四年级等差数列

合集下载

四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路

四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路

四年级奥数:等差数列求和、容斥问题(含与排除问题)的解题思路在一列数中,如果任意两个相邻的数的差都相等,那么这个数列就是等差数列,等差数列中所有数的个数叫做项数,数列的第一个数叫做首项,最后一个数叫做末项,任意两个相邻数的差叫做公差,求所有数的和叫做等差数列求和。

在等差数列中,我们主要学习项数、首项、末项、公差与数列和之间的关系,它们的关系是:(1)求等差数列的和:和=(首项+末项)×项数÷2(2)求项数:项数=(末项-首项)÷公差+1(3)求末项:末项=首项+(项数-1)×公差(4)求首项:首项=末项-(项数-1)×公差例题1例题2等差数列中,末项=首项+公差×(项数-1);首项=末项-公差×(项数-1)例题3项数=(末项-首项)÷公差+1例题4例题5等差数列求和,其实就是把原来的数列再倒过来排一下,然后求出两个数列的和,再除以2,即和=(首项+末项)×项数÷2。

容斥问题,即重叠问题,是指几个量之间的包含与排除关系。

重叠问题中有二次重叠和三次重叠。

容斥原理下面我们就通过一些具体的例子来说明例题1两个量之间的重叠问题中,如果是全部参与,则总人数等于分别参加两项的的人数和减去两项都参加的人数;两个量之间的重叠问题中,如果是部分参与,则总人数等于参加的人数加上没参加的人数。

例题2三个量的重叠问题中,如果是全部参与,则总人数等于参加三项的人数和减去同时参加两项的人数和,再加上同时参加三项的人数;三个量的重叠问题中,如果是部分参与,则总人数等于至少参加一项的人数与三项都没参加的人数之和。

例题3两个量的极值中,两项都参加的人最多,就是较少的一项,两项都参加的人数最少,就是求重叠部分;三个量的极值问题中,如果要不参加的最多,就是要参加的尽量少。

小学奥数_等差数列

小学奥数_等差数列

四年级奥数课程部分第八讲:等差数列一,数列有关知识点:⒈ 数列的定义:按一定次序排列的一列数叫做数列.注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,….例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n项结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“31”是这个数列的第“3”项,等等 4.等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +)后一项减前一项为一定值,我们把这个定值叫公差,用d 表示5.等差数列的通项公式:(每一项都可用通项公式来表示)d n a a n )1(1-+=6.数列的前n 项和:数列{}n a 中,n a a a a ++++ 321称为数列{}n a 的前n 项和,记为n S .求和公式:总和=(首项+末项)×项数÷2=等差中项×项数等差数列的前n 项和公式1:2)(1n n a a n S +=等差数列的前n 项和公式2:2)1(1d n n na S n -+=二.例题精讲例1,认识数列:等差数列:3、6、9、 (96)这是一个首项为3,末项为96,项数为32,公差为3的数列。

例2,有一个数列:4、7、10、13、…、25,这个数列共有多少项提示仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。

解:由等差数列的项数公式:项数=(末项-首项)÷公差+1,可得,项数=(25-4)÷3+1=8,所以这个数列共有8项。

四年级数学等差数列的应用

四年级数学等差数列的应用
5050-648=4402
如图,把边长为1的小
正方形叠成“金字塔形”
图,其中黑白相间染色.
如果最底层有15个正方形,
问其中有多少个染白色的
正方形,有多少个染黑色

的正方形?
6

第7关
在右图中,每个最小的等边三角形的 面积是12平方厘米,边长是1根火柴棍。 如果最大的三角形共有8层。 问:(1)最大三角形的面积是多少平方 厘米? (2)整个图形由多少根火柴棍摆成?

而这个体育馆最后一排座位是78个,请问:
3
第一排座位是多少个?整个体育馆共有多少 个座位?

