物理速度选择器和回旋加速器易错剖析含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理速度选择器和回旋加速器易错剖析含解析
一、速度选择器和回旋加速器
1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。
今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。
求: (1)磁场B 1的大小和方向
(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。
【答案】(1)2112U m
B d
U e
=
2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1
U U U U U -∆=()
11max 1
U U U U U +∆=【解析】 【分析】 【详解】
(1)在加速电场中
2112
U e mv =
12U e
v m
=
在速度选择器B 中
2
1U eB v e d
=
得
1B =
根据左手定则可知方向垂直纸面向里;
(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为
1v =
1
12
mv R eB =
最大值为
2v =
2
22
mv R eB =
打在D 上的宽度为
2122D R R =-
22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有
1U
eB v e d
=
得
U=B 1vd
代入B 1
得
2U U = 再代入v 的值可得电压的最小值
min U U =最大值
max U U =
2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。
虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。
一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。
不计粒子重力。
(1)求第二象限中电场强度和磁感应强度的比值
E B ; (2)求第一象限内磁场的磁感应强度大小B ;
(3)粒子离开磁场后在电场中运动是否通过x 轴?如果通过x 轴,求其坐标;如果不通过x 轴,求粒子到x 轴的最小距离。
【答案】(1)32.010m/s ⨯;(2)3210T -⨯;(3)不会通过,0.2m 【解析】 【详解】
(1)由题意可知,粒子在第二象限内做匀速直线运动,根据力的平衡有
00qvB qE =
解得
30
2.010m/s E B =⨯ (2)粒子在第二象限的磁场中做匀速圆周运动,由题意可知圆周运动半径
1.0m R d ==
根据洛伦兹力提供向心力有
2
v qvB m R
=
解得磁感应强度大小
3210T B -=⨯
(3)粒子离开磁场时速度方向与直线OA 垂直,粒子在匀强电场中做曲线运动,粒子沿y 轴负方向做匀减速直线运动,粒子在P 点沿y 轴负方向的速度大小
sin y v v θ=
粒子在电场中沿y 轴方向的加速度大小
cos y qE a m
θ
=
设经过t ∆时间,粒子沿y 轴方向的速度大小为零,根据运动学公式有
y y
v t
a ∆=
t ∆时间内,粒子沿y 轴方向通过的位移大小
2
y v y t ∆=
⋅∆
联立解得
0.3m y ∆=
由于
cos y d θ∆<
故带电粒子离开磁场后不会通过x 轴,带电粒子到x 轴的最小距离
cos 0.2m d d y θ'=-∆=
3.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。
在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。
有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷q
m
=3.125×106C/kg ,sin37°=0.6,cos37°=0.8,5≈2.24。
求: (1)粒子初速度v 0的大小;
(2)圆形匀强磁场区域的磁感应强度B 2的大小;
(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。
【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。
【解析】 【详解】
(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡
qv 0B 1=Eq
带电粒子初速度
v 0=5×104m/s
(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力
20
02v qv B m r
=
轨迹如图所示:
由几何关系,带电粒子做圆周运动的半径为
4
0.8m tan 373
R r R =
==︒
联立解得:
B 2=0.02T
(3)带电粒子在电场中做类平抛运动 水平方向
0L v t =⋅
竖直方向
212
y at =
由牛顿第二定律
qE ma =
粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:
由几何关系 ,利用三角形相似,有:
22
()
2
2
L
y
y
L
R d
+
=
+
,
解得
1.144m
d=,
若想带电粒子不能飞入圆形磁场,应满足 1.144m
d≥。
4.如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为B0的匀强磁场;在xOy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场.一质量为m、电荷量为q 的正离子(不计重力)以初速度v0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y轴进入第一象限,经过x轴上的A点射出电场进入磁场.已知离子过A点时的速度方向与x轴成45°角.求:
(1)金属板M、N间的电压U;
(2)离子运动到A点时速度v的大小和由P点运动到A点所需时间t;
(3)离子第一次离开第四象限磁场区域的位置C(图中未画出)与坐标原点的距离OC.
【答案】(1)00
B v d;(2)t=0
mv
qE
;(3)
2
00
2
mv mv
qE qB
+
【解析】
【分析】
【详解】
离子的运动轨迹如下图所示
(1)设平行金属板M、N间匀强电场的场强为0
E,则有:
U E d
=
因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000
qE qv B
=
解得:金属板M 、N 间的电压00U B v d =
(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0
cos 45v v
=
故离子运动到A 点时的速度:0v =
根据牛顿第二定律:qE ma =
设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0
tan 45y v v =
联立以上各式解得,离子在电场E 中运动到A 点所需时间:0
mv t qE
=
(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:
2
v qvB m R
=
解得:0mv R qB qB
=
= 由几何知识可得0
22cos 452mv AC R R qB
===
在电场中,x 方向上离子做匀速直线运动,则20
0mv OA v t qE
==
因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:
200
2mv mv OC OA AC qE qB
=+=+
【点睛】
本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.
