TI Nb在钢中的作用

合集下载

微合金钢概要(Nb、V、Ti)

微合金钢概要(Nb、V、Ti)

钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重 轨的强度和汽车用锻件的强度。 碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材 料的硬度和强度。
钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以 碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。 当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能 有效地提高淬透性。 与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了 元素钼后,可固溶的钒含量明显增加,可达0.06%左右。
形变强化是因为金属在塑性变形过程中位错密度不断增加,使弹性应 力场不断增大,位错间的交互作用不断增强,因而位错的运动越来越 困难。 引起金属加工硬化的机制有:位错的塞积、位错的交割(形成不易或不 能滑移的割阶、或形成复杂的位错缠结)、位错的反应(形成不能滑移 的固定位错)、易开动的位错源不断消耗等等
钛微合金化的强韧化机理
细晶强化 由固态下高温析出的、弥散分布的TiN,对阻止奥氏体晶粒长大 最为有效,含一定量钛的非调质钢加热至1250℃,仍具有较细的奥氏 体晶粒。 沉淀强化 氮可以提高 TiN稳定性,细化奥氏体晶粒。大量实验结果表明, 氮对提高TiN颗粒钉扎奥氏体晶界的效果起关键性作用。当钢中氮含 量超过ω(Ti)/ω(N)理想配比时,TiN钉扎晶界的作用最有效。增氮 使TiN的稳定性提高,减少了TiN在高温下的溶解,高温下未溶的 TiN 阻碍奥氏体晶粒长大,细化奥氏体晶粒,相变后铁素体晶粒也细小。
固溶强化:合金元素溶于基体金属中形成固溶体而使金属强化,称为固溶 强化。
碳、氮等间隙式溶质原子嵌入金属基体的晶 格间隙中,使晶格产生不对称畸变造成的强 化效应以及填隙式原子在基体中与刃位错和 螺位错产生弹性交互作用,使金属获得强化 弥散强化:材料通过基体中分布有细小弥散的第二相质点而产生强化的方 法,称为弥散强化。

