全国高中数学联赛模拟试题6附答案
历年全国高中数学联赛试题及答案76套题
历年全国高中数学联赛试题及答案76套题(一)2019年全国高中数学联赛试题及答案1. 小川野升平想在一个边长为6米的正方形的地块上建造一个有一堵墙的房子,墙要用沙发垫、玻璃门中的一种建造,沙发垫墙每平方米需要50元,玻璃门墙每平方米需要80元。
为了满足小川野升平的预算,需要选择合适的方案,可以使花费尽可能少。
请求出该房子沙发垫墙和玻璃门墙各多少平方米,以及花费的最小值。
解:由题意得,房子在四周建墙,所以共4个墙面。
墙面中有一个为门,另外3个可以被沙发垫或玻璃门所替代。
因为墙长宽相等,所以选择沙发垫或玻璃门所用的面积是相等的,即我们只需要考虑使用沙发垫或玻璃门的墙面数量即可。
用$x$表示使用沙发垫的墙面数量,则使用玻璃门的墙面数量为$3-x$,进而可列出花费的表达式:$$f(x)=50x+80(3-x)=80x+240$$为获得花费的最小值,我们需要求出$f(x)$的最小值,即求出$f(x)$的极小值。
因为$f(x)$是$x$的一次函数,所以可求出其导函数$f'(x)=80-30x$。
当$f'(x)=0$时,即$x=\frac83$,此时$f(x)$有极小值$f(\frac83)=400$。
当$x<\frac83$时,$f'(x)>0$,$f(x)$单调递增;当$x>\frac83$时,$f'(x)<0$,$f(x)$单调递减。
所以我们选择使用3个沙发垫的构建方案,所需面积为$3\times6=18m^2$,花费为$50\times18=900$元。
因此,该房子沙发垫墙面积为18平方米,玻璃门墙面积为0平方米,花费最小值为900元。
2. 对于正整数$n$,记$S_n$为$\sqrt{n^2+1}$的小数部分,$T_n$表示$S_1,S_2,\cdots,S_n$的平均值,则$s_n=10T_n-5$。
求$\sum_{k=1}^{2019}s_k$的个位数。
全国高中数学联赛模拟试题及参考答案
全国高中数学联赛训练题(1)第一试一、填空题1.函数3()2731x x f x +=-+在区间[0,3]上的最小值为_____.2.在数列{}n a 中,11a =且21n n n a a a ++=-.若20002000a =,则2010a =_____.3.若集合{|61,}A x x n n N ==-∈,{|83,}B x x n n N ==+∈,则A B 中小于2010的元素个数为_____.4.若方程sin (1)cos 2n x n x n ++=+在π<<x 0上有两个不等实根,则正整数n 的最小值为_____.5.若c b a >>,0=++c b a ,且21,x x 为02=++c bx ax 的两实根,则||2221x x -的取值范围为_____.6.有n 个中心在坐标原点,以坐标轴为对称轴的椭圆的准线都是1x =.若第k (1,2,,)k n = 个椭圆的离心率2k k e -=,则这n 个椭圆的长轴之和为_____.7.在四面体-O ABC 中,若点O 处的三条棱两两垂直,则在四面体表面上与点A 距离为2的点所形成的曲线长度之和为_____.8.由ABC ∆内的2007个点122007,,,P P P 及顶点,,A B C 共2010个点所构成的所有三角形,将ABC ∆分 割成互不重叠的三角形个数最多为_____.二、解答题9.设抛物线22y px =(0)p >的焦点为F ,点A 在x 轴上F 的右侧,以FA 为直径的圆与抛物线在x 轴上方交于不同的两点,M N ,求证:FM FN FA +=.10.是否存在(0,)2πθ∈,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列?并说明理由.11.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a bb b b b b ++=++,且123min{,,}a a a 123min{,,}b b b ≤,求证:123max{,,}a a a 123max{,,}b b b ≤.第二试一、设圆的内接四边形ABCD 的顶点D 在直线,,AB BC CA 上的射影分别为,,P Q R ,且ABC ∠与ADC ∠的平分线交于点E ,求证:点E 在AC 上的充要条件是PR QR =.二、已知周长为1的i i i ABC ∆(1,2)i =的三条边的长分别为,,i i i a b c ,并记2224i i i i i i i p a b c a bc =+++(1,2)i =,求证:121||54p p -<.三、是否存在互不相同的素数,,,p q r s ,使得它们的和为640,且2p qs +和2p qr +都是完全平方数?若存在,求,,,p q r s 的值;若不存在,说明理由.四、对n 个互不相等的正整数,其中任意六个数中都至少存在两个数,使得其中一个能整除另一个.求n 的最小值,使得在这n 个数中一定存在六个数,其中一个能被另外五个整除.全国高中数学联赛训练题(1)参考答案:令3xt =,[0,3]x ∈则3()()271f x g t t t ==-+,[1,27]t ∈,而'()3(3)(3)g t t t =-+.故当[1,3]t ∈时,'()0g t <,()g t 单调递减,当[3,27]t ∈时,'()0g t >,()g t 单调递增.所以当3t =,()g t 取得最小值min ()(3)53g t g ==-,即当1x =时,()f x 取得最小值53-.:设2a t =,则由21n n n a a a ++=-依次写出数列{}n a 的前8项为:1,,1,1,,1,1,t t t t t - - - - .于是易知:该数列是以周期6T =的一个周期数列,故由20002000a =可得20006333222000a a a t ⨯+====,从而2010335661120001999a aa t ⨯===-=-=-,即20101999a =-. :由题意若x A ∈,则5(mod 6)x ≡ ,若x B ∈,则3(mod 8)x ≡ ,故若x AB ∈ ,则11(mod 24)x ≡ ,即若x A B ∈ ,则2411x k =+,于是可得满足题意的元素共有84个.:由已知得11sin 12cos x n x --=---,而1sin 2cos xx---表示上半个单位圆(不包括端点)上的动点(cos ,sin )P x x 与定点(2,1)Q -的斜率k ,要满足题意就要直线PQ 与上半个单位圆(不包括端点)有两个不同的交点,此时4(,1)3k ∈--,从而可得11(0,)3n ∈,故3n >,即正整数n 的最小值为4.:由0=++c b a 知方程02=++c bx ax 有一个实数根为1,不妨设11x =,则由韦达定理可知2c x a=.而c b a >>,0=++c b a ,故0,0a c ><,且a a c c >-->,则122c a -<<-,故2221()44c x a<=<,从而可得2212||[0,3)x x -∈.:设第k 个椭圆的长半轴为k a ,焦半径为k c ,则由题意有21k ka c =,2k k k k ce a -==,故可得2k k a -=,于是可得121222212n n n a a a ----+++=+++=- ,故这n 个椭圆的长轴之和为12(12)22n n---=-.:如图,点,M N 分别在棱,AB AC 上,且2AM AN ==,点,E F 分别在棱,OB OC 上,且1OE OF ==,则2AE AF ==,因此,符合题意的点形成的曲线有:①在面OBC 内,以O 为圆心,1为半径的弧EF ,其长度为2π;②在面AOB 内,以A 为圆心,2为半径的弧EM ,其长度为6π;③在面AOC 内,以A 为圆心,2为半径的弧FN ,其长度为6π;④在面ABC 内,以A 为圆心,2为半径的弧MN ,其长度为23π.