第1排
第28排 第29排 第30排
7?8,,7…6,…7,4,7…4 ,…7,6第,一7排8
求末项(第N项) 第一排(末项)=78-(30-1)×2 = 20
求和 和=(78+20)×30÷2 =1470
答:第一排座位有20个,整个体育馆共有1470个座位。
建筑工地有一批砖,码成下图形状,最上
层有两块砖,第2层6块砖,第3层10块
第 砖,……,依次每层都比其上面一层多4块
4
砖。已知最下层2106块砖,这堆砖共有多
关 少块?中间一层有多少块?
构成等差数列:
2,6,10,14,……,2106
求和
先求项数=(2106-2)÷4+1= 527
和=(2+2106)×527÷2= 555458 求中间项
项数=(25-3)÷2+1=12
答:队伍里一共有12人。
第2 关
在第1关中,如果泡泡报17,迈斯报 150,每位同学报的数都比前一位多7, 那么队伍里一共有多少人?
泡泡
……
迈斯

小学四年级奥数班讲义(等差数列)

小学四年级奥数班讲义(等差数列)

小学四年级奥数班讲义等差数列姓名: 计算等差数列的相关公式:项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2平均数公式:平均数=(首项+末项)÷2例题1 小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。

这本书共有多少页?课堂练习1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。

文丽在这些天中共学会了多少个英语单词?课堂练习2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。

这批零件共有多少个?课堂练习3、体育课上老师指挥大家排成一排,冬冬站排头,阿奇站排尾,从排头到排尾依次报数。

如果冬冬报17,阿奇报150,每位同学报的数都比前一位多7,那么队伍里一共有多少人?课堂练习4、一个队列按照每排2,4,6,8人的顺序可以一直排到某一排有100人,那么这个队列共有多少人?例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。

课堂练习1、建筑工地有一批砖,码成如下图形状,最上层两块砖,第2层6块砖,第3层10块砖…,依次每层都比其上面一层多4块砖,已知最下层398块砖,这堆砖共有多少块?课堂练习2、某剧院有20排座位,后一排都比前一排多2个座位,最后一排有70个座位,这个剧院一共有多少个座位?例题3 有50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?课堂练习1、有60把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多试多少次?课堂练习2、四(1)班45位同学举行一次同学联欢会,同学们在一起一一握手,且每两个人只能握一次手,同学们共握了多少次手?课堂练习3、学校进行书法大赛,每个选手都要和其他所有选手各赛一场。

如果有16人参加比赛,一共要进行多少场比赛?例4、时钟在每个整点敲打,敲打的次数等于该钟点数,每半点钟敲一下.问:时钟一昼夜打多少下?计算下面各题:1+2+3+4+……+2007+20085+10+15+……+95+1002+4+6+……198+200 5000-2-4-6-…-98-100 9+18+27+36+……+261+27081+79+……+17+15+13(2+4+6+……+2000)-(1+3+5+……+1999)=1+2-3+4+5-6+7+8-9+……+58+59-60=课后练习:一、填空1、三角形的两个内角之和是89°,这个三角形是()2、在括号里填上“>”、“<”或“=”。

四年级等差数列 (2)

四年级等差数列 (2)

四年级等差数列【专题导引】和、差的变化规律见下表(m ≠0)一个加数(a ) 另一个加数(b ) 和(c ) ±m 不变 ±m 不变 ±m±m ±m m 不变【典型例题】【C 1】两个数相加,一个加数增加3,另一个加数减少3,和是否会起变化?【试一试】1、两个数相加,一个加数增加5,另一个加数减少5,和是否会起变化?2、两个数相加,一个加数减少6,另一个加数增加2,和是否会起变化?【C 2】如果a -b=20,那么a -(b -2)=20+( )。

【试一试】1、如果a -b=18,那么(a+2)-b=18+( )。

2、如果a -b=18,那么(a -2)-b=18-( )。

【B 1】两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【试一试】被减数(a )减数(b ) 差(c ) ±m 不变 ±m 不变 ±m m ±m±m不变 ++1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【B2【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?【B】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?3【试一试】(1)两数相减,如果被减数增加30,减数也增加30,差是否会起变化?(2)两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?1【试一试】(1)两数相减,被减数减少12,要使差增加8,减数应有什么变化?(2)两数相减,被减数减少36,要使差减少40,减数应有什么变化?】被减数、减数、差相加得2076,差是减数的一半。