不锈钢中各元素作用

不锈钢中各元素作用

CR--钝化是由于阳极反应被避免氧化而激发金属与合金耐腐蚀性能的现象;组成金属与合金钝化的理论很多,首要有薄膜论、吸附论及电子列举论;碳是产业用钢的主要元素之一,钢的性能与组织在很大程度上决定于碳在钢中的含量及其分布的情势,在不锈钢中碳的影响特别较着;碳在不锈钢中对组织的影响主要暗示在两方面,一方面碳是不变奥氏体的元素,并且传染感动的程度很大约为镍的30倍,别的一方面由于碳和铬的亲和力很大,与铬构成—系列复杂的碳化物;所以,从强度与耐腐烛性能两方面来看,碳在不锈钢中的感化是彼此矛盾的;例如工业中最遍及的,也是最最少的不锈钢——0CR13~4CR13这五个钢号的标准含铬量规定为12~14%,就是把碳要与铬形成碳化铬的成分考虑进往此后才决意的,即在于使碳与铬连系成碳化铬今后,固溶体中的含铬量不致低于11.7%这一最低限度的含铬量;就这五个钢号来说由于含碳量不同,强度与耐腐蚀性能也是有辩白的,0CR13~2CR13钢的耐腐蚀性较好但强度低于3CR13和4CR13钢,多用于制造布局零件,后两个钢号由于含碳较高而可获得高的强度多用于制造弹簧、刀具等要求高强度及耐磨的零件;又如为了降服18-8铬镍不锈钢的晶间腐蚀,可以将钢的含碳量降至0.03%以下,或插手比铬和碳亲和力更大的元素钛或铌,使之不形成碳化铬,再如当高硬度与耐磨性成为主要要求时,我们可以在增加钢的含碳量的同时适本地进步含铬量,做到既满足硬度与耐磨性的要求,又兼顾—定的耐腐蚀功能,工业上用作轴承、量具与刃具有不锈钢9CR18和9CR17MOVCO钢,含碳量虽高达0.85~0.95%,由于它们的含铬量也响应地提高了,所以仍包管了耐腐蚀的要求;总的来说,今朝工业中获得利用的不锈钢的含碳量都是比较低的,大都不锈钢的含碳量在0.1~0.4%之间,耐酸钢则含碳0.1~0.2%的;含碳量大于0.4%的不锈钢仅占钢号总数的一小部分,这是由于在大多半使用条件下,不锈钢总是以耐腐蚀为主要目标;另外,较低的含碳量也是出于某些工艺上的要求,如易于焊接及冷变形等;镍是杰出的耐腐蚀材料,也是合金钢的主要合金化元素;镍在钢中是形成奥氏体的元素,但低碳镍钢要获得纯奥氏体组织,含镍量要达到24%;而只有含镍27%时才使钢在某些介质中的耐腐蚀性能明显改变;所以镍不克不及孤立构成不锈钢;可是镍与铬同时存在于不锈钢中时,含镍的不锈钢却具有很多珍贵的性能;基于上面的环境可知,镍作为合金元素在不锈钢中的作用,在于它使高铬钢的组织产生改变,从而使不锈钢的耐腐蚀性能及工艺性能获得某些改进;铬镍奥氏体钢的优点当然很多,但近几十年出处于镍基耐热合金与含镍20%以下的热强钢的大量成长与应用,和化学工业日趋成长对不锈钢的需要量愈来愈大,而镍的矿躲量较少且又集平漫衍在少数地区,是以活着界范围内闪现了镍在供和需方面的矛盾;所以在不锈钢与很多其他合金局限如大型铸锻件用钢、东西钢、热强钢等中,出格是镍的本钱对比窘蹙的国度,广泛地展开了节镍和以其他元素代镍的科学研究与生产实践,在这方面研究和应用对照多的是以锰和氮来代替不锈钢与耐热钢中的镍;锰对奥氏体的作用与镍近似;但说得确切一些,锰的作用不在于形成奥氏体,而是在于它降落钢的临界淬火速度,在冷却时增加奥氏体的不变性,抑制奥氏体的分化,使高温下形成的奥氏体得以保持到常温;在提高钢的耐腐蚀性能方面,锰的作用不大,如钢中的含锰量从0到10.4%改变,也不使钢在空气与酸中的耐腐蚀性能发生较着的改变;这是由于锰对提高铁基固溶体的电极电位的作用不大,形成的氧化膜的防护作用也很低,所以工业上虽有以锰合金化的奥氏体钢如40MN18CR4,50MN18CR4WN、ZGMN13钢等,但它们不能作为不锈钢使用;锰在钢中稳定奥氏体的作用约为镍的二分之一,即2%的氮在钢中的作用也是稳定奥氏体,并且作用的程度比镍还要大;例如,欲使含18%铬的钢在常温下获得奥氏体组织,以锰和氮代镍的低镍不锈钢与元镍的铬锰氮不诱钢,目前已在工业中获得应用,有的已成功地代替了经典的18-8铬镍不锈钢;以上主要的九种元素对不锈钢的性能和组织的影响,除这些元素对不锈钢性能与组织影响较大的元素以外,不锈钢中还含有一些其他的元素;有的是和一般钢一样为常存杂质元素,如硅、硫、磷等;也有的是为了某些特定的目的而插足的,如钴、硼、硒、稀土元素等;从不锈钢的耐腐蚀性能这一主要性质来说,这些元素相对已构和的九种元素,都是非主要方面的,固然如此,但也不能完全忽视,因为它们对不锈钢的性能与组织一样也发生影响;硅是形成铁素体的元素,在一般不锈钢中为常存杂质元素;钴作为合金元素在钢中应用未几,这是因为钴的代价高及其在其它方面如高速钢、硬质合金、钴基耐热合金、磁钢或硬磁合金等有着更重要的用处;在一般不锈钢中加钴作合金元素的也不多,常用不锈;9CRL7MOVCO钢含1.2-1.8%钴加钴,目的实在不在于提高耐腐蚀性能而在于提高硬度,因为这类不锈钢的主要用途是制造切片机械刃具、剪刀及手术刀片等;不锈钢中各元素作用如下:Cr:主要起到防腐蚀作用,一般来说含量越高耐腐蚀性越强,尤其是在氧化性介质中;钢铁中含铬达到12.5%时即为不锈钢;同时它是金相铁素体的主要元素;在耐热钢中铬也是不可缺少的金属元素;.V{;P9e+{_Ni:镍元素也具有防腐蚀作用,尤其在还原性介质中,在氧化性腐蚀性介质中与铬一起具有协同作用;同时它是金相奥实体的主要元素;在高温还原性介质中的耐热钢中也是重要的组成元素;Mn:锰和镍具有很多相似的地方,在一些不锈钢中锰可以完全代替镍;但锰有很多自己的特点,如提高材料的机械强度和中温性能;此外还有增加N的在金相中的溶解度作用;Ti:在不锈钢中钛仅仅起到调质作用;不锈钢的碳含量较高时,在焊接时容易引起铬偏析,即形成各的碳化物,是焊缝附近缺铬,降低了不锈钢的耐腐蚀性;为了降低上述现象的产生,一般在不锈钢中加入少量的钛或铌,钛优先于铬与碳结合;过去由于炼钢技术有限,一般采用加钛方法避免铬的偏析,现在主要通过降低碳含量来避免上述现象产生;q6o1}+{4z\'Mo:在不锈钢中起到耐氯化物腐蚀作用;在高等级不锈钢中都含有钼元素;1、碳C:钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%;碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性;2、硅Si:在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅;如果钢中含硅量超过0.50-0.60%,硅就算合金元素;硅能显着提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢;在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%;硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢;含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片;硅量增加,会降低钢的焊接性能;3、锰Mn:在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%;在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%;含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等;锰量增高,减弱钢的抗腐蚀能力,降低焊接性能;4、磷P:在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏;因此通常要求钢中含磷量小于0.045%,优质钢要求更低些;_4 l.Ha'`;S1J%0X_2、5、硫S:硫在通常情况下也是有害元素;使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹;硫对焊接性能也不利,降低耐腐蚀性;所以通常要求硫含量小于0.055%,优质钢要求小于0.040%;在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢;3、6、铬Cr:在结构钢和工具钢中,铬能显着提高强度、硬度和耐磨性,但同时降低塑性和韧性;铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素;&4B},J8K,z8dx5R4、7、镍Ni:镍能提高钢的强度,而又保持良好的塑性和韧性;镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力;但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢;$/v&s3_8N0i5、8、钼Mo:钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力长期在高温下受到应力,发生变形,称蠕变;结构钢中加入钼,能提高机械性能;还可以抑制合金钢由于火而引起的脆性;在工具钢中可提高红性;6、9、钛Ti:钛是钢中强脱氧剂;它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性;改善焊接性能;在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀;7、10、钒V:钒是钢的优良脱氧剂;钢中加0.5%的钒可细化组织晶粒,提高强度和韧性;钒与碳形成的碳化物,在高温高压下可提高抗氢腐蚀能力;8、11、钨W:钨熔点高,比重大,是贵生的合金元素;钨与碳形成碳化钨有很高的硬度和耐磨性;在工具钢加钨,可显着提高红硬性和热强性,作切削工具及锻模具用;,cr7 cpLs3:9、q8p10、12、铌Nb:铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降;在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力;铌可改善焊接性能;在奥氏体不锈钢中加铌,可防止晶间腐蚀现象;5E4 F/u:z'D&Jl11、13、钴Co:钴是稀有的贵重金属,多用于特殊钢和合金中,如热强钢和磁性材料;12、14、铜Cu:武钢用大冶矿石所炼的钢,往往含有铜;铜能提高强度和韧性,特别是大气腐蚀性能;缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显着降低;当铜含量小于0.50%对焊接性无影响;13、15、铝Al:铝是钢中常用的脱氧剂;钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢;铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显着提高钢的高温不起皮性能和耐高温腐蚀的能力;铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能;14、16、硼B:钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度;15、17、氮N:氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性;16、18、稀土Xt:稀土元素是指元素周期表中原子序数为57-71的15个镧系元素;这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土;钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能;在犁铧钢中加入稀土,可提高耐磨性;0Cr18Ni92;Q'E2I5^d0Cr17Ni14Mo20Cr13$Q9 G`4_W8\+0Cr18Ni10Ti0Cr19Ni11Nb从中可以看出:-6r'L ^$|.SV0e&O1、Cr:防锈,不锈钢的主要组成;2、Ni:奥氏体的形成元素;镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力,\7V$Fq$b5^3、Mo:耐酸腐蚀,在不锈钢中起到耐氯化物腐蚀作用;4、C:含量的高低与强度的高度有关,还有抗晶间腐蚀的能力成反比;:z:_3j3 G6x"e&t5、Ti、Nb:稳定化元素。