所以,所求的曲线长度之和为2326632πππππ+++=.:设三角形最多有n 个,则根据角度相等可得20072n πππ⨯+=⨯,故2200714015n =⨯+=.: 令1122(,),(,)M x y N x y ,设点(,0)A a ,则由(,0)2p F 得12FA a p =-,故以FA 为直径的圆为22222()()44a p a p x y +--+=,则可知12,x x 是方程2222()2()44a p a p x px +--+=的两个实根,即是说12,x x 是方程22(23)0x a p x ap --+=,由韦达定理得1223322a p x x a p -+==-. 故121131()()()2222FM FN x p x p a p p a p FA +=+++=-+=-=,即FM FN FA +=.:当(0,)2πθ∈时,函数s i n y x =与cos y x =的图像关于直线4x π=对称,函数t a n y x =与cot y x =的图像也关于直线4x π=对称,且当4πθ=时,sin ,cos ,tan ,cot θθθθ的任一排列均不可能成等差数列.故只需考虑是否存在(0,)4πθ∈使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列即可.假设存在(0,)4πθ∈符合题意,则由sin cos tan cot θθθθ<<<可知cot tan cos sin θθθθ-=-,从而有s i n c o s s i n c o s θθθθ+=⋅,故2(sin cos )12sin cos 1sin 2θθθθθ⋅=+⋅=+.而2(sin cos )1θθ⋅<,且1sin 21θ+>,故假设不成立.即,不存在这样的θ,使得sin ,cos ,tan ,cot θθθθ的某一排列成等差数列.:设123123a a a b b b p ++=++=,122331122331a a a a a a bb b b b b q ++=++=,且123a a a r =,123'b b b r =, 则123,,a a a 是函数32()f x x px qx r =-+-的零点,123,,b b b 是函数32()'g x x px qx r =-+-的零点.不妨设123123,a a a b b b ≤≤ ≤≤,则由123min{,,}a a a 123min{,,}b b b ≤知11a b ≤. 而1()0f a =,1111213()()()()0g a a b a b a b =---≤,故11()()g a f a ≤,即3232111111'a pa qa r a pa qa r -+-≤-+-,故3232333333'a pa qa r a pa qa r -+-≤-+-, 即33()()g a f a ≤,也即是33132333()()()()()0g a a b a b a b f a =---≤=.若33a b >,则313233()()()0a b a b a b --->,这与33132333()()()()()0g a a b a b a b f a =---≤=矛盾! 所以有123max{,,}a a a 123max{,,}b b b ≤.:由西姆松定理知,,P Q R 共线.由题意易知,,,C Q D R 四点共圆,则有DCA DQR DQP ∠=∠=∠,同样有,,,A P R D 四点共圆,则有DAC DPR DPQ ∠=∠=∠.故DAC ∆∽DPQ ∆,同理可得:DAB ∆∽DRQ ∆,DBC ∆∽DPR ∆,因此有:PRDB DA DP PR BA BC DC DQ QR BCDB BA⋅===⋅⋅.从而PR QR =的充要条件是DA BABC =.又由角平分线的性质得,ABC ADC ∠∠的平分线分AC 的比分别为,BA DABC DC.故命题成立. :由题意知1i i i a b c ++=,且不妨设i i i a b c ≤≤,则由于三角形的三边关系可得102i i i a b c <≤≤<,即可得312121210(12)(12)(12)()327i i i i i i a b c a b c -+-+-<---≤=.2222222(12)(12)(12)12()4()814()812[()()]812(4)12i i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i i i i i i i i ia b c a b c a b b c c a a b c a b b c c a a b c a b c a b c a b c a b c a b c p ---=-+++++-=-+++-=-+++-++-=-+++=- 从而可得131272i p ≤<,所以121||54p p -<. :由640p q r s +++=,及,,,p q r s 是不同的素数知,,,p q r s 都是奇数.设2222p qs m p qr n ⎧+=⎪⎨+= ⎪⎩ ①②, 并不妨设s r <,则m n <.由①,②可得()()()()m p m p qsn p n p qr-+=⎧⎨-+=⎩.若1m p ->,则由m p n p n p -<-<+可得m p q n p +==-,故2q m n =+,,s m p r n p =-=+,从而2s r m n q +=+=,故23640p q r s p q q p q +++=++=+=.又由23s m p q p =-=-≥,故可得90p ≤,逐一令p 为不大于90的素数加以验证便知此时无解.若1m p -=,则21qs m p p =+=+,故12qs p -=.而q m p n p <+<+,故,2q n p r n p p q =-=+=+. 故332(1)26402p q r s p q s qs q s +++=++=-++=,即有(32)(34)3857719q s ++==⨯⨯于是得3419,3272s q +=+=⨯,故5,67s q ==,从而167,401p r ==.综上可得167,67,401,5p q r s ====或167,67,5,401p q r s ====. :所求的最小正整数26n =.我们分两步来证明,第一步说明25n ≤不行,我们构造如下的25个正整数:543215432154321543215432122222;33333;55555;7,7777;1111111111,,,,,,,,,,,,,,,,,,,①②③④⑤.如上,我们把这25个正整数分成5组,则任意选取六个数都一定会有两个数在同一组,显然在同一组中的这两个数中的一个能整除另一个;另一方面,由于每一组数只有5个,因此所选的六个数必然至少选自两组数,即是说在所选的六个数中不存在其中一个能被另五个整除的数.所以,当25n =时是不行的.对于25n <,也可类似地证明.第二步说明26n =是可以的.我们首先定义“好数组”.如果一数组中的数都在所给定的26个正整数中,其中最大的一个记为a ,除a 外的25个数中没有a 的倍数,且这25个数中所有a 的约数都在这组数中,那么我们称这个数组为“好数组”.(一个“好数组”中的数可以只有一个).现证这样的“好数组”至多有五个.否则,必存在六个“好数组”,我们考虑这六个“好数组”中的最大数,分别记为,,,,,a b c d e f ,由题知六个数,,,,,a b c d e f 中必然存在一个能整除另一个,不妨记为|b a ,即是说a 的约数b 不在a 所在的“好数组”中,这与“好数组”的定义不符,故“好数组”至多有五个.由于“好数组”至多有五个,而所给的正整数有26个,因此至少存在一个“好数组”中有六个数,考虑这个“好数组”中的最大数,由“好数组”的定义知这个数组中至少另有五个数都能整除该数.综上可得,所求的最小正整数26n =.陕西师范大学附中 王全 710061 wangquan1978@。
全国高中数学联赛模拟试06