四年级奥数等差数列求和ppt课件

四年级奥数等差数列求和ppt课件
例 1998+1997-1996-1995+1994+1993-1992-1991+…… 198+197-196-195
18
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
例 计算 (1+3+5+7+…+2003)-(2+4+6+8+…+2002)
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
一、等差数列的基本知识
1
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多
例:计算1 + 6+ 11 + 16 + 21+ 26 +......+ 276 分析:这是一个等差数列;首项=1,末项=276,公差=5
等差数列的和=(首项+末项)×项数÷2 ?
等差数列的项数=(末项-首项)÷公差+1
解:等差数列的项数: (276-1)÷5+1=56(项)
原数列之和=(1+276)×56÷2 = 277×28 =7756
什么是数列?
按一定规律排列的数 是一列数,可以有限,可以无限 1)1、2、3、4、5、6…… (2)2、4、6、8、10、12…… (3)5、10、15、20、25、30
2
寒假来临,不少的高中毕业生和大学 在校生 都选择 去打工 。准备 过一个 充实而 有意义 的寒假 。但是 ,目前 社会上 寒假招 工的陷 阱很多

四年级奥数之等差数列进阶

四年级奥数之等差数列进阶

?
……
……
?
【超常大挑战】 (★★★★) 有37个人排成一行一次报数,第一个人报1,以后每人报的数都是把前 一个人报的数加3.报数的过程中有一个人报错了,把前一个人报的数 减3报了出来,最后这37个人报的数加起来恰好等于2011.那么是第____ 个报数的人报错了。 个报数的人报错了
1. 基本定义 1 基本定义、公式 公式 2. 两大求和公式 (1) 和=(首项+末项)×项数÷2 和 (首项+末项)×项数÷2 (2) 和=中间相×项数 3. 考点: 考点 (1) am到an之间有(m-n)个公差 (2) 中间项=和÷项数
【例2】(★★★) 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。 板块二:中项定理的应用 已知去时用了4天,回来时用了3天。问:学校距离百花山多少千米? 【例4】(★★★★) 已知一个等差数列的前15项的和为450,前21项之和为819。请问:这个 数列的公差是多少?首项是多少?
第1项 第2项 第15项 第21项
?
……ቤተ መጻሕፍቲ ባይዱ
……
?
1
【拓展】(★★★★) 已知一个等差数列的前15项的和为450, 前20项之和为750。请问:这个 数列的公差是多少?首项是多少?
第1项 第2项 第15项 第20项
【例5】(★★★★) 在一次考试中, 第一组同学的分数恰好构成了公差为3的等差数列, 总分 是609. 小桐桐发现自己的分数算少了, 找老师更正以后, 加了21分. 这时 他们的成绩还是一个等差数列.请问:小桐桐正确的分数是多少?
3 求和公式: 3. (1) 和=(首项+末项)×项数÷2 (2) 和=中间相×项数 和 中间相×项数 4. 考点:首尾配对思想
【例1】(★★) 在19和91之间插入5个数,使这7个数构成一个等差数列。写出插入的5 个数。 19 91

四年级等差数列

四年级等差数列

等差数列例题1.数列1,4,7,10,……的第20项是几?习题1.数列2, 7, 12, 17, 22, ..的第100项是多少?习题2.(第2页想一想做一做2)数列1, 5, 9,13, 17, ..的第25项是多少?习题3.(第2页想一想做一做3)某阶梯教室有20排座位,第一排有10个座位,其后每一排都比与它相邻的前一排多2个座位。

这个阶梯教室最后一排有多少个座位?例题2.5,9,13,17,……,89,93共有几项?习题4.(第2页想一想做一做1(下面))9,18,27,36,……,261,270共有几项?习题5.(第2页想一想做一做2(下面))5,10,15,20,……,85,90共有几项习题6.(第2页想一想做一做3(下面))4,7,10,13,……,151,154共有几项?例题3.1+3+5+7+……+93+95+97+99例题3.1+3+5+7+……+93+95+97+99习题7.1. 1+2+3+4+5+6+7+8+……+502. 1+2+3+4+5+6+7+8+……+78+793. 101+102+103+104+105+……+200习题8.(1) 42+44+46+48+50+……+76(2) 39+42+45+48+……+84(3) (2+4+6+8+……+98+100)-(1+3+5+7+……+97+99)习题9.一批零件,张师傅原计划每天做50个,因时间问题,他以后每天都比前一天多做5个,最后一天做了75个正好做完。