超级铁素体不锈钢1.100CR25NIMO4(Ti+Nb)

超级铁素体不锈钢1.100CR25NIMO4(Ti+Nb)

超级不锈钢超级不锈钢系指20世纪70~90年代先后问世,其性能(特别是耐蚀性)优于原有的同类不锈钢的那些牌号的统称。

接下来介绍的主要是高合金、高性能的三大类超级不锈钢,即高铬量、搞钼量(PRE值≥35)的超级铁素体不锈钢和高铬、钼、氮量(PRE≥40)的超级奥氏体不锈钢与PRE值≥40的超级双相不锈钢。

这三大类超级不锈钢的共同特点是除耐全面腐蚀外,耐点蚀、耐缝隙腐蚀等局部腐蚀的性能优异。

各类不锈钢所面临的共同课题是随钢中铬、钼量或铬、钼、氮量的提高,钢的组织热稳定性下降,碳、氮化物和金属间相析出所导致的焊后(或从高温到低温的冷却过程中)塑、韧性和耐蚀性的劣化问题。

这一问题的存在将严重阻碍超级不锈钢的进一步发展。

1超级铁素体不锈钢铁素体不锈钢系指11%~30%Cr,具有体心立方晶体结构,在使用状态下具有铁素体组织的一类不锈钢。

根据钢中含铬量的不同,铁素体不锈钢大致可分为含11%~15%Cr(低铬)、16%~20%Cr(中铬)和21%~30%Cr(高铬)三种类型。

超级铁素体不锈钢含量一般在25%~30%,属于高铬铁素体不锈钢。

1.1铁素体不锈钢的发展和超级铁素体不锈钢铁素体不锈钢系五大类不锈钢中中药不锈钢类,其产量和消费量仅次于铬镍奥氏体不锈钢。

铁素体不锈钢除具有良好的不锈性和耐全面腐蚀性能外,其耐氯化物应力腐蚀、耐点腐蚀和耐缝隙腐蚀性能优良;与铬镍奥氏体不锈钢相比,铁素体不锈钢不含镍或仅含少量镍,因而是一类无镍和节镍不锈钢;铁素体不锈钢强度好,但冷加工硬化倾向较低,导热系数为奥氏体不锈钢的130%~150%,线膨胀系数仅为奥氏体不锈钢的60%~70%,虽然铁素体不锈钢有如此多的优点,但自1912年问世以来直到1970年,与铬镍奥氏体不锈钢相比,产量比较低且用途收到诸多限制,其主要原因是铁素体不锈钢,特别是含铬量≥16%时存在的一些缺点和不足,突出地表现在它们的脆性转变温度高,室温和低温韧性差,缺口敏感性高,对晶间腐蚀比较敏感,而这些缺点随钢的截面尺寸增加,受热(例如焊接)后冷却速度慢以及热履历的影响而更加强烈的显示出来。

各种合金元素对钢性能的影响

各种合金元素对钢性能的影响

三、各种合金元素对钢性能的影响目前在合金钢中常用的合金元素有:铬(Cr),锰(Mn),镍(Ni),硅(Si),硼(B),钨(W),钼(Mo),钒(V),钛(Ti)和稀土元素(Re)等。

五大元素:硅、锰、碳、磷、硫。

五大杂质元素:氧、氮、磷、硫、氢。

1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。

碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。

2、硅(Si):在炼钢过程中加硅作为还原剂和脱氧剂,所以镇静钢含有0.15-0.30%的硅。

如果钢中含硅量超过0.50-0.60%,硅就算合金元素。

硅能显著提高钢的弹性极限,屈服点和抗拉强度,故广泛用于作弹簧钢。

在调质结构钢中加入1.0-1.2%的硅,强度可提高15-20%。

硅和钼、钨、铬等结合,有提高抗腐蚀性和抗氧化的作用,可制造耐热钢。

含硅1-4%的低碳钢,具有极高的导磁率,用于电器工业做矽钢片。

硅量增加,会降低钢的焊接性能。

硅可提高强度、高温疲劳强度、耐热性及耐H2S等介质的腐蚀性。

硅含量增高会降低钢的塑性和冲击韧性。

3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。

在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。

含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。

锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。

锰可提高钢的强度,增加锰含量对提高低温冲击韧性有好处。

4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。

因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。

钢中微合金元素的作用机理

钢中微合金元素的作用机理

2) 与氧、硫的作用
与氧、硫有一定的亲合力。从下图看,Ti与O的亲合力很强
,比铝小一些;Nb、V与O的亲合力比Mn强,但弱于Si。
早期,由于冶炼铸造工艺技术水平的限制,未能解决钛氧化 和烧损问题,使钢材的性能波动大。现在已经解决,发展钛微 合金钢。
由于钛与氧的强亲合力,使得测定钛在铁液中的一些热力学 数据的试验变得异常困难,热力学数据分歧较大。
结构类型 F.C.C. F.C.C. F.C.C. F.C.C. F.C.C. F.C.C.
2)它们的相互固溶性(合成实验)
由于这些碳化物和氮化物的点阵常数相近与晶体结构相同, 它们之间存在相互固溶;
一些研究者实验研究了它们之间的相互固溶性;
主要的实验结果如下:
√ 二元氮化物系统:NbN-TiN、TiN-VN、NbN-VN形成连续 性固溶体;
TiN
在以后的热处理中不溶解,对阻止晶粒粗化以及沉淀强化,都 没有作用,浪费宝贵的合金元素;
钢中%Ti为0.02,TiN则在L(钢液)-δ-Fe界面上或δ-Fe中 形成,因此控制凝固速度,可以控制TiN质点尺寸与数量;低 合金钢中由于Nb、V都不可能在钢液中形成粗大第二相质点;
但是在钢锭与连铸坯中,由于Nb 强烈偏析,在δ-Fe枝晶间 的钢液中Nb富集,凝固后产生粗大甚至达到微米级沿晶分布 的NbC枝晶状第二相,粗大的NbC使连铸中心容易产生内裂, 或热塑性降低;
指化学成分规范上明确列入需加入一种或几种碳氮化物形成 元素,如GB/T1591-94中Q295-Q460的钢,规定:
Nb:0.015~0.06%; V: 0.02~0.15%; Ti: 0.02~0.20%
一些需要淬透性的机械结构钢中加硼(B),硼广 义上也称微合金元素。

