12
【解析】
【分析】
随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】
抬头看信号灯时,是绿灯的概率为
255 3025512
=
++
.
故答案为:
5 12
.
【点睛】
此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.
14.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知
∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定
解析:8
【解析】
【分析】
连接AD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在
Rt△ABC中,利用勾股定理可得出BC的长.
【详解】
连接AD,
∵∠ACB=90°,
∴AB是⊙O的直径.
∵∠ACB的角平分线交⊙O于D,
∴∠ACD=∠BCD=45°,
∴.
∵AB是⊙O的直径,
∴△ABD是等腰直角三角形,
∴AB=22AD BD +=10.
∵AC=6,
∴BC=2222106AB AC -=-=8.
故答案为:8. 【点睛】
本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.
15.P >Q 【解析】∵抛物线的开口向下∴a<0∵∴b>0∴2a -b <
0∵∴b+2a =0x=-1时y=a-b+c <0∴∴3b -2c >0∵抛物线与y 轴的正半轴相交∴c >0∴3b+2c>0∴P=3b -2cQ=b
解析:P >Q
【解析】
∵抛物线的开口向下,
∴a <0,
∵02b a
-
> ∴b >0,
∴2a-b <0, ∵02b a
-
= ∴b+2a=0, x=-1时,y=a-b+c <0.
∴102
b b
c -
-+< ∴3b-2c >0, ∵抛物线与y 轴的正半轴相交,
∴c >0,
∴3b+2c >0,
∴P=3b-2c ,
Q=b-2a-3b-2c=-2a-2b-2c ,
∴Q-P=-2a-2b-2c-3b+2c=-2a-5b=-4b <0
∴P >Q ,
故答案是:P >Q .
【点睛】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二
次函数的性质是解题的关键.
16.345【解析】【分析】连接OE 交CD 与点M 根据矩形与菱形的性质由勾股定理求出OE 的长在旋转过程中求出OM 的取值范围进而得出ME 的取值范围进而求解【详解】如图连接OE 交CD 与点M∵矩形ABCD 对角线A
解析:3,4,5
【解析】
【分析】
连接OE 交CD 与点M ,根据矩形与菱形的性质,由勾股定理求出OE 的长,在旋转过程中,求出OM 的取值范围,进而得出ME 的取值范围,进而求解.
【详解】
如图,连接OE 交CD 与点M ,
∵矩形ABCD 对角线AC 、BD 交于点O ,边AB=6,AD=8,
∴90BAD ︒∠=,OA OB OC OD ===,
∴由勾股定理知,10BD =,
∴5OA OB OC OD ====,
∵四边形OCED 为菱形,
∴OE CD ⊥,132
DM CD ==, ∴由勾股定理知,4OM =,即8OE =,
∵菱形OCED 绕点O 旋转一周,旋转过程中OE 与矩形ABCD 的边的交点始终为M , ∴当OE AD ⊥或OE BC ⊥时,OM 取得最小值3,
当OE 与OA 或OB 或OC 或OD 重合时,OM 取得最大值5,
∴35OM ≤≤,
∵8OE =,
∴35ME ≤≤,
∴线段ME 的长度可取的整数值为3,4,5,
故答案为:3,4,5.
【点睛】
本题考查矩形与菱形的性质,勾股定理,旋转的性质,将求ME 的取值范围转化为求OM 的取值范围是解题的关键.
17.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形设A′D=x 根据题意阴影部分的面积为(12−x)×x 即x(12−x)当x(12−x)=32时解得:x=4或x=8所以AA′=8或AA′=4【
解析:4或8
【解析】
【分析】
由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4.【详解】
设AA′=x,AC与A′B′相交于点E,
∵△ACD是正方形ABCD剪开得到的,
∴△ACD是等腰直角三角形,
∴∠A=45∘,
∴△AA′E是等腰直角三角形,
∴A′E=AA′=x,
A′D=AD−AA′=12−x,
∵两个三角形重叠部分的面积为32,
∴x(12−x)=32,
整理得,x2−12x+32=0,
解得x
1
=4,x2=8,
即移动的距离AA′等4或8.
【点睛】
本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.
18.【解析】分析:连接DBDB′先利用勾股定理求出DB′=A′B′=再根据S阴=S扇形B DB′-S△DBC-
S△DB′C计算即可详解:△ABC绕AC的中点D逆时针旋转90°得到△AB′C此时点A′在斜边
解析:3 2π
【解析】
分析:连接DB、DB′,先利用勾股定理求出DB′=22
12=5
+,A′B′=22
22=22
+,再根据S阴=S扇形BDB′-S△DBC-S△DB′C,计算即可.
详解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,
连接DB、DB′,
则D22
12=5
+,22
22=22
+
∴S阴=905253 1222222= 360242
()
π
π⨯
-⨯÷--⨯÷-.
故答案为53 42π-.