5.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。
现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。
(1)求匀强磁场的磁感应强度的大小和方向;
(2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α粒子的比荷
q m
;
(3)若把匀强磁场撤去,α
粒子的比荷
q
m
不变,α
粒子仍从P点沿+x方向射入,从N点离开圆形区域,求α粒子在P点的速度大小。
【答案】(1)
E
v,方向垂直纸面向里
(2)0
3BR
(3)
3
2
v0
【解析】
【详解】
(1)由题可知电场力与洛伦兹力平衡,即
qE=Bqv0
解得
B=
E
v
由左手定则可知磁感应强度的方向垂直纸面向里。
(2)粒子在磁场中的运动轨迹如图所示,
设带电粒子在磁场中的轨迹半径为r,根据洛伦兹力充当向心力得
Bqv0=m
2
v
r
由几何关系可知
r3,
联立得
q
m
3BR
(3)粒子从P到N做类平抛运动,根据几何关系可得
x=
3
2
R=vt
y
3
=
1
2
×
qE
m
t2
又
qE =Bqv 0
联立解得
v
=
3
2
03Bqv R m
=
32
v 0
6.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60,不计重力,求
(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m
. 【答案】(1)00U dB (2)0
0133U dB B R
【解析】
(1)离子在平行金属板之间做匀速直线运动,
由平衡条件得:qvB 0=qE 0 已知电场强度:0
0U E d
= 联立解得:0
U v dB =
(2)根据左手定则,离子束带负电
离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:
由牛顿第二定律得:
2
1
mv qvB
r
=
由几何关系得:3
r R
=
01
3
3
U
q
m dB B R
=
点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.
7.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E、磁感应强度为B的复合场区域.进入时氕与氘、氘与氚的间距均为d,射出复合场后进入y轴与MN之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN射出.虚线MN与PQ间为真空区域Ⅱ且PQ与MN 平行.已知质子比荷为
q
m
,不计重力.
(1)求粒子做直线运动时的速度大小v;
(2)求区域Ⅰ内磁场的磁感应强度B1;
(3)若虚线PQ右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN上的一点,求该磁场的最小面积S和同时进入复合场的氕、氚运动到汇聚点的时间差△t.
【答案】(1)
E
B
(2)
mE
qdB
(3)
(2)Bd
E
πθ
+
【解析】
【分析】
由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B1;分析可得氚粒子圆周运动直径为3r,求出磁场最小面积,在结合周期公式即可求得时间差.
【详解】
(1)粒子运动轨迹如图所示:
由电场力与洛伦兹力平衡,有:Bqv =Eq 解得:E v B
=
(2)由洛伦兹力提供向心力,有:2
1v qB v m r
=
由几何关系得:r =d
解得:1mE
B qdB
=
(3)分析可得氚粒子圆周运动直径为3r ,磁场最小面积为:2
2
13222r r S π⎛⎫⎛⎫
=- ⎪ ⎪⎝⎭⎝⎭
解得:S =πd 2
由题意得:B 2=2B 1
由2r
T v
π=
可得:2m T qB π=
由轨迹可知:△t 1=(3T 1﹣T 1)2θ
π
, 其中11
2m
T qB π= △t 2=
12
(3T 2﹣T 2)其中222m T qB π= 解得:△t =△t 1+△t 2=()()1
22m dB
qB E
θπθπ++=
【点睛】
本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.