c si mn p cr s ni ti nb cu化学元素对钢性能的影响 对钢材起的作用

c si mn p cr s ni ti nb cu化学元素对钢性能的影响 对钢材起的作用

第 12 号元素: 镁 [化学符号]Mg, 读“美”, [英文名称]Magnesium
第 13 号元素: 铝 [化学符号]Al, 读“吕”, [英文名称]Aluminum
第 14 号元素: 硅 [化学符号]Si, 读“归”, [英文名称]Silicon
第 15 号元素: 磷 [化学符号]P, 读“邻”, [英文名称]Phosphorus
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
第 20 号元素: 钙 [化学符号]Ca, 读“丐”, [英文名称]Calcium
第 21 号元素: 钪 [化学符号]Sc, 读“亢”, [英文名称]Scandium
第 22 号元素: 钛 [化学符号]Ti, 读“太”, [英文名称]Titanium
第 23 号元素: 钒 [化学符号]V, 读“凡”, [英文名称]Vanadi合金中,如热强钢和磁性材料。
14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。
15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。

常见元素在钢中的作用

常见元素在钢中的作用

钢铁中所含元素在钢铁应用的作用2008-11-12 15:201、磷(P):使钢产生冷脆和降低钢的冲击韧性;但可改善钢的切削性能。

2、硅(Si):能增加钢的强度、弹性、耐热、耐酸性及电阻系数等。

冶炼中的脱氧剂能增加钢的过热和脱碳敏感性。

3、锰(Mm):能提高钢的强度和硬度及耐磨性。

冶炼时的脱氧剂和脱硫剂。

4、铬(Cr):能增加钢的机械性能和耐磨性,可增大钢的淬火度和淬火后的变形能力。

同时又可增加钢的硬度、弹性、抗磁力和抗强力,增加钢的耐蚀性和耐热性等。

5、镍(Ni):可以提高钢的强度、韧性、耐热性、防腐性、抗酸性、导磁性等。

增加钢的淬透性及硬度。

6、钒(V):可赋于钢的一些特殊机械性能:如提高抗张强度和屈服点,明显提高钢的高温强度。

7、钛(Ti):可防止和减少钢中气泡的产生,提高钢的硬度、细化晶粒、降低钢的时效敏感性、冷脆性和腐蚀性。

8、铜(Cu):一般如P、S一样是残留有害元素。

Cu的存在会降低钢的机械性能,破坏钢的焊接性能,会使钢在锻轧等加工时产生热脆性。

钢中加入一定量的Cu,可提高钢的退火硬度,降低成本。

若含Cu 0.15~0.25%时,可使钢的耐大气腐蚀的性能。

9、铝(Al):(1)低碳结构钢中 0.5~1%的Al有助于增加钢的硬度和强度;(2)铬钼钢和铬钢中含Al可增加其耐磨性;(3)高碳工具钢中Al的存在可使产生淬火脆性。

10、钨(W):可提高钢的蠕变强度,又是钢中碳化物的强促进剂,每1%的W可提高钢的抗张强度和屈服点4×9.8N/cm²,并使其具有回火稳定性和高温强度。

11、钼(Mo):可增加钢的强度又不致降低钢的可塑性和韧性,同时又能使钢在高温下具有足够的强度,能改善钢的冷脆性和耐磨性等。

12、钴(Co):可以提高和改善钢的高温性能,增加其红硬性,提高钢的抗氧化性和耐蚀性能等。

13、铌(Nb):可使钢的晶粒细化,降低钢的过热敏感性及回火脆性;改善钢的焊接性能,提高耐热钢的强度和抗蚀性等。

Ti-Nb IF钢铁素体区的热加工性能

Ti-Nb IF钢铁素体区的热加工性能

005 1 .1 b00T) .5 A、 0N 、.8i在铁 索体温 度区(4  ̄ 8 ℃ ) 0 80 70 流变应 力峰值 o 与 Znr oo o 参 数 z T ) 间的 r 。 ee- lm n H l (, 之 解析表达式 ; 利用铁 素体 区变形 的功率 耗散 图和加工失稳 图建 立了该钢的热加工 图 , 获得其 加工安全 区和失稳 区。 结果表明 , 变形 温度 80— 2 0 85℃ , 变速率 00 0 0 2s 区域为 T— bI 应 . 2— . 0 i F钢铁素 体区热加工安全 区域 。 N
第2 9卷第 6期
20 0 8年 1 2月
特殊 钢
S EC AL S E P I T EL
Vo . 9 No 6 12 . .
Байду номын сангаас
De e e 2 0 c mb r 0 8 ・1 ・

试验研究 ・
T . F钢 铁 素体 区的热 加 工 性 能 i NbI
张 鹏 汪凌云 李 伟
Ab ta t Acodn oh t i lain ts rsl y G ebe 1 0 D c ie l n y c e peso ew e o sr c c rig t o mu to et eut b 1el 5 0 ma hn .te a a t x rsin b t e nf w s s 1 l i l
h s b e sa l h d b s g p we is ai n ma n o k n n tb h y ma r e tse l n fri e omain a e o a e n e tb i e y u i o rd s i t p a d w r i g i sa i t p f s t e ert d f r t ra t s n p o o t i e o g ti rc s i g sf t r a a d i sa i t r a e t p o e sn ae y a e n n t b l y a e .Re u t s o d t a h r a w t eo mai n tmp r t r 0 s i s l h we h tt e a e i d fr t e e au e 8 0—8 5 ℃ s h o 2 a d sr i ae 0 0 n t n r t . 2~O O 2 s w s p o e s g s ey f r t r a fr h tw r a i t ft e T . F s e . a . 0 ~ a r c s i a t er e a e o o o k b l y o iNb I t 1 n f i i h e M a e i l n x T . F Se 1 ert e ,Z n rHo o n F co ,F o S r s ,Ho rc s i g Ma t ra de iNb I te .F ri Ar a I e e e . U mo a t r 1w t s e tP o e sn p

微合金钢(Nb、V、Ti)