全国高中数学联赛模拟试题(六)第一试一、 选择题:(每小题6分;共36分)1、在复平面上;非零复数z 1、z 2在以i 对应的点为圆心;1为半径的圆上;21z z ⋅的实部为零;arg z 1=6π;则z 2= (A )i 2323+-(B )i 2323- (C )i 2323+- (D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正;则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫ ⎝⎛+∞,23(C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,2385,21(D )⎪⎭⎫ ⎝⎛+∞,213、已知双曲线过点M (-2,4);N (4,4);它的一个焦点为F 1(1,0);则另一个焦点F 2的轨迹方程是(A )()()116425122=-+-y x (y ≠0)或x =1(y ≠0)(B )()()125416122=-+-y x (x ≠0)或x =1(y ≠0)(C )()()116125422=-+-y x (y ≠0)或y =1(x ≠0)(D )()()125116422=-+-y x (x ≠0)或y =1(x ≠0)4、已知正实数a 、b 满足a +b =1;则b a M 2112+++=的整数部分是(A )1(B )2(C )3(D )45、一条笔直的大街宽是40米;一条人行道穿过这条大街;并与大街成某一角度;人行道的宽度是15米;长度是50米;则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米6、一条铁路原有m 个车站;为适应客运需要新增加n 个车站(n >1);则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票);那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分;共36分)1、长方形ABCD 的长AB 是宽BC 的32倍;把它折成无底的正三棱柱;使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ;则折后截面AMN 与底面AFH 所成的角是 .2、在△ABC 中;a 、b 、c 是角A 、B 、C 的对边;且满足a 2+b 2=2c 2;则角C 的最大值是 .3、从盛满a 升(a >1)纯酒精的容器里倒出1升;然后填满水;再倒出1升混合溶液后又用水填满;如此继续下去.则第n 次操作后溶液的浓度是 .4、已知函数f (x )与g (x )的定义域均为非负实数集;对任意x ≥0;规定f (x )*g (x )=min{f (x ),g (x )}.若f (x )=3-x ;g (x )=52+x ;则f (x )*g (x )的最大值为 .5、从1到100的自然数中;每次取出不同的两个数;使它们的和大于100;则可有不同的取法.6、若实数a >0;则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是 .三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q 两点;O 为坐标原点;且OP ⊥OQ .求证:2222222BA b a C b a ++=.五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部;共有190名售货员;计划全商场日营业额(指每日卖出商品的总金额)为60万元;根据经验;各部商品每1万元营业额所需售货员人数如表1;每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部;同时适当安排各部的营业员人数;若商场预计每日的总利润为c (万元)且满足19≤c ≤19.7;又已知商场分配给经营部的日营业额均为正整数万元;问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?表1 各部每1万元营业额所需人数表部门 人数 百货部 5 服装部 4 家电部 2 表2 各部每1万元营业额所得利润表部门 利润 百货部 服装部 家电部第二试一、 (50分)矩形ABCD 的边AD =·AB ;以AB 为直径在矩形之外作半圆;在半圆上任取不同于A 、B 的一点P ;连PC 、PD 交AB 于E 、F ;若AE 2+BF 2=AB 2;试求正实数的值.二、 (50分)若a i ∈R +(i =1,2,…,n );∑==ni iaS 1;且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211.三、 (50分)无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||;而0≤c 1≤1. (1)证明:仅当c 1是有理数时;数列自某一项开始成为周期数列.(2)存在多少个不同的c 1值;使得数列自某项之后以T 为周期(对于每个T =2,3,…)?参考答案 第一试二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④.三、证略.四、证略.五、8;23;29或10;20;30(万元);对应40;92;58或50;80;60(人).第二试 一、22=λ;二、证略.三、 (1)证略. (2)无穷个.。
全国高中数学联赛模拟试卷试题.doc
全国高中数学竞赛模拟试题一、选择题(每题 6 分共 36 分)1. 由 0,1,2,3,4,5六个数字能组成数字不重复且百位数字不是5 的偶数有 [ ] 个A.360B.252C.720D.2402. 已知数列 { a n }(n ≥ 1) 满足 a n 2 = a n 1 - a n ,且 a 2 =1, 若数列的前2020 项之和为 2020,则前2020 项的和等于 [ ] A.2020B.2020C.2020D.20203. 有一个四棱锥,底面是一个等腰梯形,并且腰长和较短的底长都是1,有一个底角是 60 0,又侧棱与底面所成的角都是450 ,则这个棱锥的体积是[ ]A.1B. 3C.3 D.3424. 若 ( 2x 4)2 naa x ax2a+则 a 2 a 4 a 2 n 被 3 除的余数2 2 n x 2n (n ∈ N ),0 1是 [ ] A.0 B.1C.2D.不能确定5. 已知 x, y(2, 2 ) ,且 xy 1 ,则24 的最小值是[ ]2422 xyA 、20B 、12C 、 16 4 2D 、 16 4 277776. 在边长为 12 的正三角形中有 n 个点,用一个半径为 3 的圆形硬币总可以盖住其中的2 个点,则 n 的最小值是 [ ]A.17B.16C.11D.10二、填空题(每题 9 分共 54 分)7. 在锐角三角形 ABC 中,设 tanA,tanB,tanC 成等差数列且函数 f(x) 满足f(cos2C)=cos(B+C-A) ,则 f(x) 的解析是为100 8.[(10i 1)(10i 3)(10i 7)(10i 9)] 的末三位数是 _______i 19. 集合 A 中的元素均为正整数,具有性质:若a A ,则 12- aA ,这样的集合共有 个 .10. 抛物线的顶点在原点,焦点在 x 轴的正半轴上,直线 x+y-1=0 与抛物线相交于 A 、 B 两点,且 |AB|= 86. 在抛物线上是否存在一点 C ,使△ ABC 为正三角形,若存在, C 点的11坐标是.11. 在数列 { a n } 中, a 1 = 2, a nan 11(n N * ) ,设 S n 为数列 { a n } 的前 n 项和,则S 2007 2S 2006S 2005 的值为12. 函数f ( x) 3 1 x x,其中0. 函数 f ( x)在[ 0, ) 上是减函数;的取范是 _____________________. 三、解答题(每题20 分共 60 分)13. 已知点 A 5,0和曲 x2 y 21 2x2 5,y上的点P、P、P n。
全国高中数学联赛广西赛区预赛试题