8.如图所示,一对平行金属极板a 、b 水平正对放置,极板长度为L ,板间距为d ,极板间电压为U ,且板间存在垂直纸面向里磁感应强度为B 的匀强磁场(图中未画出)。
一带电粒子以一定的水平速度从两极板的左端正中央沿垂直于电场、磁场的方向射入极板间,恰好做匀速直线运动,打到距离金属极板右端L 处的荧光屏MN 上的O 点。
若撤去磁场,粒子仍能从极板间射出,且打到荧光屏MN 上的P 点。
已知粒子的质量为m ,电荷量为q ,不计粒子的重力及空气阻力。
(1)求带电粒子刚进入极板左侧时的速度大小v;(2)求粒子打到荧光屏P点时动能大小;
(3)求荧光屏上P点与o点间距离。
【答案】(1)U
Bd
(2)
2222
22
22
q L B mU
m d B
+ (3)
22
3
2
qB L d
mU
【解析】
【分析】
(1)带电粒子受力平衡,洛伦兹力等于电场力,从而求解粒子进入极板时的速度;(2,3)只有电场时,粒子在电场中做类平抛运动,结合运动公式求解粒子打到荧光屏P点时动能大小以及荧光屏上P点与O点间距离;
【详解】
(1)带电粒子受力平衡,有qvB=q U
d
粒子进入极板时的速度v=U Bd
(2)带电粒子在两极板间运动时间t1=L
v,加速度
qU
a
md
=
带电粒子从极板右端射出时沿竖直方向的速度v y =1qUL
at
mdv
=
粒子出偏转场时动能大小为
2222 222
22 11
()
2222 K y
q L B mU E mv m v v
m d B ==+=+
(3)带电粒子穿过电场时的侧移量
2
2
112 1
22
qUL y at
mdv ==
带电粒子离开两极板间后做匀速直线运动的时间t2=L v
带电粒子离开两极板间后在竖直方向的位移
2 222
y
qUL y v t
mdv ==
P点与O点距离h=y1+y2=
222
2
33
=
22 qUL qB L d mdv mU
9.1897年,汤姆孙根据阴极射线在电场和磁场中的偏转情况断定,它的本质是带负电的粒子流并求出了这种粒子的比荷,图为汤姆孙测电子比荷的装置示意图。
在真空玻璃管内,阴极K发出的电子经阳极A与阴极K之间的高电压加速后,形成细细的一束电子流,沿图示方向进入两极板C、D间的区域。
若两极板C、D间无电压,电子将打在荧光屏上的O点,若在两极板间施加电压U,则离开极板区域的电子将打在荧光屏上的P点;若再在
极板间施加磁感应强度大小为B的匀强磁场,则电子在荧光屏上产生的光点又回到O点,已知极板的长度L1=5.00cm,C、D间的距离d=1.50cm,极板的右端到荧光屏的距离
L2=10.00cm,U=200V,B=6.3×10-4T,P点到O点的距离Y=3.0cm。
求:
(1)判断所加磁场的方向;
(2)电子经加速后射入极板C、D的速度v;
(3)电子的比荷(结果保留三位有效数字)。
【答案】(1)磁场方向垂直纸面向外 (2)v=2.12×107m/s (3)=1.61×1011C/kg
【解析】
【详解】
(1)由左手定则可知磁场方向垂直纸面向外;
(2)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为,则evB=eE
得即代入数据得v=2.12×107m/s
(3)当极板间仅有偏转电场时,电子以速度进入后,竖直方向作匀加速运动,加速度为
电子在水平方向作匀速运动,在电场内的运动时间为
这样,电子在电场中,竖直向下偏转的距离为
离开电场时竖直向下的分速度为
电子离开电场后做匀速直线运动,经t2时间到达荧光屏
t2时间内向上运动的距离为
这样,电子向上的总偏转距离为
可解得代入数据得=1.61×1011C/kg
【点睛】
本题是组合场问题:对速度选择器,根据平衡条件研究;对于类平抛运动的处理,通常采用运动的分解法律:将运动分解成相互垂直的两方向运动,将一个复杂的曲线运动分解成两个简单的直线运动,并用牛顿第二定律和运动学公式来求解.
10.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d ,三金属板上小孔O 1、O 2、O 3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场E 1,Ⅱ、Ⅲ间有水平向左电场强度为E 2的匀强电场及垂直于纸面向里磁感应强度为B 2的匀强磁场.一质子由金属板I 上端O 1点静止释放,经电场E 1加速,经过O 2进入E 2、B 2的复合场中,最终从Ⅲ的下端O 3射出,已知质子带电量为e ,质量为m .则
A .O 3处出射时粒子速度为2
22
E v B = B .Ⅰ、Ⅱ两板间电压2
12
2mE U eB =
C .粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1
D .把质子换成α粒子,则α粒子也能从O 3射出 【答案】AB 【解析】 【详解】
A .经过O 2点进入E 2、
B 2的复合场中,最终沿直线从Ⅲ的下端O 3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据
qE 2=B 2qv
解得:
v=22
E B 故A 正确;
B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=
12
mv 2
,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么
Ⅰ、Ⅱ两板间电压
U 1=2
222
2mE eB 故B 正确;
C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有
d =10
2
v t +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误; D .若将质子换成α粒子,根据
qU 1=
12
mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】
考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.