微合金钢(Nb、V、Ti)
钒-氮对γ/α转变过程中细化多边形铁素体晶粒尺寸的 影响
沉淀强化 随着转变温度和冷速的不同,析出相在形态和分布特征上存在相间
析出、过饱和铁素体中弥散析出、铁素体内沿位错处析出等几种析出方 式。析出的机理和效果,取决于晶体结构的类型、析出相的尺寸及分布、 微合金元素原子在基体中的扩散及析出速率。总的来说,强化效果与析 出质点的平均直径成反比关系,与析出物质点的体积分数的平方根成正 比关系。
当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能 有效地提高淬透性。
与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了 元素钼后,可固溶的钒含量明显增加,可达0.06%左右。
钒在铁素体中的析出
V(C,N)可跟随着γ/α界面的移动在铁素体内随机析出,即为一般析出。 或者平行于γ/α界面,以一定的间距形成片层状分布的相间析出。
球化:球化退火处理 球化退火的主要目的是由热处理使钢铁材料内部的层 状或网状碳化物凝聚成为球状,使改善钢材之切削性能及加工塑性,特别 是高碳的工具钢更是需要此种退火处理。
45钢
35钢
复化:钢铁材料的复相化已成为重要发展方向,广义上讲只要含有两种以上 组织的钢都可称为复相钢
例如马氏体、奥氏体、铁素体、贝氏体、碳化物等,此外引入其他强化手段 如纤维、陶瓷相等,也可成为复相。
相间沉淀转变示意图
V-N钢中V(C,N)析出相
a-0.0051%N;b-0.0082%N;c-0.0257%N;d-0.0095%N,0.04%C
随氮含量增加,V(C,N)量多且弥散度增加。 高温条件下析出反应的化学驱动力小,析出的形核发生在相界上;低温 时,驱动力大,铁素体基体内部也能发生形核。 相间析出的特征之一是温度越低析出相越细

Nb在高Ti中Al铁基高温合金的作用

Nb在高Ti中Al铁基高温合金的作用
sl ouintn rtr ,wt s l ta w oi slt d o e  ̄, ue i t r uth tat o—p aes e ghnn tf e l e a hh e e h s rn te ig g, ai d.I d io t a ¥r z na dt n,n bu ma et abd p a e ty i o m i i d crie h s a e h s
用。
析出, 不利于中、 低温长期使用 。其次 , 在碳化物形 成元素中 T 的自扩散系数最大, i 由于该类合金 的合
金化程度不能太高 , 于是有利于含 T 在钢液凝 固过 i
程中的聚集偏析, 致使该类合金的碳 化物和 7一相 分布不均匀 , 进而导致 晶粒度的不均匀和 晶界相的 均匀分布, 这些效应都不利于合金的塑性 、 韧性和综 合性能。 高 T 中 合金中 含量虽然较高 , 也能提 i 高 y一 相数量 , 降低有害相析 出倾 向, 但降低了 y一 相的反相畴界能和 7 错配度 , 降低强化效果。
i eSi ̄o ui r i e in m d h tl r h m gn i adipoe h ni n puet nt o t pr ue nh Cl f n omdpr o , aet m a o u ih o ein n m r dt t se dr t r gha r r e ea r t t t f s s e e lgp c o z g v e e la u rs e t o ̄ m t
i r e .Fn ri ,m sv rc r,c i  ̄ ue n peitt noohs sldi rtm n a c ae l pat i . ned ca s i gan as e t t e h n¥ r d r p a / ae e t bte et n d r da o l it e i su u a a ci i f o r u e n il d e e s l y scy 研 W r o s d p∞e .p ae C r d Dse i ir uo ^ £ hs ab e i ro dsi t n l i p s n tb i