问:这批零件共有多少个?习题10.小雨练习写毛笔字,第一天事了5个,第二天写了9个,以后每天都比前天多写4个。

当她在某一天中写了41个字时,这一天是她第几天练习写毛笔字?习题11.计算: 91+92+93+94+95+96+97习题12. 994+995+996+997+998习题13. 1993+1994+1995+1996+1997+1998+1999。

四年级等差数列 (2)

四年级等差数列 (2)

四年级等差数列【专题导引】和、差的变化规律见下表【m ≠0】一个加数【a 】 另一个加数【b 】 和【c 】 ±m 不变 ±m 不变 ±m±m ±m m 不变【典型例题】【C 1】两个数相加,一个加数增加3,另一个加数减少3,和是否会起变化?【试一试】1、两个数相加,一个加数增加5,另一个加数减少5,和是否会起变化?2、两个数相加,一个加数减少6,另一个加数增加2,和是否会起变化?【C 2】如果a -b=20,那么a -【b -2】=20+【 】。

【试一试】1、如果a -b=18,那么【a+2】-b=18+【 】。

2、如果a -b=18,那么【a -2】-b=18-【 】。

【B 1】两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【试一试】被减数【a 】减数【b 】 差【c 】 ±m 不变 ±m 不变 ±m m ±m±m不变 ++1、两个数相加,一个加数增加15,另一个加数减少15,和是否会起变化?2、两个数相加,一个加数增加6,另一个加数也增加6,和是否会起变化?】两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【B2【试一试】1、两个数相加,如果一个加数增加9,要使和增加17,另一个加数应有什么变化?2、两个数相加,如果一个加数增加11,要使和减少11,另一个加数应有什么变化?【B】两数相减,如果被减数减少2,减数也减少2,差是否会起变化?3【试一试】【1】两数相减,如果被减数增加30,减数也增加30,差是否会起变化?【2】两数相减,如果被减数增加23,减数减少23,差是否会起变化?【A】两数相减,如果被减数增加20,要使差减少16,减数应有什么变化?1【试一试】【1】两数相减,被减数减少12,要使差增加8,减数应有什么变化?【2】两数相减,被减数减少36,要使差减少40,减数应有什么变化?】被减数、减数、差相加得2076,差是减数的一半。

四年级奥数_等差数列(一)_学生 修改

四年级奥数_等差数列(一)_学生 修改

第四讲等差数列(一)解题方法若干个数排成一列,称为数列。

数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:等差数列:3、6、9、…、96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

计算等差数列的相关公式:通项公式:第几项=首项+(项数-1)×公差项数公式:项数=(末项-首项)÷公差+1求和公式:总和=(首项+末项)×项数÷2在等差数列中,如果已知首项、末项、公差,求总和时,应先求出项数,然后再利用等差数列求和公式求和。

例题1有一个数列:4、7、10、13、…、25,这个数列共有多少项提示仔细观察可以发现,后项与其相邻的前项之差都是3,所以这是一个以4为首项,以公差为3的等差数列,根据等差数列的项数公式即可解答。

引申1、有一个数列:2,6,10,14,…,106,这个数列共有多少项?。

3、在等差数列中,首项=1,末项=57,公差=2,这个等差数列共有多少项?例题2 有一等差数列:2,7,12,17,…,这个等差数列的第100项是多少?提示:仔细观察可以发现,后项与其相邻的前项之差等于5,所以这是一个以2为首项,以公差为5的等差数列,根据等差数列的通项公式即可解答引申1、求1,5,9,13,…,这个等差数列的第3O项。