11.回旋加速器D 形盒中央为质子流,D 形盒的交流电压为U =2×104V ,静止质子经电场加速后,进入D 形盒,其最大轨道半径R =1m ,磁场的磁感应强度B =0.5T ,质子的质量为1.67×10-27kg ,电量为1.6×10-19C ,问: (1)质子最初进入D 形盒的动能多大? (2)质子经回旋加速器最后得到的动能多大? (3)交流电源的频率是多少?
【答案】(1)153.210J -⨯; (2)121.910J -⨯; (3)67.610Hz ⨯. 【解析】 【分析】 【详解】
(1)粒子在第一次进入电场中被加速,则质子最初进入D 形盒的动能
411195210 1.610J 3.210J k E Uq -==⨯=⨯⨯⨯-
(2)根据
2
v qvB m R
=
得粒子出D 形盒时的速度为
m qBR
v m
=
则粒子出D 形盒时的动能为
22219222212271 1.610051J 1.910J (22211).670
km
m q B R E mv m ---⨯⨯⨯====⨯⨯⨯. (3) 粒子在磁场中运行周期为
2m
T qB π=
因一直处于加速状态,则粒子在磁场中运动的周期与交流电源的周期相同,即为
2m
T qB
π=
那么交变电源的频率为
196
27
1.6100.5Hz 7.610Hz 22 3.14 1.6710
qB f m π--⨯⨯===⨯⨯⨯⨯
12.如图1所示为回旋加速器的示意图.它由两个铝制D 型金属扁盒组成,两个D 形盒正中间开有一条狭缝,两个D 型盒处在匀强磁场中并接在高频交变电源上.在1D 盒中心A 处有离子源,它产生并发出的α粒子,经狭缝电压加速后,进入2D 盒中.在磁场力的作用下运动半个圆周后,再次经狭缝电压加速.为保证粒子每次经过狭缝都被加速,设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致如.此周而复始,速度越来越大,运动半径也越来越大,最后到达D 型盒的边缘,以最大速度被导出.已知α粒子电荷量为q 质量为m ,加速时电极间电压大小恒为U,磁场的磁感应强度为B ,D 型盒的半径为R .设狭缝很窄,粒子通过狭缝的时间可以忽略不计,且α粒子从离子源发出时的初速度为零.(不计α粒子重力)求:
(1)α粒子第1次由1D 盒进入2D 盒中时的速度大小; (2)α粒子被加速后获得的最大动能k E ; (3)符合条件的交变电压的周期T ;
(4)粒子仍在盒中活动过程中,α粒子在第n 次由2D 盒进入1D 盒与紧接着第n +1次由2D 盒进入1D 盒位置之间的距离Δx .
【答案】(1)12qU v m =
(2)222
2k q B R E m
= (3)2m T Bq π= (4)
22
Um
x B =
【解析】 【分析】 【详解】
(1)设α粒子第一次被加速后进入D 2盒中时的速度大小为v 1,根据动能定理有
211
2
qU mv =
解得,1v (2)α粒子在D 形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能.设此时
的速度为v ,有2
mv qvB R
=
解得:qBR
v m
=
设α粒子的最大动能为E k ,则212
k E mv =
解得:222
2k q B R E m
=
(3)设交变电压的周期为T ,为保证粒子每次经过狭缝都被加速,带电粒子在磁场中运动一周的时间应等于交变电压的周期(在狭缝的时间极短忽略不计),则交变电压的周期
22r m
T v Bq
ππ=
= (4)离子经电场第1次加速后,以速度v 1进入D 2盒,设轨道半径为r 1
则 11mv r qB =
离子经第2次电场加速后,以速度v 2进入D 1盒,设轨道半径为r 2
则 22mv r qB =
离子第n 次由D 1盒进入D 2盒,离子已经过(2n -1)次电场加速,以速度v 2n-1进入D 2盒,
由动能定理:
2
211212
n n Uq mv --=()
轨道半径 21n n mv r qB -=
=离子经第n +1次由D 1盒进入D 2盒,离子已经过2n 次电场加速,以速度v 2n 进入D 1盒,由动能定理:2
2122
n nUq mv =
轨道半径:21122n n mv n mU
r qB B q
+⋅=
= 则△x =2(r n+1-r n )(如图所示)
解得,()2121221
2
22
221n mU n mU Um
x n n B q B
q
B q
()()
-⋅⋅=-
=
--
13.1932年,劳伦斯和利文斯设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B 的匀强磁场与盒面垂直.A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U .加速过程中不考虑相对论效应和重力作用.