各元素在合金钢中的作用

各元素在合金钢中的作用

各元素在合金钢中的作用合金钢由铁和其他元素组成,这些元素对合金钢的性能具有重要的影响。

在合金钢中,各元素的作用可以分为强化作用、抗腐蚀作用、抗磨损作用以及调节作用等。

强化作用是合金钢中各元素最重要的作用之一、添加一些合适的合金元素可以显著提高合金钢的强度、硬度和耐久性。

以下是一些常见的强化元素及其作用:1.碳(C):铁与碳的组合形成了最常见的钢。

碳可以增加钢的硬度和强度,并改善耐磨性。

高碳钢通常用于制造刀具和弹簧等需要高硬度和强度的产品。

2.硅(Si):硅可以有效地提高钢的强度和硬度,并有助于控制钢的晶粒尺寸。

硅还可以降低钢的热脆性。

3.锰(Mn):锰可以提高钢的韧性、硬度和强度,同时促进晶粒细化。

锰还有助于降低钢的热脆性。

4.铬(Cr):铬是一种常用的合金元素,可以提高钢的硬度、耐磨性和抗腐蚀性。

铬能够形成一层致密的氧化膜,称为“氧化铬膜”,有效地防止钢的进一步氧化和腐蚀。

5.钼(Mo):钼可以提高钢的强度、硬度和耐切削性能。

钼还可以提高钢的耐高温性能和抗腐蚀性。

6.钛(Ti):钛可以阻碍钢中的晶粒生长,从而细化钢的晶粒结构。

钛还可以提高钢的强度和耐腐蚀性。

抗腐蚀作用是另一个重要的元素作用。

以下是在合金钢中常用的抗腐蚀元素及其作用:1.镍(Ni):镍能够提高钢的耐腐蚀性。

镍在钢中的溶解度很高,能够有效地阻止钢的腐蚀。

2.钼:前面已经提到,钼可以提高钢的抗腐蚀性能,特别是在酸性和氯化物环境中。

3.铜(Cu):铜可以提供钢的抗腐蚀性能,特别是在含有硫酸和盐酸等化学物质的环境中。

抗磨损作用是另一个重要的元素作用。

以下是在合金钢中常用的抗磨损元素及其作用:1.钼:钼可以提高钢的耐磨性能,特别是在高温和高压力条件下。

2.钽(Ta):钽可以提高钢的抗磨损性能和耐高温性能。

3.铌(Nb)和钛:铌和钛可以用于合金钢中,以提高其耐磨性和耐热性。

最后,元素还可以用于调节合金钢的特性。

以下是一些常用的调节元素及其作用:1.硼(B):硼可以提高钢的硬度和强度,并有助于钢的热处理和淬火过程。

镍和铬在不锈钢中的主要作用

镍和铬在不锈钢中的主要作用

镍在不锈钢中的主要作用镍在不锈钢中的主要作用在于它改变了钢的晶体结构。

在不锈钢中增加镍的一个主要原因就是形成奥氏体晶体结构,从而改善诸如可塑性、可焊接性和韧性等不锈钢的属性,所以镍被称为奥氏体形成元素。

普通碳钢的晶体结构称为铁氧体,呈体心立方(BCC)结构,加入镍,促使晶体结构从体心立方(BCC) 结构转变为面心立方(FCC)结构,这种结构被称为奥氏体。

然而,镍并不是唯一具有此种性质的元素。

常见的奥氏体形成元素有:镍、碳、氮、锰、铜。

这些元素在形成奥氏体方面的相对重要性对于预测不锈钢的晶体结构具有重要意义。

在不锈钢中,有两种相反的力量同时作用:铁素体形成元素不断形成铁素体,奥氏体形成元素不断形成奥氏体。

最终的晶体结构取决于两类添加元素的相对数量。

铬是一种铁素体形成元素,所以铬在不锈钢晶体结构的形成上和奥氏体形成元素之间是一种竞争关系。

因为铁和铬都是铁素体形成元素,所以400系列不锈钢是完全铁素体不锈钢,具有磁性。

在把奥氏体形成元素-镍加入到铁-铬不锈钢的过程中,随着镍成分增加,形成的奥氏体也会逐渐增加,直至所有的铁素体结构都被转变为奥氏体结构,这样就形成了300系列不锈钢。

如果仅添加一半数量的镍,就会形成50%的铁素体和50%的奥氏体,这种结构被称为双相不锈钢。

400系列不锈钢是一种铁、碳合铬的合金。

这种不锈钢具有马氏体结构和铁元素,因此具有正常的磁特性。

400系列不锈钢具有很强的抗高温氧化能力,而且与碳钢相比,其物理特性和机械特性都有进一步的改善。

大多数400系列不锈钢都可以进行热处理。

300系列不锈钢是一种含有铁、碳、镍和铬的合金材料,一种无磁性不锈钢材料,比400系列不锈钢具有更好的可锻特性。

由于300系列不锈钢的奥氏体结构,因此它在许多环境中具有很强的抗腐蚀性能,具有很好的抗金属超应力引起的腐蚀所造成的断裂的性能,而且其材料特性不受热处理的影响。

不锈钢是20世纪重要发明之一,经过近百年的研制和开发已形成一个有300多个牌号的系列化的钢种。

钢材中的化学成分对钢材性能的影响

钢材中的化学成分对钢材性能的影响

建筑工程常用钢材中的化学成分对钢材性能的影响钢材的性能主要取决于其中的化学成分。

钢的化学成分主要是铁和碳,此外还有少量的硅、锰、磷、硫、氧和氮等元素,这些元素的存在对钢材性能也有不同的影响。

(一)碳(C)碳是形成钢材强度的主要成分,是钢材中除铁以外含量最多的元素。

含碳量对普通碳素钢性能的影响如图7.13所示。

由图7.13可看出,一般钢材都有最佳含碳量,当达到最佳含碳量时,钢材的强度最高。

随着含碳量的增加,钢材的硬度提高,但其塑性、韧性、冷弯性能、可焊性及抗锈蚀能力下降。

因此,建筑钢材对含碳量要加以限制,一般不应超过0.22%,在焊接结构中还应低于0.20%。

图7.13含碳量对碳素结构钢性能的影响(二)硅(Si)硅是还原剂和强脱氧剂,是制作镇静钢的必要元素。

硅适量增加时可提高钢材的强度和硬度而不显著影响其塑性、韧性、冷弯性能及可焊性。

在碳素镇静钢中硅的含量为0.12%~0.3%,在低合金钢中硅的含量为0.2%~0.55%。

硅过量时钢材的塑性和韧性明显下降,而且可焊性能变差,冷脆性增加。

(三)锰(Mn)锰是钢中的有益元素,它能显著提高钢材的强度而不过多降低塑性和冲击韧性。

锰有脱氧作用,是弱脱氧剂,同时还可以消除硫引起的钢材热脆现象及改善冷脆倾向。

锰是低合金钢中的主要合金元素,含量一般为 1.2%~1.6%,过量时会降低钢材的可焊性。

(四)硫(S)和磷(P)硫是钢中极其有害的元素,属杂质。

钢材随着含硫量的增加,将大大降低其热加工性、可焊性、冲击韧性、疲劳强度和抗腐蚀性。

此外,非金属硫化物夹杂经热轧加工后还会在厚钢板中形成局部分层现象,在采用焊接连接的节点中,沿板厚方向承受拉力时,会发生层状撕裂破坏。

因此,对硫的含量必须严加控制,一般不超过0.045%~0.05%,Q235的C级与D级钢要求更严。

磷可提高钢材的强度和抗锈蚀能力,但却严重降低钢材的塑性、韧性和可焊性,特别是在温度较低时使钢材变脆,即在低温条件下使钢材的塑性和韧性显著降低,钢材容易脆裂。

谈微合金元素Nb_V_Ti在钢中的作用

谈微合金元素Nb_V_Ti在钢中的作用

甘肃冶金 2000年12月第4期谈微合金元素N b 、V 、T i 在钢中的作用Ξ杨作宏 陈伯春(酒泉钢铁公司 甘肃 嘉峪关 735100)摘 要 论述了N b 、V 、T i 在钢中的存在形态,分析了提高钢的强韧性,改善可焊性的微观机理及在钢中的重要作用。

关键词 可能性 形态 溶度积 作用1 引言在钢中质量分数低于011%左右,而对钢的性能和微观组织有显著或特殊影响的合金添加元素,称为微合金元素;N b 、V 、T i 是其中最为重要的微合金元素。

在钢中添加微量的N b 、V 、T i ,可保证钢在碳当量较低的情况下,通过其碳、氮化物质点(尺寸小于5nm )的弥散析出及N b 、V 、T i 的固溶,细化晶粒,极大地提高钢的强度、韧性,特别是低温韧性,使钢具有良好的可焊性、使用性。

因此,研究N b 、V 、T i 在钢中的作用机理和微观行为,对钢的品种开发,生产高质量、高附加值的产品如船板、管线钢等有重要的作用。

2 Nb 、V 、T i 在钢中作用的微观基础211 形成碳化物和氮化物的可能性 图1 一些金属元素形成氧化物、硫化物、碳化物和氮化物的能力和它们的沉淀强化能力N b 、V 、T i 是碳化物和氮化物的形成元素,这些元素在比较低的浓度下就能满足这种要求。

