§1-8,9电源及电阻的等效变换
电阻电路的等效变换(电路分析基础课件)
02
01
等效变换的目的
等效变换的基本原则
电压和电流保持不变
在等效变换过程中,电路中的电压和电流值应保持不变。
元件参数相同
等效变换后的元件参数应与原电路中的元件参数相同。
功率平衡
等效变换后的电路应满足功率平衡条件,即电源提供的功率等于负载消耗的功率。
02
电阻的串并联等效变换
总结词
当多个电阻以串联方式连接时,总电阻值等于各电阻值之和。
详细描述
在并联电阻的等效变换中,总电阻倒数1/R_eq等于各个并联电阻倒数1/R1、1/R2、...、1/Rn之和。这种等效变换在电路分析中非常有用,因为它可以帮助我们简化电路模型。
01
02
03
04
电阻并联的等效变换
串并联电阻的等效变换
总结词:串并联电阻的等效变换是电路分析中的重要概念,它涉及到将复杂的串并联电路简化为易于分析的形式。
等效变换方法:对于非线性电阻电路,可以采用分段线性化方法,将非线性电阻的伏安特性曲线分段近似为直线,然后进行等效变换。
05
等效变换在电路分析中的应用
在计算电流和电压中的应用
总结词:简化计算
详细描述:通过等效变换,可以将复杂的电阻电路简化为简单的电路,从而更容易计算电流和电压。
总结词:提高精度
总结词:扩展应用范围
电阻串联的等效变换
总结词
当多个电阻以并联方式连接时,总电阻值倒数等于各电阻值倒数之和。
详细描述
在电路中,如果多个电阻以并联方式连接,则总电阻的倒数等于各电阻倒数之和。这是因为多个电阻并联时,它们共享相同的电压,因此总电流等于各支路电流之和。
总结词
并联电阻的等效变换可以通过公式1/R_eq = 1/R1 + 1/R2 + ... + 1/Rn表示。
电源的等效变换
电源的等效变换电源的等效变换电源是指向电路提供能量的设备或部件。
在电路中,不同类型的电源都有不同的输出性质和特点。
在某些情况下,需要将电源的输出进行等效变换,以满足特定的电路需求。
电源的等效变换是指在不改变电源本身的特性和性能的前提下,利用一定的变换方式和电路,将电源的输出电压、电流等参数进行转换的过程。
电源的等效变换通常涉及两种变换方法:电压变换和电流变换。
一、电压变换电压变换是指利用变压器、稳压器等电路,将电源的输出电压进行变换的方法。
根据实际需要,可以将电压升高或降低,并且保持电压的稳定性。
1.变压器变压器是一种利用电磁感应原理将电压进行变换的设备。
通过在输入端和输出端分别绕制导线,使得输入电压在磁环中产生交变磁场,从而在输出端生成相应的交变电压。
变压器一般用于交流电路中。
2.稳压器稳压器是一种能够在电压发生变化时保持输出电压稳定的电路。
常见的稳压器有三极管稳压器、集成电路稳压器等。
二、电流变换电流变换是指通过电阻电路、变流器等手段,将电源的输出电流进行变换的方法。
根据实际需要,可以将电流增大或减小,并保持电流的稳定性。
1.电阻电路电阻电路是一种利用电阻器将电流进行阻抗变换的方法。
通过改变电阻器的阻值就可以实现电流的变换。
2.变流器变流器是一种能够将电源的直流电压变换成交流电压的装置。
变流器一般用于交流电路中。
以上就是电源的等效变换的基本概念和基本方法。
在实际电路设计中,电源的等效变换是必不可少的。
通过合理的变换方法和电路设计,可以使得电路满足特定的需求,从而达到更加理想的系统性能。
电阻电路的等效变换
电阻电路的等效变换等效变换的概念电路一般等效变换概念电路中的某一部分用另一种结构与元件参数的电路替代后,变换部件以外的电路参数不受影响一端口网络等效两个二端电路,端口具有相同的电压、电流关系电源的等效变换电压源的串并联及等效变换电流源的串并联及等效变换实际电源模型及等效变换电阻元件的等效变换电阻的串联串联分压:Uk=Rk*i=Rk*U/Req;功率:P=i^2Req电阻的并联分流:i=U/Rk;功率:P=U^2/Req;电阻的Y-▲联结的等效变换电桥平衡条件:R2*R4=R1*R3等效条件:u12▲ =u12Yu23▲=u23Yu31▲ =u31Yi1▲ =i1Yi2 ▲ =i2Yi3▲=i3Y▲结:用电压表示电流i1▲=u12▲/R12 –u31▲/R31i2▲=u23▲/R23 –u12▲/R12i3▲=u31▲/R31 –u23▲/R23Y结:用电流表示电压u12Y=R1i1Y– R2i2Yu23Y=R2i2Y – R3i3Yu31Y=R3i3Y – R1i1Y输入电阻一端口无源网络输入电阻的定义对于一个不含独立源的一端口电压,不论内部如何复杂,其端口电压和端电流成正比,定义这个比值为一端口电路的输入电阻Rin=U/i一端口无源网络输入电阻的求法电阻的串并联简化法电阻的Y-▲等效变换法外加电压源或电流法一端口含源(不含受控源)网络输入电阻的求法外加电压源或电流源法电源置零法含受控源一端口无源网络输入电阻的求法外加电压源法外加电流源法。