例题3 计算2+4+6+8+…+1990的和。

提示:仔细观察数列中的特点,相邻两个数都相差2,所以可以用等差数列的求和公式来求。

引申计算1+2+3+4+…+53+54+55的和。

2、计算5+10+15+20+⋯ +190+195+200的和。

例题4 计算(1+3+5+...+l99l)-(2+4+6+ (1990)提示:仔细观察算式中的被减数与减数,可以发现它们都是等差数列相加,根据题意可以知道首项、末项和公差,但并没有给出项数,这需要我们求项数,按照这样的思路求得项数后,再运用求和公式即可解答。

四年级奥数等差数列

四年级奥数等差数列

四年级奥数等差数列专项练习(1)通项公式:第几项=首项+(项数-1)×公差(2)项数公式:项数=(末项-首项)÷公差+1(3)求和公式:总和=(首项+末项)×项数÷21、求等差数列3,8,13,18,……的第30项是多少?2、求等差数列8,14,20,26,……302的末项是第几项?3、一个剧院的剧场有20排座位,第一排有38个座位,往后每排比前一排多2个座位,这个剧院一共有多少个座位?4、计算11+12+13……+998+999+1000 2+6+3+12+4+18+5+24+6+305、求等差数列6,9,12,15,……中第99项是几?6、求等差数列46,52,58……172共有多少项?7、求等差数列245,238,231,224,……中,105是第几项?8、求等差数列0,4,8,12,……中,第31项是几?在这个数列中,2000是第几项?9、从35开始往后面数18个奇数,最后一个奇数是多少?10、已知一个等差数列的第二项是8,第3项是13,这1个等差数列的第10项是多少?11、有20个同学参加聚会,见面的时候如果每人都和其他同学握手一次,那么参加聚会的同学一共要握手多少次?12、请用被4除余数是1的所有两位数组成一个等差数列。

并求出这个等差数列的和。

13、在13和29之间插三个数,使这个五个数构成一个等差数列,那么插入的三个数分别是多少?14、如果要在30和70之间插入若干个数,使他们组成一个公差是5的等差数列,那么一共要插入多少个数?15、学校举行乒乓球赛,每个参赛选手要和其他选手进行一场比赛,一共进行了78场,计算出一共有多少个参赛选手?16、一把钥匙和一把锁配着,现在有10把钥匙和10把锁混着了,最多要打多少次才能把钥匙和锁都配好?17、40个连续奇数的和是1920,其中最大的一个是多少?18、小明读一本600页的书,他每天比前一天多读1页。

16天读完,那么他最后一天读了多少页?19、有一个数列:2,6,10,14,…,106,这个数列共有多少项?20、有一个数列:5,8,11,…,92,95,98,这个数列共有多少项?21、求1,5,9,13,…,这个等差数列的第3O项。

四年级 等差数列的项

四年级  等差数列的项

等差数列的项项数=(末项—首项)÷公差+1末项=(项数—1)×公差+首项首项=末项—(项数—1)×公差例题1:下列数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

(1)6、10、14、18、22、…、98(2)1、2、1、2、3、4、5、6(3)1、2、4、8、16、32、64(4)2、3、4、5、6、7、8、9(5)3、3、3、3、3、3、3、3(6)1、0、1、0、1、0、1、0练习1:1、判断下列数列哪些是等差数列?若是,请指明公差,若不是,则说明理由。

(1)2、5、8、11、…、65(2)7、8、7、8、2、5、6、4、3(3)1、2、3、5、6、8、7、6、5、4、3(4)4、4、4、4、4、4、42、下列数列中,数字如何改动,便能成为等差数列?(1)3、5、7、9、9、13、15、15(2)4、7、10、13、14、21、22、26例题2:有一个等差数列:3、6、9、12、…、45,这个数列共有多少项?练习2:1、等差数列中,首项为2,末项为100,公差为2。