在周期表中,它们的位置彼此靠得很近。

图1指出,对于一定的金属元素,从 组到 组,形成氧化物、硫化物、碳化物和氮化物的可能性是逐渐增强的(从右上角至左下角)。

形成沉淀强化所需要的碳化物或氮化物,N b 、V 、T i 有同等的倾向。

212 在钢中的存在形态N b 、V 、T i 为强碳化物形成元素,常温时,在钢中大部分以碳化物、氮化物、碳氮化物形式存在,少部分固溶在铁素体中,在脱氧不完全的钢中,也会2Ξ收稿日期:2000204205出现氧化物T i O 2、V 2O 3等。

这对N b 、V 、T i 是一种浪费,且氧化物对性能有害,应避免。

nb元素在钢中的作用

nb元素在钢中的作用

nb元素在钢中的作用NB元素在钢中的作用1. 引言钢是一种重要的结构材料,广泛应用于建筑、桥梁、船舶等领域。

为了提高钢的性能和使用寿命,我们经常向钢中添加合金元素。

其中,Nb元素作为一种重要合金元素,在钢中发挥着重要的作用。

2. Nb元素的特性•Nb元素具有高熔点、高热稳定性的特点;•Nb元素可以与C、N等元素形成强盐类化合物,提高钢的强度和硬度;•Nb元素能够稳定碳化物的形成,抑制晶界腐蚀和晶内腐蚀,提高钢的耐蚀性。

3. Nb元素在钢中的作用•提高钢的强度:Nb元素能够与C形成高硬度的碳化物,增强钢的强度和硬度,提高钢的耐磨性和抗拉强度。

•抑制晶界腐蚀:Nb元素能够稳定碳化物的形成,限制了晶界处的腐蚀和氢致开裂现象,提高了钢的抗腐蚀能力和耐候性。

•改善焊接性能:Nb元素能够减少钢的碳当量,改善焊接性能和可焊性,降低焊接变形和裂纹的风险。

•提高钢的高温强度:Nb元素能够形成细小的碳化物颗粒,细化晶粒,提高钢的高温强度和抗蠕变性能。

•增加钢的稀土能力:Nb元素对钢的钝化膜具有稀土能力,能够提高钢的耐蚀性和抗疲劳性能。

4. 结论以Nb元素为合金化添加剂的钢具有较高的强度、耐蚀性和耐磨性,适用于各种高强度、高耐磨、高耐蚀的工程结构。

然而,Nb元素的添加量和加工工艺条件需要合理控制,以充分发挥其作用,同时避免过量导致成本增加和钢的脆性增加。

参考文献:•Smith, W. F., & Hashemi, J. (2006). Foundations of materials science and engineering. McGraw-Hill.•Gu, J., Zambaldi, C., & Somani, M. (2018). Nb-alloying effects on the microstructure and mechanical propertiesof Ti-6Al-4V. Materials & Design, 143, .。