(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E ㎞. 【答案】(12(2)
2
2BR U
π(3)当Bm
m f f ≤时,E Km =2222m q B R
m
;当Bm m f f ≥时,
E Km =222
2m mf R π
【解析】 【分析】
(1)狭缝中加速时根据动能定理,可求出加速后的速度,然后根据洛伦兹力提供向心力,推出半径表达式;
(2)假设粒子运动n圈后到达出口,则加速了2n次,整体运用动能定理,再与洛伦兹力提供向心力,粒子运动的固有周期公式联立求解;
(3)B m对应粒子在磁场中运动可提供的最大频率,f m对应加速电场可提供的最大频率,选两者较小者,作为其共同频率,然后求此频率下的最大动能.
【详解】
(1)设粒子第1次经过狭缝后的半径为r1,速度为v1
qU=mv12
qv1B=m
解得
同理,粒子第2次经过狭缝后的半径
则.
(2)设粒子到出口处被加速了n圈
解得.
(3)加速电场的频率应等于粒子在磁场中做圆周运动的频率,即
当磁场感应强度为B m时,加速电场的频率应为
粒子的动能
当f Bm≤f m时,粒子的最大动能由B m决定
解得
当f Bm≥f m时,粒子的最大动能由f m决定v m=2πf m R解得
【点睛】
此题是带电粒子在复合场中运动与动能定理的灵活应用,本题每一问都比较新颖,需要学生反复琢磨解答过程.
14.正电子发射计算机断层(PET )是分子水平上的人体功能显像的国际领先技术,它为临床诊断和治疗提供全新的手段。
PET 所用回旋加速器示意如图所示,其中D 1和D 2是置于高真空中的两个中空半圆金属盒,两半圆盒间的缝隙距离为d ,在左侧金属盒D 1圆心处放有粒子源A ,匀强磁场的磁感应强度为B 。
正电子质量为m ,电荷量为q 。
若正电子从粒子源A 进入加速电场时的初速度忽略不计,加速正电子时电压U 的大小保持不变,不考虑正电子在电场内运动的过程中受磁场的影响,不计重力。
求:
(1)正电子第一次被加速后的速度大小v 1;
(2)正电子第n 次加速后,在磁场中做圆周运动的半径r ;
(3)若希望增加正电子离开加速器时的最大速度,请提出一种你认为可行的改进办法! 【答案】(1)
2qU m (2)
1
2mnqU Bq
(3)见解析 【解析】(1)正电子第一次被加速后,由动能定理可得2
112
qU mv =,解得12qU v m =
(2)设质子第n 次加速后的速度为n v 由动能定理有2
12
n nqU mv =
由牛顿第二定律有2n n v qv B m r =,解得1
2r mnqU Bq
=
(3)方案一:增加磁感应强度B ,同时相应调整加速电压变化周期;方案二:增加金属盒的半径。
15.如图所示为回旋加速器的原理示意图,其核心部分是两个靠得非常近的D 形盒,两盒分别和一交流电源的两极相连,交流电源对粒子的加速电压为U ,匀强磁场分布在两D 形盒内且垂直D 形盒所在平面,磁感应强度为B ,在D 形盒中央S 点处放有粒子源。
粒子源放出质量为m 、带电量为q 的粒子(设粒子的初速度为零)被回旋加速器加速,设D 形盒的最大半径为R ,求:
(1)交流电源的周期T =?
(2)当粒子在D形盒中圆周运动半径为R时,通过特定装置将粒子导出,求将粒子导出前粒子被加速的次数n=?
【答案】(1)(2)
【解析】试题分析:粒子先在电场中加速,然后进入磁场,做匀速圆周运动,半圆周后,粒子再次进入电场,此时电源交换电极,粒子继续加速。
粒子在磁场中运动周期与电场变化周期相同,则粒子可一直加速;当半径最大时,获得的速度最大,根据洛伦兹力提供向心力求出粒子离开加速器时的动能;粒子被电场加速一次动能的增加qU,根据最大动能求出加速的次数。
(1)圆周运动周期等于交流电周期才可获得持续加速,设圆周运动半径为r、周期为T:
,解得
(2)粒子圆周运动:
粒子被加速:
解得:
【点睛】此题重在理解回旋加速器原理,加速电场半个周期改变一次反响,与磁场周期相同,保证粒子在电场中一直加速,在磁场中旋转.进行计算时,把握好在电场和磁场中运动时间的关系。