电源的等效变换
例 用电源等效变换的方法求图中的I
2Ω
+ 6V3Ω
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
3Ω 2A
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
2A 3Ω
+ -
4V
I
2A 6Ω 4Ω 1Ω
2Ω
4A
+ -
4V
I
2Ω
4Ω 1Ω
4A
+ - 8V-
4V
I
2Ω
4Ω 1Ω
2Ω
+ -
4V
I
4Ω 1Ω
+ -
+ Us-
a
5Ω
b
b
Us = Is × 5 =5V
3、两种特殊情况
与恒压源并联的元件在等效变换中不起作 用,将其断开.
a a
+ US -
I
U
RIs
RL
b
+
US
-
b
U = US I = U / RL
与恒流源串联的元件在等效变换中 不起作用,将其短路.
I
a
Is
R -+
U RL b
a Is
b
I=Is U=I RL
2、注意事项
等效互换是对外电路而言的,内部电路并 不等效.
恒压源与恒流源之间不能等效变换.
变换时注意电源的方向,电流源的流向是 从电压源正极出发.
例 :将图示的电压源变成电流源
+
10V
-
2Ω
I
a
I a
Is 2Ω
b
b
电阻电路的等效变换
电阻电路的等效变换电阻电路的等效变换是指将一个电阻电路转化为另一个等效的电阻电路,使得两个电路在电学性质上完全相同。
等效变换在电路分析和设计中起着重要的作用,能够简化电路分析过程,提高计算效率。
一、串联电阻的等效变换串联电阻是指多个电阻按顺序连接在一起,电流依次通过每个电阻。
当电路中有多个串联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个串联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,串联电阻中的电流相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U / I1,R2 = U / I2。
在串联电路中,电流I1通过R1,电流I2通过R2,由于串联电路中电流只有一个路径,所以I1 = I2。
将上述两个等式相等,可得到R1 / I1 = R2 / I2,即R1 / R2 = I1 / I2。
由此可推导出串联电阻的等效电阻为Req = R1 + R2。
二、并联电阻的等效变换并联电阻是指多个电阻同时连接在一起,电流分别通过每个电阻。
当电路中有多个并联电阻时,可以通过等效变换将其转化为一个等效电阻。
假设有两个并联电阻R1和R2,其等效电阻为Req。
根据欧姆定律可知,电压在并联电路中相同。
根据电阻的定义可知,电阻与电流和电压之间存在线性关系,即R = U / I。
因此,R1和R2的电阻值可以表示为R1 = U1 / I,R2 = U2 / I。
在并联电路中,电压U1作用在R1上,电压U2作用在R2上,由于并联电路中电压相同,所以U1 = U2。
将上述两个等式相等,可得到R1 / U1 = R2 / U2,即R1 / R2 = U1 / U2。
由此可推导出并联电阻的等效电阻为1 / Req = 1 / R1 + 1 / R2。
三、星型-三角形转换星型电阻网络和三角形电阻网络是常见的电阻网络拓扑结构。
在电路分析中,有时需要将星型电阻网络转换为三角形电阻网络,或将三角形电阻网络转换为星型电阻网络,以便于进行电路分析。
电源及电阻的等效变换
思考:电流源能否串联? X
10
第
电压源与二端网络N并联,电流源与二端网络N串联 页
• 对于外电路而言,电
i
压源与任意二端网络N
并联都可等效为电压
uS
Nu
源本身。
i
uS
u
•对于外电路而言,电 流源与任意二端网络
串联的等效电路就是 电流源本身 。
i N
is
u
i
is
u
X
4.实际电压源模型与实际电流源
1
1. 等效的基本概念 必须掌握!