各种化学元素在不锈钢中的作用

各种化学元素在不锈钢中的作用

各种化学元素在不锈钢中的作用不锈钢是一种合金材料,由铁、铬、镍等元素组成。

它的特点是具有高强度、耐腐蚀、耐高温等优良性能。

化学元素在不锈钢中的作用主要体现在以下几个方面:1.铁(Fe):铁是不锈钢的主要成分之一,它赋予不锈钢良好的强度和可塑性。

同时,铁的存在使得不锈钢具备了磁性。

2.铬(Cr):铬是不锈钢中最重要的合金元素。

通过添加铬元素,能够形成致密的氧化铬层,从而防止不锈钢表面的金属继续氧化。

这种氧化铬层是保护不锈钢抗腐蚀性的关键,只有当其厚度达到一定标准时,不锈钢才能真正发挥其耐腐蚀的特性。

3.镍(Ni):镍对不锈钢的作用主要体现在增强抗腐蚀性能方面。

镍的加入可以提高不锈钢的抗酸性、碱性和耐高温性能。

此外,镍还能改善钢的可塑性和韧性。

4.锰(Mn):锰是不锈钢中的合金元素之一、它的作用是增加不锈钢的塑性和强度,并提高其耐腐蚀性。

5.钼(Mo):钼主要用于改善不锈钢的耐酸性和耐腐蚀性能。

它可以提高不锈钢在高温和酸性环境下的稳定性。

6.硅(Si):硅是一种既能增强不锈钢抗氧化性能又能提高其韧性的合金元素。

硅能够促进铬在钢中的溶解度和氧化铬层的形成。

7.钛(Ti):钛能够与铬形成一种稳定的氧化物,可以提高不锈钢的抗氧化性能和耐蚀性。

8.铌(Nb):铌主要用于改善不锈钢的耐腐蚀性和强化效果。

添加适量的铌可以提高不锈钢的抗应力腐蚀性和抗晶间腐蚀性能。

9.钠(Na):钠在不锈钢中的含量通常很低,但它对抗菌性能和耐腐蚀性有一定的作用。

总之,不锈钢中的各种化学元素通过相互配合作用,形成了一种优良的合金材料,使得不锈钢具有了高强度、耐腐蚀、耐高温等特性。

同时,化学元素的掺杂和调整,也使得不锈钢在特定环境下具备了更好的耐腐蚀性和抗腐蚀性能。

这使得不锈钢广泛应用于建筑、化工、医药、食品加工等领域。

不锈钢中各元素作用

不锈钢中各元素作用
• 2、由于碳含量对不锈钢的抗腐蚀性能有很 大的影响,因此,一般选用熔敷金属含碳量不 高于母材的不锈钢焊条。 如316L必须选用A022焊条。
• 3、对于工作温度在300℃以上、有较强腐 蚀性的介质,须采用含有Ti或Nb稳定化元素 或超低碳不锈钢焊条。 如A137或A002等。
• 4、对于含有稀硫酸或盐酸的介质,常选用含 Mo或含Mo和Cu的不锈钢焊条。 如:A032、A052等。
• 钼(Mo):可以抑制合金钢由于火而引起 的脆性。
• 钛(Ti):使钢的内部组织致密,细化晶粒 力;降低时效敏感性和冷脆性。改善焊接 性能。在铬18镍9奥氏体不锈钢中加入适当 的钛,可避免晶间腐蚀。
• 钒(V)能细化钢的晶粒组织,提高钢的强 度,韧性和耐磨性.当它在高温熔入奥氏 体时,可增加钢的淬透性。
• 钨(W)能提高钢的耐磨性
• 铜(Cu)改善普通低合金钢的抗大气腐蚀 性能,特别是和磷配合使用时更为明显。
• 氮(N)能提高钢的强度,低温韧性和焊接 性,增加时效敏感性。
• 从以上图片可以看出:
1、Cr:防锈,不锈钢的主要组成; 2、Ni:奥氏体的形成元素;镍对酸碱有较高 的耐腐蚀能力,在高温下有防锈和耐热能力;
5、对于在低温条件下工作的奥氏体不锈钢,应 保证焊接接头在使用温度的低温冲击韧性,故 采用纯奥氏体焊条。
如A402、A407。
6、双相奥氏体钢焊缝碱性药皮与钛钙型药皮 焊条的差别不像碳钢焊条那样显著。因此在 实际应用中,从焊接工艺性能方面着眼较多,大 都采用药皮类型代号为17或16的焊条
如A102A、A102、A132等。
• M 马氏体不锈钢 • F 铁素体不锈钢 • A 奥氏体不锈钢 • A一F 双相不锈钢。
三、不锈钢的焊条选用要点

合金元素在钢中的作用

合金元素在钢中的作用

合金元素在钢中的作用合金元素在钢中的作用,不外是与钢中的铁和碳两个基本组元发生作用,合金元素之间的相互作用,以及由此而影响钢的组织和相变过程,改变钢的性能等。

下面仅简述其几方面最基本的作用。

一、强化铁素体大多数合金元素都能溶于铁素体,形成合金铁素体。

由于合金元素与铁的晶格类型和原子半径的差异,引起铁素体的晶格畸变,产生固溶强化,使铁素体的强度、硬度提高,但塑性和韧性有下降的趋势。

如Si、Mn能显著提高铁素体的强度和硬度,但Si超过1%,Mn 超过1.5%时,都会降低铁素体的韧性,只有Ni比较特殊,在一定范围内(不超过5%)能显著强化铁素体的同时又能提高韧性。

二、形成合金碳化物在钢中能形成碳化物的元素有Fe、Mn、Cr、Mo、W、V、Nb、Zr、Ti等(按与碳的亲合能力由弱到强依次排列)。

与碳的亲合力超强,形成的碳化物越稳定。

根据合金元素与碳的亲合力的强弱和元素在钢中含量的多少,钢中的合金碳化物有合金渗碳体和特殊碳化物两种类型。

弱碳化物形成元素(如Mn)或较强碳化物形成元素(如Cr、W等)在钢中含量不多(0.5~3%)时,一般都倾向于溶入渗碳体形成合金渗碳体。

如(Fe,Mn)3C、(Fe,Cr)3C、(Fe,W)3C 等。

合金渗碳体的硬度和稳定性都略高于渗碳体。

强碳化物形成元素(如V、Nb、Ti等)或较强碳化物形成元素在钢中含量足够高(大于5%)时,就形成与渗碳体晶格完全不同的特殊碳化物。

如Cr23C6、WC、VC、TiC等。

这些碳化物具有更高的熔点、硬度和耐磨性,并且更为稳定。

在淬火加热时很难溶于奥氏体;回火时加热到较高温度才能从马氏体中析出;聚集长大也较慢。

当其在钢中呈弥散分布时,能显著提高钢的强度、硬度和耐磨性,而不降低韧性。

所以工具钢中常加入碳化物形成元素。

三、阻碍奥氏体的晶粒长大强碳化物形成元素Ti、Nb、V等形成的碳化物及Al形成的AlN、Al2O3等细小质点,分布在奥氏体晶界上,能强烈地阻碍奥氏体晶粒的长大,所以合金钢(除锰钢外)淬火加热时不易过热,这样有利于获得细马氏体;有利于提高加热温度,使奥氏体中溶入更多的合金元素,有利于改善钢的淬透性和机械性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铬-镍奥氏体不锈钢在450~800℃温度区加热,常发生沿晶界的腐蚀破坏,称为晶间腐蚀。

一般认为,晶间腐蚀是碳从饱和的奥氏体以Cr23C6形态析出。

造成晶界处奥氏体贫铬所致。

防止晶界贫铬是防止晶间腐蚀的有效方法。

如将各种元素按与碳的亲和力大小排列,顺序为:Ti、Zr、V、Nb、W、Mo、Cr、Mn。

钛和铌与碳的亲和力都比铬大,把它们加入钢中后,碳优先与它们结合生成碳化钛(TiC)和碳化铌(NbC),这样就避免了析出碳化铬而造成晶界贫铬,从而有效防止晶间腐蚀。

另外,钛和铌与氮可结合生成氮化钛和氮化铌,钛与氧可结合生成二氧化钛,奥氏体中还能溶解一部分铌(约0.1%)。

考虑这些因素,实际生产中为防止晶间腐蚀,钛和铌加入量一般按下式计算:Ti=C×5~0.8%
Nb≥10×C%
含钛和铌的钢固溶处理后得到单相奥氏体组织,这种组织处于不稳定状态,当温度升高到450℃以上时,固溶体中的碳逐步以碳化物形态析出,650℃是Cr23C6形成温度,900℃是TiC形成温度,920℃是NbC 形成温度。

要防止晶间腐蚀就要减少Cr23C6含量,使碳化物全部以TiC和NbC形态存在。

由于钛和铌的碳化物比铬的碳化物稳定,钢加热到700℃以上时,铬的碳化物就开始向钛和铌的碳化物转化。

稳定化处理是将钢加热到850~930℃之间,保温1h,此时铬的碳化物全部分解,形成稳定的TiC和NbC,钢的抗晶间腐蚀性能得到改善。

不锈钢中加入钛和铌,在一定条件下弥散析出Fe2Ti和Fe3Nb2金属间化合物,钢的高温强度有所提高。

由于铌的价格昂贵(是钛的70倍),广泛采用的是加钛不锈钢。

含钛钢存在一些缺点,如:TiO2和TiN 以夹杂物存在,含量高且分布不均,降低钢的纯净度;铸锭表面质量差,增加工序修磨量,极易造成大批废品;成品抛光性能不好,很难得到高精度表面等。

相关文档
最新文档