点睛:本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
19.【解析】【分析】连接OAOB根据一条弧所对的圆周角等于它所对的圆心角的一半得∠AOB=90°又OA=OBAB=4根据勾股定理得圆的半径是2【详解】解:连接OAOB∵∠C=45°∴∠AOB=90°又∵
解析:22.
【解析】
【分析】
连接OA,OB,根据一条弧所对的圆周角等于它所对的圆心角的一半,得∠AOB=90°,又OA=OB,AB=4,根据勾股定理,得圆的半径是22.
【详解】
解:连接OA,OB
∵∠C=45°
∴∠AOB=90°
又∵OA=OB,AB=4
∴2224
OA OB
+=
∴OA=22.
【点睛】
本题主要考查了圆周角定理以及勾股定理根据圆周角定理得出∠AOB=90°是解题的关键. 20.9【解析】【分析】根据旋转的性质得到△ABC≌△A1BC1A1B=AB=6所以
△A1BA是等腰三角形依据∠A1BA=30°得到等腰三角形的面积由图形可以知道S 阴影=S△A1BA+S△A1BC1﹣S△
解析:9
【解析】
【分析】
根据旋转的性质得到△ABC≌△A1BC1,A1B=AB=6,所以△A1BA 是等腰三角形,依据
∠A1BA=30°得到等腰三角形的面积,由图形可以知道 S 阴影=S△A1BA+S△A1BC1﹣
S△ABC=S△A1BA,最终得到阴影部分的面积.
【详解】
解:∵在△ABC 中,AB=6,将△ABC 绕点 B 按逆时针方向旋转 30°后得到△A1BC1,
∴△ABC ≌△A 1BC 1,
∴A 1B=AB=6,
∴△A 1BA 是等腰三角形,∠A 1BA=30°,
∴S △A1BA = 12
×6×3=9, 又∵S 阴影=S △A1BA +S △A1BC1﹣S △ABC ,
S △A1BC1=S △ABC ,
∴S 阴影=S △A1BA =9. 故答案为9.
【点睛】
本题主要考查旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解决此题的关键是运用面积的和差关系解决不规则图形的面积.
三、解答题
21.(1)2354y x x =-+;(2)横彩条的宽度为3cm ,竖彩条的宽度为2cm .
【解析】
【分析】
(1)由横、竖彩条的宽度比为3:2知横彩条的宽度为32
xcm ,根据“三条彩条面积=横彩条面积+2条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(2)根据“三条彩条所占面积是图案面积的
25”,可列出关于x 的一元二次方程,整理后求解即可.
【详解】
(1)根据题意可知,横彩条的宽度为32
xcm , ∴y=20×32x+2×12•x ﹣2×32x•x=﹣3x 2+54x ,
即y 与x 之间的函数关系式为y=﹣3x 2+54x ;
(2)根据题意,得:﹣3x 2+54x=
25×20×12, 整理,得:x 2﹣18x+32=0,
解得:x 1=2,x 2=16(舍), ∴32
x=3, 答:横彩条的宽度为3cm ,竖彩条的宽度为2cm .
考点:根据实际问题列二次函数关系式;一元二次方程的应用.
22.这个游戏对双方不公平,理由见解析.
【解析】
【分析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.
【详解】
解:画树状图得:
∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,
∴两次摸到卡片字母相同的概率为:5
9
;
∴小明胜的概率为5
9
,小亮胜的概率为
4
9
,
∵5
9
≠
4
9
,
∴这个游戏对双方不公平.
故答案为这个游戏对双方不公平,理由见解析.【点睛】
本题考查了树状图法求概率,判断游戏的公平性.
23.(1) 1
4
;(2)
1
4
【解析】
【分析】
(1)由概率公式即可得出结果;
(2)画出树状图,共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,由概率公式即可得出结果.
【详解】
解:(1)在这四条线路任选一条,每条被选中的可能性相同,
∴在四条线路中,李欣选择线路C.“园艺小清新之旅”的概率是1
4
;
(2)画树状图分析如下:
共有16种等可能的结果,李欣和张帆恰好选择同一线路游览的结果有4种,
∴李欣和张帆恰好选择同一线路游览的概率为
41 164
.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
24.(1) 1
2
;(2)公平,理由见解析
【解析】
【分析】
本题考查了概率问题中的公平性问题,解决本题的关键是计算出各种情况的概率,然后比较即可.
【详解】
方法一画树状图:
由上图可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结
果有6种.∴P(和为奇数)= 1
2
.
方法二列表如下:
由上表可知,所有等可能的结果共有12种,指针所指的两个数字之和为奇数的结
果有6种.∴P(和为奇数)= 1
2
;
(2)∵P(和为奇数)= 1
2
,∴P(和为偶数)=
1
2
,∴这个游戏规则对双方是公平的.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率
相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比. 25.(1)
12,32-;(2)证明见解析. 【解析】
试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.
(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211
a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,
∴不论a 取何实数,该方程都有两个不相等的实数根.
考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.。