全国高中数学联赛广西赛区预赛试题参考解答及评分标准一、选择题(每小题6分,共36分) 1、选C.解:关于t 的方程02=++c bt t 最多有两不同的解n m ,,从而n x f m x f ==)(,)(,必有一个方程有两个不相等的实根,另一个方程有三个不同的实数解.而由已知,只有1)(=x f 有三个不同的实数解.不妨设54321x x x x x <<<<,由于)(x f 关于直线2=x 对称,必有23=x ,451=+x x ,442=+x x ,故12345,,,,,()x x x x x f x x x x x ++++则=81|210|1)10(=-=f .2、选D.解:根据题意,令 21kn m += (1)201l n m += (2)其中.k l l k m >均为正整数,且、、 (1)),2(10-⨯得 .39)10(,9102==-=--kl klkm m m m 即于是有以下三种可能:I .4,2,3,110,9===⇒⎪⎩⎪⎨⎧=-=-l k m m m kl k经检验这组符合条件,此时.4=nII .,0,0,,910,1矛盾为任意正整数===⇒⎪⎩⎪⎨⎧=-=-n l k m m m kl kIII .,310,3该方程组无正整数解⎪⎩⎪⎨⎧=-=-kl k m m 综上所述,n 只能取4.3、选A.解:对于正整数x ,2x被7除的余数规律是2,4,1,2,4,1,…;2x 被7除的余数规律是1,4,2,2,4,1,0,…. 所以,22x x -被7除所得余数的规律将呈周期性变化,周期为21,且一个周期内恰有6个x 的值使22xx -能被7整除,故在小于10000的正整数中,共有2857个正整数满足条件.4、选A.解:以P 为公共顶点,正四面体的各面为底面,将正四面体分为四个三棱锥,它们的体积之和即为正四面体的体积,所以点P 到各面距离之和等于正四面体的高.四面体每个面三角形的高 h ==,从而 3h =, 于是正四面体的高 2H == .5、选B.解:设双曲线的方程为),0,0(12222>>=-b a by a x 半焦距为c ,则.222b a c +=由,22121a B F B F A F A F =-=- ,1221B F B F A F A F =+=解得a B F A F 222==,这表明AB ⊥x 轴,又易知此时ab B F A F 222==,结合.222b a c +=解得双曲线的离心率.3==ace 6、选D.解:欲使方程有实根,应有240m n -≥.如上表,适合条件的m,n 共有19组,故36=P . 二、填空题(每小题9分,共54分)1、 1 .解:由 )()()(2121x f x f x x f ⋅=+ 得 )0()0(2f f =,而0)0(≠f ,所以1)0(=f , 又)()()0(x f x f f ⋅-=,故1)0()2010()2009()1()0()1()2009()2010(4021==⋅⋅⋅--⋅-f f f f f f f f .21 .解:不妨设 0a b c d ≥≥≥>,则由条件,22224,8a b c d a b c d +++=+++=,于是,22224,8b c d a b c d a ++=-++=-. 由 Cauchy 不等式,22223()()b c d b c d ++≥++, 即 223(8)(4)a a -≥-,2220a a --≤,所以01a <≤, 因此 a1(此时13b c d ===-).3、[10,18] . 解:由条件,有2446a b a b a b a b -≥⎧⎪-≤⎪⎨+≥⎪⎪+≤⎩……①,而 (2)42f a b -=-,所以问题即求在条件①下目标函数42a b -的最值. 经从图像分析可知,由24a b a b -=⎧⎨+=⎩得到的交点A (3,1)为(2)f -的最小值,即432110⨯-⨯=;由46a b a b -=⎧⎨+=⎩得到的交点B (5,1)为(2)f -的最大值,即452118⨯-⨯=. 因此,10(2)18f ≤-≤.4、,1)2. 解:设点(cos ,sin )P a b θθ,则 (cos ,sin ),(cos ,sin )OP a b AP a a b θθθθ==-. 于是,0OP AP ⋅=2222cos (cos 1)cos cos (cos )(sin )0sin 1cos b a a a b a θθθθθθθθ-⇒-+=⇒=-=+, 所以 211cos e θ=+. 由 cos (1,1)θ∈-,知 1cos (0,2)θ+∈.故 21(,1)2e ∈, 即 ,1)2e ∈.5、 64 .解:令2x =-,得 064a =. 已知等式两边同时对x 求导,得251112126(22)(22)2(2)12(2)x x x a a x a x +-+=+++++.再令1x =-,由上式得12122120a a a +++=.因此 01212021264a a a a a ++++==.6、 160 .解:设至少经过3点的直线有k 条,每条上的点数从多到少依次为:12,,,(3,1)k i a a a a i k ≥≤≤则由已知,有 12222211(1)(1)(1)487ka a a C C C C -+-++-=-=. 又由 21312i a C -≥-= 知 3k ≤.当1k =时 128a C = 无解; 当2k =时 12229a a C C +=,解得 124,3a a ==; 当3k =时 12322210a a a C C C ++= 无解. 故有1条直线过其中4点,1条过3点, 即三角形个数为 3331143160C C C --=.三、解答题(每小题20分,共60分)1、解:由112(32)(1)0(2)n n n na n a n a n +--+++=≥,得11(2)(1)(2)n n n n n a a n a a +--=+-,于是 11111()22n n n n n a a a a n +-+-=-.……………………5分从而 11111()22n n n n n a a a a n +-+-=- =1211()12n n n n a a n n --+⋅-- =21131122n na a n n +⎛⎫=⋅⋅⋅- ⎪-⎝⎭=12n +. ……………………10分 令 []11(1)2n n a xn y a x n y +-+=--+, 则 1111()222n n a a xn x y +-=+-比较系数,得x=1,y=0。
高中数学竞赛模拟试题(含详细答案)
高中数学竞赛模拟试题(含详细答案)高中数学竞赛试题(模拟)一、选择题:共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.已知函数f(x)是R上的奇函数,g(x)是R上的偶函数,若f(x)-g(x)=x+9x+12,则f(x)+g(x)=(。
)。
A。
-x+9x-12B。
x+9x-12C。
-x-9x+12D。
x-9x+122.有四个函数:①y=sinx+cosx②y=sinx-cosx③y=sinxcosx④y=(空缺)其中在(x,y)上为单调增函数的是(。
)。
A。
①B。
②C。
①和③D。
②和④3.方程x+x-1=xπ2的解集为A(其中π为无理数,π=3.141…,x为实数),则A中所有元素的平方和等于(。
)。
A。
B。
C。
1D。
44.已知点P(x,y)满足(x-4cosθ)+(y-4sinθ)=4(θ∈R),则点P(x,y)所在区域的面积为(。
)。
A。
36πB。
32πC。
20πD。
16π5.将10个相同的小球装入3个编号为1、2、3的盒子(每次要把10个球装完),要求每个盒子里球的个数不少于盒子的编号数,这样的装法种数为(。
)。
A。
9B。
12C。
15D。
186.已知数列{an}为等差数列,且S5=28,S10=36,则S15等于(。
)。
A。
807.已知曲线C:y=-x2-2x与直线l:x+y-m=0有两个交点,则m的取值范围是(。
)。
A。
(-2-1,2)B。
(-2,2-1)C。
[,2-1)D。
(,2-1)8.过正方体ABCD-A1B1C1D1的对角线BD1的截面面积为S,Smax和Smin分别为S的最大值和最小值,则Smax/Smin的值为(。
)。
A。
B。
C。
D。
9.设x=.82,y=sin1,z=log2237,则x、y、z的大小关系为(。
)。
A。
x<y<zB。
y<z<xC。
z<x<yD。
z<y<x10.如果一元二次方程x-2(a-3)x-b+9=0中,a、b分别是投掷骰子所得的数字,则该二次方程有两个正根的概率P=(。
2023_年全国高中数学联赛(四川预赛)试题及解析