第 页
等效(equivalence): 如果一个单口网络N和另一个 单口网络N’端口处的电压电流关系完全相同,
即他们在平面上的伏安特性曲线完全重合,则称 这两个单口网络是等效的。
i
N1
u
M
i
N2
u
M
注意:等效是指对任意外电路而言,且等效指的 是对外等效,对内不等效。
分流电流公式
i1
G1 G
i
i2
G2 G
i
in
Gn G
i
即按电导值正比分流。
X
5
2. 电阻元件的等效变换
第 页
串并
对偶关系: R G iu 分压分流
X
6
2. 电阻元件的等效变换
第 页
2.3 T-(Y-)型等效变换
1
+ us
-
Rs
R31
3 R23
R12
1
i1
R1
R2
i2
2 i1' 1
《电源的等效变换》课件
变换原则
变换前后,电源的功率应 相等。
Y-Δ等效变换的计算方法
01
计算步骤
注意事项
02
03
计算实例
首先找出Y形和Δ形网络中对应元 件的数值关系,然后根据这些关 系计算出新的元件数值。
在变换过程中,应保持电路的结 构不变,即支路电流和支路电压 的数值和方向均应保持不变。
以实际电路为例,详细介绍如何 进行Y-Δ等效变换的计算。
实例三
一个电路中有两个电源,一个为10V的直流电源,另一个为5A的直流 电源,求总电压和总电流。
03
电源的Y-Δ等效变换
Y-Δ等效变换的基本原理
01
02
03
定义
将一个Y形网络变换为Δ形 网络,或反之,以便简化 电路的分析和计算。 Nhomakorabea前提条件
变换前后电路的伏安关系 应保持不变,即对外电路 来说,变换前后的电压和 电流应分别相等。
02
电源的串并联等效变换
电源串联等效变换
串联等效变换的概念
当多个电源串联时,总电压等于各电源电压之和,总电流等于各 电源电流之和。
串联等效变换的公式
总电压 (V_{total} = V_1 + V_2 + ... + V_n),总电流 (I_{total} = I_1 + I_2 + ... + I_n)。
电源等效变换的应用场景
在电子工程中,电源的等效变换广泛应用于电路的分析和设计中。例如 ,在模拟电路、数字电路、电力电子等领域中,都需要用到电源的等效 变换。
在电力工程中,电源的等效变换可以帮助我们更好地理解电力系统的运 行原理,提高电力系统的稳定性。
在实际生活中,电源的等效变换也广泛应用于各种电子设备和电器的设 计和优化中。例如,在电视、电脑、手机等各种电子设备中,都需要用 到电源的等效变换来提高设备的性能和稳定性。
§1-9 电源的等效变换
u
B
⇒
3A
5Ω
u
B
⇒
5Ω
+ 15V 15 -
u
- B
X
几点说明
(1) 两种电源模型对于原电路可以等效替代,对外 两种电源模型对于原电路可以等效替代, 负载提供相同的功率,但电源内部不等效。 负载提供相同的功率,但电源内部不等效。 在上例的AB端口接上一负载电阻 在上例的 端口接上一负载电阻 RL = 4Ω A 通过运算可知: 通过运算可知: + 电 R = 4Ω u 对于原电路, 对于原电路,电压源模型和电 − 源 的吸收功率均为: 流模型计算 RL 的吸收功率均为: B 2 2 100 15 5 PL = W ×4 = 3 ×4 = 9 5+ 4 4+5 电压源 电流源
X
所示电路,求电流i和受控电压源发出的 功率。
1Ω Ω
i
3Ω Ω
6V
+ u −
2Ω Ω
0.5u
解答
2 u= 6 = 4V 1+ 2
4 6 = 3i + 0.5u = 3i + 0.5 × 4 = 3i + 2 ⇒ i = A 3
• 受控源发出的功率 P = −0.5ui = − 8 W
3
工程应用——散热风扇的速度控制 散热风扇的速度控制 工程应用
3 Ω 7
1 V 7
(c)
i
+
u
-
(d)
X
等效电路的另一个例子
例:试解释如下电路的等效原理。
例题4 求图( 所示单口网络的等效电阻。 例题 求图(a)所示单口网络的等效电阻。