这个等差数列共有多少项?2、有一个等差数列:4、7、10、13、…、100,这个等差数列共有多少项?例题3:已知数列2、5、8、11、……求这个数列的第19项和第91项分别是什么?练习3:1、已知数列1、3、5、7……问105是这个数列的第几项?2、已知一个等差数列的首项a1是7,从a2开始,后一个数比前一个数多2,求次数列的第100项是多少?例题4:已知等差数列2、5、8、11、14……,问47是其中的第几项?练习4:1、已知一个等差数列首项是1,末项是126,公差是5,求此数列共有多少项?2、等差数列1、3、5、7、…197、199共有多少项?。

四年级:巧妙求和一

四年级:巧妙求和一

巧妙求和(等差数列)(一)
一、求项数
1、等差数列4,10,16,22,……,52共多
少项?
2、等差数列中,首项=1,末项=39,公差=2.
这个等差数列共有多少项?
3、等差数列2,5,8,11,……,101共有多
少项?
4、已知一个等差数列的首项是11,末项是
101,总和是504,这个数列共有多少项?二、求末项
1、已知等差数列3,7,11,15,……,则该等差数列的第100项是多少?
2、一个等差数列的首项是3,公差是2,项数是10,则它的末项是多少?
3、已知等差数列1,4,7,10,……则该等差数列的第30项是多少?
4、已知等差数列2,6,10,14,……,则该等差数列的第100项是多少?
1/ 2
三、求和
1、有这样的一列数1,2,3,4, (99)
100,请求出这列数各项相加的和。

2、计算题
1+2+3+4+……+49+50
6+7+8+9+……+74+75
100+99+98+……+61+60
2+4+6+……+48+50
2+6+10+14+18+22
5+10+15+20+……+195+200
9+18+27+36+……+261+270
四、求规定第几项
1、如果一个等差数列的第4项为21,第6
项为33,那么它的第8项是多少?
2、如果一个等差数列的第5项是19,第8
项是61,那么它的第11项是多少?
3、如果一个等差数列的第3项是10,第7
项是26,那么它的第12项是多少?
4、如果一个等差数列的第2项是10,第6
项是18,那么它的第110项是多少?
2/ 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列
专题分析:
若干个数排成一列,称为数列。

数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。

从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。

例如:等差数列:3、6、9 …… 96,这是一个首项为3,末项为96,项数为32,公差为3的数列。

计算等差数列的相关公式:
通项公式:第几项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
平均数公式:平均数=(首项+末项)÷2
在等差数列中,如果已知首项、末项、公差。

求总和时,应先求出项数,然后再利用等差数列求和公式求和。

二、基本例题
1、有一个数列,4、10、16、22 …… 52,这个数列有多少项?
2、一个等差数列,首项是3,公差是2,项数是10。

它的末项是多少?
3、求等差数列1、
4、7、10 ……,这个等差数列的第30项是多少?
4、6+7+8+9+……+74+75=()
5、2+6+10+14+……+122+126=()
6、已知数列2、5、8、11、14 ……,47应该是其中的第几项?
7、有一个数列:6、10、14、18、22 ……,这个数列前100项的和是多少?
三、练习题
1、3个连续整数的和是120,求这3个数。

2、4个连续整数的和是94,求这4个数。

3、在6个连续偶数中,第一个数和最后一个数的和是78,求这6个连续偶数各是多少?
4、丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学会1个,最后一天学会了16个。

丽丽在这些天中共学会了多少个单词?
5、有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?
6、某班有51个同学,毕业时每人都要和其他同学握一次手,那么这个班共握了多少次手?
四、作业
1、5个连续整数的和是180,求这5个数。

2、6个连续整数的和是273,求这6个数。

3、在等差数列1、5、9、13、17 …… 401中,401是第几项?第50项是多少?
4、1+2+3+4+……+2007+2008=()
5、8+18+27+36+……+261+270=()
6、(2001+1999+1997+1995)-(2000+1998+1996+1994)=
7、(2+4+6+……+2000)-(1+3+5+……+1999)=
8、1+2-3+4+5-6+7+8-9+……+58+59-60=
9、有从小到大排列的一列数,共有100项,末项为2003,公差为3,求这个数列的和。

10、求1——99个连续自然数的所有数字的和。

---精心整理,希望对您有所帮助。

相关文档
最新文档