2023年全国高中数学联赛(四川预赛)试题及解析张㊀君(四川省温江中学ꎬ四川成都611130)摘㊀要:文章给出2023年全国高中数学联赛(四川预赛)试题及解析ꎬ部分试题给出一题多解ꎬ解答题给出了有别于参考答案的精彩解法.关键词:高中数学联赛ꎻ四川预赛ꎻ数学竞赛试题中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)28-0088-05收稿日期:2023-07-05作者简介:张君(1978.10-)ꎬ男ꎬ四川省宣汉人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀2023年全国高中数学联赛(四川预赛)试题ꎬ全卷共11道题(满分120分)ꎬ其中8道填空题(每小题8分)ꎬ3道解答题(第9题16分ꎬ第11㊁12题各20分).笔者参考2022年四川预赛试题及其解析[1]ꎬ对2023年四川预赛每道题都进行了分析和研究ꎬ逐个给出解析.1试题内容简析该试题涉及函数性质(第1题)ꎬ平面向量(第2题)ꎬ二项式定理(第3题)ꎬ函数与导数(第4题)ꎬ数论(第5题)ꎬ立体几何(第6题)ꎬ平面解析几何(第9题)ꎬ三角函数与三角变换(第7ꎬ8题)ꎬ函数与数列(第5ꎬ10题)ꎬ函数与不等式(第8ꎬ11题).2试题及其解析题1㊀已知f(x)是定义在R上的函数ꎬ且对任意实数xꎬ均有2f(x)+fx2-1()=1ꎬ则f(2)的值为.解析㊀令x=1ꎬ得2f(1)+f0()=1.①令x=-1ꎬ得2f(-1)+f0()=1.②令x=0ꎬ得2f(0)+f-1()=1.③由①②③解得f(1)=13.令x=2ꎬ得2f(2)+f1()=1.解得f(2)=13.题2㊀设平面向量aꎬb满足:|a|=1ꎬ|b|=2ꎬaʅb.点OꎬAꎬB为平面上的三点ꎬ满足OAң=2a+bꎬOBң=-3a+2bꎬ则ΔAOB的面积为.解析㊀由aʅb建立以O为原点ꎬ分别以向量aꎬb的方向为正方向建立平面直角坐标系ꎬ因为|a|=1ꎬ|b|=2ꎬ所以a=(1ꎬ0)ꎬb=(0ꎬ2).所以OAң=2a+b=(2ꎬ2)ꎬOBң=-3a+2ba=(-3ꎬ4).即A(2ꎬ2)ꎬB(-3ꎬ4).从而求得SΔAOB=7.题3㊀在(-xy+2x+3y-6)6的展开式中ꎬx4y3的系数为.(用具体数字作答)解析㊀因为(-xy+2x+3y-6)6=(y-2)6(x+3)6ꎬ所以x4y3的系数为C36(-2)3 C26 32=-21600.题4㊀设P(0ꎬa)是y轴上异于原点的任意一点ꎬ过点P且平行于x轴的直线与曲线y=1alnx交于点Qꎬ曲线y=1alnx在点Q处的切线交y轴于点Rꎬ则ΔPQR的面积的最小值为.解析㊀由题意知ꎬa=1alnxꎬ解得x=ea2.所以Q(ea2ꎬa).因为yᶄ=1axꎬ所以切线RQ的方程为y-a=1aea2(x-ea2).令x=0ꎬ得R(0ꎬa-1a).所以SΔPRQ=12PQ PR=12aea2.令f(a)=12aea2(a>0)ꎬ所以fᶄ(a)=12ea2(2-a-2).当aɪ0ꎬ22æèçöø÷时ꎬfᶄ(a)<0ꎬf(a)单调递减ꎻ当aɪ22ꎬ+ɕæèçöø÷时ꎬfᶄ(a)>0ꎬf(a)单调递增[2].㊀所以f(a)min=f(22)=2e2.题5㊀㊀设集合I={0ꎬ1ꎬ2ꎬ ꎬ22}ꎬA={(aꎬbꎬcꎬd)|aꎬbꎬcꎬdɪIꎬa+dʉ1(mod23)ꎬ且ad-bcʉ0(mod23)}ꎬ则集合A中元素的个数为.解析㊀若aꎬd中有0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有0ꎬ1()和1ꎬ0()两种情况.此时ad=0ꎬ且ad-bcʉ0(mod23)ꎬ则bꎬc中有0ꎬbꎬc()有45种情况.所以ꎬ此类共有2ˑ45=90种情况.若aꎬd中无0ꎬ由于a+dʉ1(mod23)ꎬ则aꎬd()有2ꎬ22()ꎬ3ꎬ21()ꎬ ꎬ22ꎬ2()共21种情况.因为ad-bcʉ0(mod23)ꎬ注意到km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})对每一个确定的kꎬkm(mɪ1ꎬ2ꎬ ꎬ22{})的每两个值对于mod23不同余ꎬ即与1ꎬ2ꎬ ꎬ22关于mod23同余的值各有一个ꎬ则km(kꎬmɪ1ꎬ2ꎬ ꎬ22{})的值与1ꎬ2ꎬ ꎬ22关于mod23同余的各有22个.则对于每一个aꎬd()ꎬbꎬc()有22种情况.故此类共有21ˑ22=462种情况.㊀所以ꎬ集合A中元素的个数为90+462=552.题6㊀在直三棱柱ABC-A1B1C1中ꎬAB=1ꎬBC=CC1=3ꎬøABC=90ʎꎬ点P是平面ABC上一动点ꎬ则A1P+12PC的最小值为.解析㊀易知ꎬ点P在线段AC上时ꎬA1P+12PC才可能最小.由已知可求得AC=2ꎬAA1=3.设øAA1P=αꎬ则αɪ0ꎬarctan23æèçöø÷ꎬA1P=3cosαꎬAP=3tanα.则A1P+12PC=3cosα+2-3tanα2=1+32-sinα()2cosα.设t=2-sinαcosαꎬ则tcosα+sinα=2.于是t2+1ȡ2ꎬtȡ3.则A1P+12PCȡ52.当t=3时ꎬ3cosα+sinα=2ꎬ则sinα+π3æèçöø÷=1ꎬ解得α=π6.故当α=π6时ꎬA1P+12PC取最小值52.题7㊀如图1ꎬ将函数y=cosx+1(0ɤxɤ2π)的图象Γ画在矩形OABC内ꎬ将AB与OC重合围成一个圆柱ꎬ则曲线Γ在圆柱表面形成的曲线的离心率为.解析㊀如图2ꎬ设图1中OAꎬCB的中点分别为EꎬDꎬ则围成圆柱后AEꎬBD分别为上㊁下底面的直径ꎬ易知AE=2.设AE的中点为GꎬP为曲线上一点ꎬ作PQʅ底面ꎬ垂足为点QꎬQMʅAE于点MꎬMNʊAB交BE于点N.㊀图1㊀函数y=cosx+1图象㊀㊀㊀㊀㊀图2㊀圆柱设AQ(=xꎬ则PQ=1+cosxꎬøAGQ=xꎬøAEQ=x2.所以EQ=AEcosøAEQ=2cosx2ꎬME=QEcosøAEQ=2cos2x2.易知әNME为等腰直角三角形ꎬ则MN=ME=2cos2x2=1+cosx.所以PQ=NMꎬ则四边形PQMN为矩形.所以PNʅNMꎬ则PNʅ平面ABDEꎬ于是点P在平面ABDE内的投影为点N.所以曲线在平面ABDE内的投影为线段BEꎬ于是曲线为过直线BE且垂直于平面ABDE的平面截圆柱侧面所得曲线[3].该曲线为椭圆ꎬ长轴为BE=22ꎬ短轴长等于底面直径2ꎬ所以离心率为22.题8㊀设AꎬBꎬC是ΔABC的三个内角ꎬ则3cosA+2cos2B+cos3C的取值范围为.解析㊀设M=3cosA+2cos2B+cos3C.易知M<6ꎬ当Aң0ꎬBңπꎬCң0时ꎬMң6.当Cң0时ꎬM=-3cosB+C()+2cos2B+cos3Cң-3cosB+2cos2B+1ꎬ又-3cosB+2cos2B+1=4cos2B-3cosB-1=4cosB-38æèçöø÷2-2516ꎬ所以ꎬ当Cң0ꎬB=arccos38πꎬAңπ-arccos38时ꎬMң-2516.下面证明M>-2516.当Aɤπ3时ꎬMȡ3cosπ3-3=-32>-2516.当A>π3时ꎬ0<B<2π3ꎬ0<C<2π3ꎬ0<B+C<2π3.此时ꎬA不是AꎬBꎬC中最小的.(1)若C最小ꎬ则C<AꎬCɤB.此时cosA+cosB-cosC+cos2Cȡ0ꎬ证明如下:cosA+cosB-cosC+cos2C=-cosB+C()-cosC+cosB+cos2C=-2cosB+2C2cosB2+2cosB+2C2cosB-2C2=4cosB+2C2sinB-C2sinC2.因为B+2C2ꎬB-C2ꎬC2ɪ0ꎬπ2[öø÷ꎬ所以cosA+cosB-cosC+cos2Cȡ0成立.所以3cosA+2cos2B+cos3Cȡ3-cosB+cosC-cos2C()+2cos2B+cos3C=-3cosB+2cos2B+3cosC-3cos2C+cos3C=4cos2B-3cosB+4cos3C-6cos2C+1=4cosB-38æèçöø÷2+2cosC-1()22cosC+1()-2516.因为0<C<2π3ꎬ-12<cosC<1ꎬ所以3cosA+2cos2B+cos3C>-2516.(2)若B最小ꎬ则BɤCꎬB<Aꎬ3B+C2ɪ0ꎬπ()ꎬC-B2ɪ0ꎬπ2[öø÷.于是cosA+cos2B=-cosB+C()+cos2B=2sin3B+C2sinC-B2ȡ0ꎮ所以3cosA+2cos2B+cos3CȡcosA+cos3C=-cosB+C()+cos3C>-cosC+cos3C=4cos3C-4cosC.