先将电路等效变换为如图 解: 所示,由图可得: (b)所示,由图可得:
《电源等效变换》课件
03 电源等效变换的方法与技 巧
电源等效变换的步骤
01
ห้องสมุดไป่ตู้
02
03
04
05
确定原始电路
列出原始电路的 电压和电…
进行电源等效变 换
重新列写电压和 电流关系
化简电路
首先明确原始电路的结构 和参数,包括电源、电阻 、电容、电感等元件及其 连接方式。
根据电路结构和参数,列 出原始电路的电压和电流 方程,以便后续分析。
自动控制系统
在自动控制系统中,电源等效变换 可用于模拟不同阻抗元件对系统性 能的影响,优化系统设计和控制效 果。
02 电源等效变换的基本原理
线性电阻电路的等效变换
总结词
线性电阻电路的等效变换是指通过改变电路中电阻的连接方 式,使得电路在输入和输出端表现出相同的电压和电流特性 。
详细描述
线性电阻电路的等效变换基于欧姆定律和基尔霍夫定律,通 过改变电阻的连接方式,使得电路在输入和输出端表现出相 同的电压和电流特性。这种变换可以简化电路的分析和设计 过程。
互感与理想变压器电路的等效变换
总结词
互感与理想变压器电路的等效变换是指将互感线圈和理想变压器转换为等效的电路元件,以便于分析 和计算。
详细描述
互感与理想变压器电路的等效变换是电路分析中的重要方法,可以将互感线圈和理想变压器转换为等 效的电路元件。这种变换可以简化电路的分析和设计过程,并且有助于理解电路的工作原理。互感与 理想变压器电路的等效变换需要考虑磁场耦合和电压、电流的比例关系等因素。
根据需要,将电路中的电 源进行等效变换,如串并 联电阻、电容、电感等元 件,以简化电路。
在完成电源等效变换后, 重新列写电压和电流方程 ,确保变换的正确性。
1-9等效电源定理
=
1103 = 1 k
27
第
1
章
根据图(c)作出负载线
I/mA N
直 流
+ R0 +
I
3
电 路
UeS -
U R3 -
2 1
M
(c)
0 1 2 3 U/V
I=0 时 U =UeS =3 V
U=0 时
I=
UeS R0
=
3 1 103 A = 3 mA
28
第
1
章
由负载线和伏安特性的交点 Q
直
U=1 V , I=2 mA(a)Fra bibliotek(b)
26
第
1
章 [解]利用戴维宁定理将电路(a)化简为电路(c)
直 流
+ R1
电 路
US -
R2 R3
+ R0 +
I
UeS -
U R3 -
(a)
(c)
UeS = UOC =
R1 R1 + R2
US
=
2103 (2+2) 103
6 V= 3 V
R0 =
R1 R2 R1 + R2
=
(2 2) 106 (2+2) 103
输出端短路时,二者的短路电流 ISC 应相等。
由图(b)
R0 =
UeS ISC
=
UOC ISC
7
第
1 等效内阻Ro=原有源二端网络的除源电阻
章
直 流 电 路
+ US -
R1 IS
+
UOC - ISC
+ UeS
-
+ R0 UOC
- ISC
(a)有源二端网络
(b)戴维宁等效电源
电阻电路的等效变换ppt课件
30
编辑版pppt
桥式电路:
a
R
Req R
R
R
b
R
(c)
a
R
RR
R
b
R R
a
R
R eq(RR )//(RR )R
R
R
R
b
31
编辑版pppt
2.4 电阻的Y— 等效变换
1
+
–
i1Y
u12Y
R1
u31Y
u12
+ i1
R12
1–
u31 R31
R2 – i2Y
2+
u23Y
R3
i3Y +
i2
–
–3
2+
9
9
ba
9
9
9
b
R a b(9//9//9 )91 2
21
编辑版pppt
a 20
b 100 10
40 80 60 50
(c)
ab
20 100 100
ab 20 100
60 120 60
ab 20 100
60 40