设t=cosCꎬ由于0<C<2π3ꎬ-12<cosC<1ꎬ则-12<t<1.令4cos3C-4cosC=4t3-4t=ft()ꎬ则fᶄt()=12t2-4=43t2-1()ꎬ则ft()的极值点为ʃ13.则ft()在-12ꎬ-13æèçöø÷上单调递增ꎬ在-13ꎬ13æèçöø÷上单调递减ꎬ在13ꎬ1æèçöø÷上单调递增.计算知f-12æèçöø÷=32>-2516ꎬf13æèçöø÷=-833>-2516ꎬ所以ft()>-2516.所以3cosA+2cos2B+cos3C>-2516.综上所述ꎬ3cosA+2cos2B+cos3C的取值范围是-2516ꎬ6æèçöø÷.题9㊀已知抛物线Γ的顶点是原点Oꎬ焦点是F(0ꎬ1).过直线y=-2上任意一点A作抛物线Γ的两条切线ꎬ切点分别为PꎬQꎬ求证:(1)直线PQ过定点ꎻ(2)øPFQ=2øPAQ.证明㊀(1)易得拋物线Γ的方程为x2=4y.设点A(tꎬ-2)ꎬPx1ꎬy1()ꎬQx2ꎬy2()ꎬ则过点P的抛物线Γ的切线l1的方程为y-y1=x12x-x1().即x1x-2y-2y1=0.同理ꎬ过点Q的抛物线Γ的切线l2的方程为x2x-2y-2y2=0.由l1ꎬl2过点Aꎬ可得x1t+4-2y1=0ꎬx2t+4-2y2=0ꎬ这表明ꎬ点Px1ꎬy1()ꎬQx2ꎬy2()的坐标满足方程tx-2y+4=0.所以直线PQ的方程为tx-2y+4=0.所以易得直线PQ过定点(0ꎬ2).(2)不妨设点P在点Q的左边ꎬ则x1<x2.因为tanøPAQ=x1/2-x2/21+(x1/2) (x2/2)=2x1-x2()x1x2+4ꎬ所以tan2øPAQ=2tanøPAQ1-tan2øPAQ=4x1-x2()/x1x2+4()1-4x1-x2()2/x1x2+4()2=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2.又因为tanøPFQ=(y1-1)/x1-(y2-1)/x21+[(y1-1)/x1] [(y2-1)/x2]=x2x21/4-1()-x1x22/4-1()x1x2+x21/4-1()x22/4-1()=4x1-x2()x1x2+4()x1x2+4()2-4x1-x2()2ꎬ所以tan2øPAQ=tanøPFQ.易知0ʎ<øPAQ<90ʎ<øPFQ<180ʎ.所以øPFQ=2øPAQ.题10㊀给定正整数n(nȡ2).已知2n个正实数a1ꎬa2ꎬ ꎬa2nꎬ满足:ðnk=1a2k-1 ðnk=1a2k=ᵑnk=1a2k-1+ᵑnk=1a2k.求S=ð2nk=1an-1kak+1的最小值ꎬ其中a2n+1=a1.解析㊀一方面ꎬ记A=ᵑ2nk=1ak()1nꎬ则S=ðnk=1an-12ka2k+1+ðnk=1an-12k-1a2kȡnᵑnk=1an-12ka2k+1æèçöø÷1n+nᵑnk=1an-12k-1a2kæèçöø÷1n=nAᵑnk=1a2k-1+ᵑnk=1a2k()=nAðnk=1a2k-1 ðnk=1a2k()ȡnAnᵑnk=1a2k-1()1n nᵑnk=1a2k()1n=n3.另一方面ꎬ易知n=2时ꎬ取a1=a3=1ꎬa2=a4=2+3时可满足条件ꎬ且S=n3.nȡ3时ꎬ取a1=a2= =a2n=n22æèçöø÷1n-2时可满足条件ꎬ且S=n3.综上所述ꎬ所求的最小值是n3.题11㊀给定正整数aꎬb(aɤb).数列fn{}满足:f1=aꎬf2=bꎬfn+2=fn+1+fn(n=1ꎬ2ꎬ ).若对任意的正整数nꎬ都ðnk=1fk()2ɤλ fnfn+1ꎬ求实数λ的最小值.解析㊀先证以下3个引理:引理1㊀对任意nɪN∗ꎬ有fn+2=ðnk=1fk+f2.证明㊀fn+2=ðn+1k=2fk+1-fk()+f2=ðn+1k=2fk-1+f2=ðnk=1fk+f2.引理2㊀记T=a2+ab-b2ꎬ则对任意nɪN∗ꎬ有fnfn+2+(-1)nT=f2n+1.证明㊀由条件知f3=a+b.从而f1f3+(-1)1T=a(a+b)-a2+ab-b2()=b2=f22ꎬ故结论对n=1成立.假设n=k(kȡ1)时ꎬ结论成立ꎬ即fkfk+2+(-1)kT=f2k+1.当n=k+1时ꎬfk+1fk+3+(-1)k+1T=fk+1fk+1+fk+2()+fkfk+2-f2k+1=fk+1fk+2+fkfk+2=f2k+2ꎬ故当n=k+1时ꎬ结论也成立.由归纳原理知ꎬ对任意的正整数nꎬ都有fnfn+2+(-1)nT=f2n+1.引理3㊀limnң+ɕfnfn+1=5-12.证明㊀首先ꎬ由fnfn+1-fn+1fn+2=fnfn+2-f2n+1fn+1fn+2=(-1)nTfn+1fn+2ң0知limnң+ɕfnfn+1存在ꎬ设其值为aꎬ其中0ɤaɤ1.其次ꎬ将fn+2=fn+1+fn同时除以fn+1ꎬ再令nң+ɕꎬ得1a=1+aꎬ解得a=5-12.回到原题:记Tn=ðnk=1fk()2fnfn+1ꎬn=1ꎬ2ꎬ3ꎬ ꎬ则Tn+1-Tn=ðn+1k=1fk()2fn+1fn+2-ðnk=1fk()2fnfn+1=fnðnk=1fk+fn+1()2-fn+2ðnk=1fk()2fnfn+1fn+2=fn-fn+2()ðnk=1fk()2+2fnfn+1ðnk=1fk()+fnf2n+1fnfn+1fn+2=-fn+1fn+2-f2()2+2fnfn+1fn+2-f2()+fnf2n+1fnfn+1fn+2=2fn+1f2-f22+fnfn+2-f2n+1fnfn+2=2bfn+1-b2-(-1)nTfnfn+2.注意到fn+1ȡbꎬ且(-1)nT=(-1)na2+ab-b2()ɤb2ꎬ所以2bfn+1-b2-(-1)nTȡ2b2-b2-b2=0.因此ꎬTn+1ȡTn对任意的正整数n均成立.由Tn{}单调递减可知:若limnң+ɕTn存在ꎬ则其值为λ的最小值.又limnң+ɕTn=limnң+ɕðnk=1fk()2fnfn+1=limnң+ɕfn+2-f2()2fnfn+1=limnң+ɕfn+1+fn-f2()2fnfn+1=limnң+ɕfn+1+fn()2fnfn+1=limnң+ɕfnfn+1+fn+1fn+2æèçöø÷=5-12+5+12+2=2+5.综上可知ꎬλ的最小值为2+5.参考文献:[1]张君.2022年全国高中数学联赛(四川预赛)试题及解析[J].数理化解题研究ꎬ2022(25):84-88.[2]李鸿昌.我这样做奥数[M].成都:四川省教育电子音像出版社ꎬ2021.[3]甘志国.圆锥曲线光学性质的证明及其应用[J].数学教学ꎬ2017(09):16-18ꎬ37.[责任编辑:李㊀璟]。
历年全国高中数学竞赛试卷及答案(77套)
(5月14日下午14:30—16:30)
题目
一
二
三
总成绩
13
14
15
16
得分
评卷人
复核人
考生注意:1.本试卷共有三大题(16个小题),全卷满分140分
2.用黑(蓝)色圆珠笔或钢笔作答。
3.计算器,通讯工具不准待入考场。
4.解题书写不要超过封线
一,单项选择题(本大题共6个小题,每小题5分,共30分)
二,填空题(本大题共6个小题,每小题5分,共30分)
7.1008 8.0 9.2 10. 11.2 12.243
三,解答题(本大题共4个小题,每小题20分,共80分)
13.证明:(1)因为
所以,数列 成等比数列 ……5分
于是
即数列 的通项公式 ……10分
(2)法1:因为 对任意的正整数n都成立,故
由(1)知
∴共有C 种比赛方式.
三.(15分)长为 ,宽为1的矩形,以它的一条对角线所在的直线为轴旋转一周,求得到的旋转体的体积.
解:过轴所在对角线BD中点O作MN⊥BD交边AD、BC于M、N,作AE⊥BD于E,
则△ABD旋转所得旋转体为两个有公共底面的圆锥,底面半径AE= = .其体积V= ( )2· = π.同样,
1.设有三个函数,第一个是y=φ(x),它的反函数是第二个函数,而第三个函数的图象与第二个函数的图象关于x+y=0对称,那么,第三个函数是( )
A.y=-φ(x)B.y=-φ(-x)C.y=-φ-1(x)D.y=-φ-1(-x)
解:第二个函数是y=φ-1(x).第三个函数是-x=φ-1(-y),即y=-φ(-x).选B.
2021年全国高中数学联赛试卷及答案(Word可编辑版)
2021年全国高中数学联赛试卷及答案(最新版)-Word文档,下载后可任意编辑和处理-2021年全国高中数学联合竞赛试卷得分评卷人一.选择题(本题满分36分,每小题6分)本题共有6小题,每题均给出A、B、C、D四个结论,其中有且仅有一个是正确的,请将正确答案的代表字母填在题后的括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在括号内),一律得0分)。
1.删去正整数数列1,2,3,……中的所有完全平方数,得到一个新数列,这个新数列的第2021项是A.2046B.2047 C.2048 D.2049 答()2.设a,b∈R,ab≠0,那么直线ax-y+b=0和曲线bx2+ay2=ab 的图形是A B C D答()3.过抛物线y2=8(x+2)的焦点F作倾斜角为60o的直线,若此直线与抛物线交于A、B两点,弦AB的中垂线与x轴交于P点,则线段PF的长等于A.B.C. D.答()4.若,则的最大值是A.B.C. D.答()5.已知x,y都在区间(-2,2)内,且xy=-1,则函数的最小值是A.B.C. D.答()6.在四面体ABCD中,设AB=1,CD=,直线AB与CD的距离为2,夹角为,则四面体ABCD的体积等于A. B.C.D.答()得分评卷人二.填空题(本题满分54分,每小题9分)本题共有6小题,要求直接将答案写在横线上。
7.不等式 x 3-2x2-4 x +3 < 0 的解集是____________________.8.设F1,F2是椭圆的两个焦点,P是椭圆上的点,且PF1 : PF2=2 : 1,则三角形PF1F2的面积等于______________.9.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0,x2-2(a+7)+5≤0,x∈R},若AB,则实数a的取值范围是___________________.10.已知a,b,c,d均为正整数,且,若a-c=9,则b-d =________.11.将8个半径都为1的球分两层放置在一个圆柱内,并使得每个球和其相邻的四个球相切,且与圆柱的一个底面及侧面都相切,则此圆柱的高等于______________.12.设M n ={(十进制)n位纯小数|ai只取0或1(i=1,2,…,n-1,an=1},Tn是Mn中元素的个数,Sn是Mn中所有元素的和,则=_______.得分评卷人三.解答题(本题满分60分,每小题20分)13.设≤x≤5,证明不等式.14.设A,B,C分别是复数Z0=ai,Z1=+bi,Z2=1+ci(其中a,b,c都是实数)对应的不共线的三点,证明:曲线Z=Z0cos4t+2Z1cos2t sin2t+Z2sin4t (t∈R)与ABC中平行于AC的中位线只有一个公共点,并求出此点.15. 一张纸上画有半径为R的圆O和圆内一定点A,且OA=a. 拆叠纸片,使圆周上某一点A/ 刚好与A点重合,这样的每一种拆法,都留下一条直线折痕,当A/取遍圆周上所有点时,求所有折痕所在直线上点的集合.2021年全国高中数学联合竞赛加试试卷得分评卷人一.(本题满分50分)过圆外一点P作圆的两条切线和一条割线,切点为A,B所作割线交圆于C,D两点,C在P,D之间,在弦CD上取一点Q,使∠DAQ=∠PBC.求证:∠DBQ=∠PAC.得分评卷人二.(本题满分50分)设三角形的三边分别是整数l,m,n,且l >m>n,已知,其中{x}=x-[x],而[x]表示不超过x的最大整数.求这种三角形周长的最小值.得分评卷人三.(本题满分50分)由n个点和这些点之间的t条连线段组成一个空间图形,其中n=q2+q+1,t≥,q≥2,q∈N,已知此图中任圆点不共面,每点至少有一条连线段,存在一点至少有q+2条连线段,证明:图中必存在一个空间四边形(即由四点A,B,C,D和四条连线段AB,BC,CD,DA组成的图形).2021年全国高中数学联合竞赛试卷试题参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.选择题只设6分和0分两档,填空题只设9分和0分两;其它各题的评阅,请严格按照本评分标准规定的评分档次给分,不要再增加其它中间档次.2.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时可参照本评分标准当划分档次评分,5分为一个档次。
高中数学竞赛模拟试题及详细解析答案
高中数学竞赛模拟试题及详细解析答案一. 选择题(本题满分30分,每题5分)1. 设()f x 是奇函数,()h x 是偶函数,满足:()()223f x h x x x -=++.则()()f x h x +的表示式( ).A.223x x -+-B.223x x ++C. 223x x -+ D.()223x x -++2. ()()44040sin sin 60sin 60ααα+-++的值为( ).A.23B. 1C. 89D.983. 设,,A B C 分别在正四面体P KMN -的棱,,PK PM PN 上,已知1PA =,2PB =,3PC =.则截面ABC ∆的面积为( ).A.4. 已知I 是ABC ∆的内心,3,2,4BC AC AB ===,若AI mAB nAC =+uu r uu u r uu u r.则m n +的值为 ( ).A.13B. 23C. 49D.595. 对于三位数abc ,满足()37abc a b c =++的三位数的个数共有( ).A.12个B. 15个C. 13个D.14 个6. 若两椭圆2222221,1169x y y x m n +=+=的四个焦点构成一正方形, 则22m n +的值( ). A.25 B. 7 C. 252D.72二. 填空题(本题满分30分,每题5分) 7. 己知b c d c d a d a b a b ck a b c d++++++++====.则k =_____________.8. 设数列{}n a 的通项公式n a =.则99S =____________.9. 设P 是锐角ABC ∆内部任意一点, P 至边,,BC CA AB 的距离分别为,,PD PE PF . 则BC PA CA PB AB PCT PD BC PE CA PF AB⋅+⋅+⋅=⋅+⋅+⋅的最小值是______________.10. 已知实系数方程320x ax bx c +++=的三个根可以作为一椭圆,一双曲线,一抛物线的离心率.则ba的取值范围是______________.11. 计算 __________.12. 函数()3261321f x x x x =+++,已知()()1,21f a f b ==.则a b +=__________.三. 解答题(本题满分80分,每题20分)13. 设n N ∈,对于满足条件:22111000n a a ++=的所有等差数列:123,,,a a a L L .试求1221n n n S a a a +++=+++L 的最大值.14. 设,,0,2A B C π⎛⎫∈ ⎪⎝⎭,令tan ,tan ,tan A p B q C r ===. 求证(1).1qr rp pq ++< 的充分必要条件是:2A B C π++<; (2).1qr rp pq ++= 的充分必要条件是:2A B C π++=; (3).1qr rp pq ++> 的充分必要条件是:2A B C π++>.15. 己知双曲线22221x y a b -=的离心率e =2x =, 直线l 与双曲线右支及双曲线的渐近线交于,;,B C A D . (1).求双曲线的方程; (2). 求证AB CD =;(3). 如果AB BC CD ==,求证OBC ∆的面积为定值.16. 设D 是等腰ABC ∆的底边BC 的中点,P 是ABC ∆内部一点,满足PCA PBC ∠=∠.求证 0180BPD APC ∠+∠=.参考答案一. 选择题(本题满分30分,每题5分)1. 设()f x 是奇函数,()h x 是偶函数,满足:()()223f x h x x x -=++.则()()f x h x +的表示式 (A)A.223x x -+-B.223x x ++C. 223x x -+ D.()223x x -++解 因为()f x 是奇函数,()h x 是偶函数,()()223f x h x x x -=++,则()()()()222323f x h x x x f x h x x x ---=-+⇔+=-+-故选A .2. ()()44040sin sin 60sin 60ααα+-++的值为 (D)A.23 B. 1 C. 89 D.98解 记()()44040sin sin 60sin 60T ααα=+-++,()()()()()()()2220002202041cos 21cos 12021cos 120232cos 2cos 1202cos 1202cos 2cos 1202cos 1202T ααααααααα⎡⎤⎡⎤=-+--+-+⎣⎦⎣⎦⎡⎤=-+-++⎣⎦++-++而()()000cos 2cos 1202cos 1202cos 22cos120cos 2cos 2cos 20ααααααα+-++=+=-=()()()()()220202000cos 2cos 1202cos 12021cos 21cos 24041cos 24042131cos 41cos 240cos 422αααααααα+-++⎡⎤=++-+++⎣⎦=+++= 所以 339488T =+=.故填D.3. 设,,A B C 分别在正四面体P KMN -的棱,,PK PM PN 上,已知1PA =,2PB =,3PC =.则截面ABC ∆的面积为 (C)A.解 记,,PA a PB b PC c ===,根据余弦定理得:BC CA AB ==再由海仑公式得:S =将1,2,3PA a PB b PC c ======代入,计算得S ==故选C.4. 已知I 是ABC ∆的内心,3,2,4BC AC AB ===,若AI mAB nAC =+uu r uu u r uu u r.则m n +的值为 (B)A.13 B. 23 C. 49 D.59解 在ABC ∆中,延长AI 交BC 于D .