R a b (1 0 0//1 0 0 ) 2 0 7 0
22
编辑版pppt
5
15 6
ReqR2//(R1R3)R R2 2(R R 11 R R 3)3
Req
R1 R2 R3
ReqR1R2//R3R1RR 22RR 33
20
编辑版pppt
例2:求下图所示各电路ab端的等效电阻Rab
a
9
18
18
9
4
15
4
电路分析基础电阻的等效变换输入电阻
返回
X
3.实际电压源模型与实际电流源
模型的等效变换
i A
Rs
u
us
B
uus Rsi
u
R
' s
Rs ,
is
R
s s
Rs
R
' s
,
us
Rs' is
如果
R us
s
R
R
' s
' s
is
则二者等效
is
i +A Rs' u
B
u
i
is
i1
结论:n个并联的电流源可以用一个电流源等效置换
(替代),等效电流源的电流是相并联的各电流源电
流的代数和。
思考:电流源能否串联?
X
2.电源的等效变换
2.2 电流源的串联
演示
结论:电流值不同的电流源不能串联,电流值相同 且电流方向也相同的n个电流源串联时,其对外电 路的作用与一个电流源的作用等效。
X
1.电压源的等效变换
1.1 电压源的串联
i us1
+ +-
u
-
us2 +-
usn
+-
i
+
u
n
-
+
- us
usus1us2Lusn usi
i1
结论:n个串联的电压源可以用一个电压源等效置
换(替代),等效电压源的电压是相串联的各电压
源电压的代数和。
思考:电压源能否并联?
X
1.电源的等效变换
电路的等效变换课件
2023 WORK SUMMARY
THANKS
感谢观看
REPORTING
应用
在含受控源电路中,可以利用最大功率传输定理来优化电路的性能,例如提高电路的传输效率、减小 能源损失等。
PART 05
电路等效变换的应用实例
在模拟电子技术中的应用
模拟电子技术中,电路的等效变换常用于分析放大电路、滤 波电路和振荡电路的性能。通过等效变换,可以将复杂的电 路简化为易于分析的形式,从而更好地理解电路的工作原理 和特性。
当两个或多个电阻首尾相接时, 总电阻等于各电阻之和。公式表 示为:R_total = R1 + R2 + ... + Rn。
并联等效变换
当两个或多个电阻并联时,总电 阻的倒数是各电阻倒数之和。公 式表示为:1/R_total = 1/R1 + 1/R2 + ... + 1/Rn。
电阻的三角形与星形等效变换
2023 WORK SUMMARY
电路的等效变换课件
REPORTING
目录
• 电路等效变换的基本概念 • 电阻电路的等效变换 • 含源线性一端口网络的等效变换 • 含受控源电路的等效变换 • 电路等效变换的应用实例
PART 01
电路等效变换的基本概念
等效电路的定义
01
等效电路是指两个具有相同I-V特 的电路,即对外电路的作用效 果相同。
PART 03
含源线性一端口网络的等 效变换
电压源与电流源的等效变换
电压源等效变换
将电压源转换为电流源时,需要将电 压源串联一个电阻,使得电流源的电 流等于电压源的电压除以电阻的阻值 。
电路原理3电阻等效变换,电源等效变换
R31
Principles of Electric Circuits Lecture 3 Tsinghua University 2013
17
+
–
i1 1
+ i1Y 1 –
u12 R12
– i2 2
+
R23 u23
u31 R31
u12Y
i3 + – i2Y R2
3 –
2 +
R1
u31Y
u23Y
Principles of Electric Circuits Lecture 3 Tsinghua University 2013
21
2 电源等效变换
(1) 理想独立源的等效变换
(a) 理想独立电压源的串联
+
uS1 _ +
uSn _
+ uS _
º (b) 理想电压源和理想电流源串联
º
uS= uSk
6
并联电阻器的分流
ik Gku Gk i Gequ Geq
ik Gk i Geq
i
+
i1
u G1 G2
_
i2 Gk
ik
in
Gn
电导越大(电阻越小),电流越大。
例 i
i1
1/
1/ R1 R1 1/
R2
i
R2 R1 R2
i
R1
i1 R2
i2
i2
1/
1 / R2 R1 1 / R2
i
R1 R1 R2
+ uS _
iS
iS
Principles of Electric Circuits Lecture 3 Tsinghua University 2013
§1-8,9电源及电阻的等效变换
解:i u 2i RL
Ri
u i
RL
i u RL
i:对于不含独立源但含有受控源的单口网络可 以等效为一个电阻,而且等效电阻还可能为负值。
返回
X
例:将如图所示二端口网络化为最简形式。
第 15
页
i A 解:
i
5
1A
10V
5V
u
10V
5
1A
B
2A
5
i
1A
+A
u
-
B
3A
i +A
5 u
-
B
A
u
B
i
+A
5
+
u
15V -
-B
返回
X
R31
R3
R1
R3 R1 R2
ΠT
R1
R12
R12 R31 R23
R31
R2
R12
R23 R12 R23
R31
R3
R12
R31 R23 R23
R31
当 R12 R23 R31 R 当 R1 R2 R3 RT
则
RT
1 3
R
则 R 3RT
X
3. 电源的等效变换
第 9
页
3.1 电压源的串联
注意:
B
电压源与电 流源方向的 对应关系!
则二者等效
例题
X
第
5.输入电阻
13 页
对不含独立电源(可以含有受控源)的单口网络, 定义端口的电压和电流之比为该单口网络的输入电 阻(入端电阻)。
def u Ri i
等效电阻和输入电阻相等,但概念不同。
《电工基础》课件——1.8电源等效变换
电源的等效转换
例题
如图3A所示,已知 US1=12V,R1=3Ω,US2=36V,R2=6Ω,R3=8Ω,求R3中的电流I3
依据电路图我们可以看到两 个电压源模型处于并联状态, 且电压、内电阻不相等,无 法进行等效合并,因此需要 把电压源模型转化成电流源 模型。
电源的等效转换
例题
US1转换后
2Ω
等效电路如图3-c所示
电源的等效转换
例题
此时电路变为R0与R3并联的分流电路, 流经R3的电流为
I3
R0 R0 R3
IS
2
2 8
(2)A
0.4A
电源的等效转换
① 电压控制电压源变换为电流源 等效条件 iS=μu1/Rs, GS=1/RS ② 电流控制电压源变换为电流源 等效条件为 iS=γi1/Rs GS=1/RS
R=R1+R2+R3 U=U1+U2+U3 I=U/R=U/(R1+R2+R3)
电源的等效转换
实际电压源和实际电流源存在一定的等效关系, 此等效是指实际电压源和实际电流源端口的的电 压、电流在转换过程中保持不变。
电源的等效转换
独立电压源的伏安特性为端电压U=US-UR=US-RsI 得到方程1 独立电流源的伏安特性为I=Is-Ir=Is-UGs 得到方程2 改变独立电流源伏安特性的样式,求得U=(Is-Ir)/Gs 得到方程3 当满足外部等效
电源的等效转换
③电压控制电流源变换为电压源 等效条件为 US=δU1/Gs RS=1/GS ④电流控制电流源变换为电压源 等效条件为 iS=γi1/Rs GS=1/RS
电源的等效转换 讨论答疑
叠加定理是否仅适 用于直流电路而不 适用于交流电路的 分析和计算?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12
模型的等效变换
页
i Rs
us
如果
us
1 Rs Gs
1 Gs
is
Rsis
A
u
is
i A
Gs u
B
注意:
B
电压源与电 流源方向的 对应关系!
则二者等效
例题
X
第
5.输入电阻
13 页
对不含独立电源(可以含有受控源)的单口网络, 定义端口的电压和电流之比为该单口网络的输入电 阻(入端电阻)。
def u Ri i
第 15
页
i A 解:
i
5
1A
10V
5V
u
10V
5
1A
B
2A
5
i
1A
+A
u
-
B
3A
i +A
5 u
-
B
A
u
B
i
+A
5
+
u
15V -
-B
返回
X
思考:电流源能否串联? X
第
电压源与二端网络N并联,电流源与二端网络N串联
11 页
• 对于外电路而言,电
i
压源与任意二端网络N
并联都可等效为电压
uS
Nu
源本身。
i
uS
u
•对于外电路而言,电 流源与任意二端网络
串联的等效电路就是 电流源本身 。
i N
is
u
i
is
u
X
4.实际电压源模型与实际电流源
第
等效电阻和输入电阻相等,但概念不同。
X
第
例题2 求图示单口网络的输入电阻 R。i
14 页
解:i u 2i RL
Ri
u i
RL
i u RL
i A+
u
RL
B-
2i
结论:对于不含独立源但含有受控源的单口网络可 以等效为一个电阻,而且等效电阻还可能为负值。
返回
X
例:将如图所示二端口网络化为最简形式。
1
+ us
-
Rs
R31
3 R23
R12
1
i1
R1
1
R2
i2
2 i1'
R12
2 i2'
2
R3
R31
R23
i3
i3' 3
3
T(Y)型网络 Π()型网络
X
第
2. 电阻元件的等效变换
8 页
T Π
R12
R1
R2
R1 R2 R3
R23
R2
R3
R2 R3 R1
R31
R3
R1
R3 R1 R2
ΠT
R1
R12
R12 R31 R23
R31
R2
R12
R23
R31 R23 R23
R31
当 R12 R23 R31 R 当 R1 R2 R3 RT
则
RT
1 3
R
则 R 3RT
X
3. 电源的等效变换
第 9
页
3.1 电压源的串联
+
i
us1
+-
us2
+-
+
usn
-
+i
+
u
u
us
-
-
-
n
us us1 us2 usn usi i 1
电源及电阻的等效变换 (简单电路分析的常用方法)
主讲教师:张轶
北京邮电大学电子工程学院 2009.2
退出 开始
1. 等效的基本概念 必须掌握!
第 2
页
等效(equivalence): 如果一个单口网络N和另一个 单口网络N’端口处的电压电流关系完全相同,
即他们在平面上的伏安特性曲线完全重合,则称 这两个单口网络是等效的。
R R1 R2 Rn
则N1和N2两网络端钮ab上的伏安关系完全相同。
即N1和N2等效。
X
2. 电阻元件的等效变换
第 4
页
分压公式
n个电阻串联,则每个电阻的分压为
u1
i
R1
R1 R
U
:
u2
i
R2
R2 R
U
即按电阻值正比分压
un
i
Rn
Rn R
U
X
2. 电阻元件的等效变换
2.2 并联
i a+
u
G1
G2
b-
a+
Gn
u
b-
第 5 页
G
n个电阻并联等效电导为:G G1 G2 Gn
分流电流公式
i1
G1 G
i
i2
G2 G
i
in
Gn G
i
即按电导值正比分流。
X
2. 电阻元件的等效变换
第 6
页
串并
对偶关系: R G iu 分压分流
X
第
2. 电阻元件的等效变换
7 页
2.3 T-(Y-)型等效变换
结论:n个串联的电压源可以用一个电压源等效置 换(替代),等效电压源的电压是相串联的各电压 源电压的代数和。
思考:电压源能否并联? X
3. 电源的等效变换
第 10
页
3.2 电流源的并联
i
+
u
is1
is2
-
+i
isn u
is
-
n
is is1 is2 isn isi i 1
结论:n个并联的电流源可以用一个电流源等效置 换(替代),等效电流源的电流是相并联的各电流 源电流的代数和。
i
N1
u
M
i
N2
u
M
注意:等效是指对任意外电路而言,且等效指的 是对外等效,对内不等效。
X
2. 电阻元件的等效变换
第 3
页
2.1 串联
i a+
R1
R2
u
b-
N1
根据KVL和欧姆定律:
a+
Rn
u
R
b-
N2
网络N1 :u iR1 iR2 iRn
(R1 R2 Rn ) i
网络N2:u R i