则422AB AC λ===.故1233AD AB AC =+uuu r uu u r uuu r .因为3,2,1BC BD CD =⇒==,在ABD ∆中,I 分AD 的比'422AB BD λ===. 224399AI AD AB AC ==+uu r uuu r uu u r uuu r , 所以242993m n +=+=.故选B .5. 对于三位数abc ,满足()37abc a b c =++的三位数的个数共有个. (B)A.12个B. 15个C. 13个D.14 个解 因为三位数abc ,满足()37abc a b c =++,所以()1001037a b c a b c ++=++,即()()63273673443a a c a b c a c b a =+⇔=+⇔-=-所以当a b c ==时,共有9种,即111;222;333;444;555;666;777;888;999当 3,7,0374,8,145,9,2a b c a c b c a b c b a a b c ===⎧-=⎧⎪⇒-=⇒===⎨⎨-=⎩⎪===⎩; 即370,481,592. 当 4,0,7375,1,846,2,9a b c a c b c a b c b a a b c ===⎧-=-⎧⎪⇒-=-⇒===⎨⎨-=-⎩⎪===⎩; 即407,518,629. 所以满足()37abc a b c =++条件的三位数共有15个.故选B.6. 若两椭圆2222221,1169x y y x m n +=+=的四个焦点构成一正方形, 则22m n +的值 (A) A.25 B. 7 C.252D.72解 根据两椭圆2222221,1169x y y x m n +=+=的四个焦点能构成一正方形,则 222216925m n m n -=-⇔+=或 222216925m n m n -=-⇔+=故选A.二. 填空题(本题满分30分,每题5分) 7. 己知b c d c d a d a b a b ck a b c d++++++++====.则1k =-或3k =.解 因为b c d c d a d a b a b ck a b c d++++++++====,所以有 (){();;3;.b c d ak c d a bk a b c d k a b c d c a b ck a b c dk ++=⎧⎪++=⎪⇒+++=+++⎨++=⎪⎪++=⎩ 当0a b c d +++=时,1k =-;当0a b c d +++≠时,3k =.8. 设数列{}n a 的通项公式n a =.则99910S =.解 对n a 裂项分解n a ====所以1n S =,999110S ==9. 设P 是锐角ABC ∆内部任意一点, P 至边,,BC CA AB 的距离分别为,,PD PE PF .则BC PA CA PB AB PCT PD BC PE CA PF AB⋅+⋅+⋅=⋅+⋅+⋅的最小值是2.解 因为 2S PD BC PE CA PF AB =⨯+⨯+⨯;BPC PA BC S S ∆⨯≥-, CPA PB CA S S ∆⨯≥-, APB PC AB S S ∆⨯≥-所以 32BPC CPA APB BC PA CA PB AB PC S S S S S ∆∆∆⨯+⨯+⨯≥---=.故2BC PA CA PB AB PCT PD BC PE CA PF AB⋅+⋅+⋅=≥⋅+⋅+⋅.当P 点是ABC ∆的垂心时,取得最小值是2.10. 已知实系数方程320x ax bx c +++=的三个根可以作为一椭圆,一双曲线,一抛物线的离心率.则b a 的取值范围是12,2b a ⎛⎫∈-- ⎪⎝⎭. 解 记()32f x x ax bx c =+++,因为抛物线的离心率为1,所以()10f =,即101a b c c a b +++=⇔-=++()()()()323221111f x x ax bx c x ax bx a b x x a x a b =+++=++-++⎡⎤=-+++++⎣⎦因为()()211h x x a x a b =+++++在()0,1与()1,∞内各有一根,于是()()0010230010h a b a b h >⎧++>⎧⎪⇒⎨⎨++<<<⎩⎪⎩.由线性规划知,易得: 12,2b a ⎛⎫∈-- ⎪⎝⎭.11. 计算3=.解3=.12. 函数()3261321f x x x x =+++,已知()()1,21f a f b ==.则4a b +=-.解 ()()()332613212211f x x x x x x =+++=++++,记()3h x x x =+,则()()h x h x -=-,()h x 是奇函数.因为()()()()()()()()3322111210221121210f a a a h a f b b b h b =++++=⇒+=-=++++=⇒+=所以()()220h a h b +++=,故得2204a b a b +++=⇔+=-.三. 解答题(本题满分80分,每题20分)13. 设n N ∈,对于满足条件:22111000n a a ++=的所有等差数列:123,,,a a a L L .试求1221n n n S a a a +++=+++L 的最大值.解由柯西不等式得:()()()12111122131122501n n n n n n a a a a S a a a n n n +++++++-⎛⎫⎛⎫=+++=+=+ ⎪ ⎪⎝⎭⎝⎭≤=+L当113n a a +=-,22111000na a ++=,即1110,30n a a +=-=时,S 的最大值为()501n +.14. 设,,0,2A B C π⎛⎫∈ ⎪⎝⎭,令tan ,tan ,tan A p B q C r ===. 求证 (1).1qr rp pq ++< 的充分必要条件是:2A B C π++<; (2).1qr rp pq ++= 的充分必要条件是:2A B C π++=; (3).1qr rp pq ++> 的充分必要条件是:2A B C π++>.证明 记1T qr rp pq =++-,cos cos cos S A B C =,则tan tan tan tan tan tan 1sin sin sin sin sin sin 1cos cos cos cos cos cos sin sin cos sin sin cos sin sin cos cos cos cos cos cos cos T B C C A A B B C C A A BB C C A A BB C A C A B A B C A B C A B C=++-=++-++-=()()()sin sin cos cos cos cos cos cos cos cos cos C A B C A B A B C A B C A B C+-+-++==因为,,A B C ∠∠∠均为锐角,所以cos cos cos 0S A B C =>.而302A B C π<++<. 故 ()0cos 02T A B C A B C π<⇔++>⇔++<.同理可证:02T A B C π=⇔++=; 02T A B C π>⇔++>.15. 己知双曲线22221x y a b -=的离心率e =2x =, 直线l 与双曲线右支及双曲线的渐近线交于,;,B C A D . (1).求双曲线的方程; (2). 求证AB CD =; (3). 如果AB BC CD ==,求证OBC ∆的面积为定值.解 由题设条件2c a a c ==,得1,a c ==所以双曲线的方程221x y -=. (2). 设直线l : y mx b =+,1m ≠±.11;.11A D A D b b x x y mx b y mx b m my x b y x by y m m -⎧⎧==⎪⎪=+=+⎧⎧⎪⎪-+⇒⇒⎨⎨⎨⎨==-⎩⎩⎪⎪==⎪⎪-+⎩⎩则AD 的中点坐标为22,11bmb m m ⎛⎫⎪--⎝⎭. 将y mx b =+代入221x y -=,得()()2221210m x bmx b ---+=.由韦达定理得BC 中点坐标也为22,11bmb m m ⎛⎫⎪--⎝⎭.从而AB CD =. (3). 设点()(),,,A a a D d d -,0,0a d >>.由AB BC CD ==得:22,33a d a d C +-⎛⎫⎪⎝⎭. 由点C 在双曲线上得222291338a d a d ad +-⎛⎫⎛⎫-=⇔= ⎪ ⎪⎝⎭⎝⎭11133638BOC AOD S S OA OD ad ∆∆==⨯===16. 设D 是等腰ABC ∆的底边BC 的中点,P 是ABC ∆内部一点,满足PCA PBC ∠=∠.求证 0180BPD APC ∠+∠=.证明 因为AC AB =,将APC ∆旋转至AEB ∆,连,PE BE ,过B 点作BF ∥PC ,与PD 的延长线交于F .因为D 是BC 的中点,BF ∥PC ,所以BDF CDP ∆≅∆,即得 BF CP =.又,EBP FBP BE PC BF ∠=∠==,所以PBE PBF ∆≅∆,得,EPB FPB PBF ABC AEP ∠=∠∠=∠=∠,因此 在PBE ∆中,BPD APC EPB AEB ∠+∠=∠+∠EPB PEB AEP EPB AEP PBE π=∠+∠+∠=∠+∠+∠=。
高考数学高三模拟考试试卷压轴题全国高中数学联赛预赛试卷含答案
高考数学高三模拟考试试卷压轴题全国高中数学联赛预赛试卷(含答案)一、填空题(10小题,每小题6分,共60分)1.在数列{}n a 中,11a =,23a =,且21n n n a a a ++=-(*∈N n ),则=2014a .【答案】1.2.如图所示的程序框图中输出的结果为a ,若二项式24mx ((m>0)的展开式中含3x 的项的系数为2a,则常数m=_________.【答案】123.已知对任意1,32m ⎡⎤∈⎢⎥⎣⎦,不等式x2+mx +4>2m +4x 恒成立,则x 的取值范围是_____________.【答案】x>2或x<-1 4.已知2a ≥-,且{}2A x x a =-≤≤,{}23,B y y x x A ==+∈,{}Ax x z z C ∈==,2,若C B ⊆,则实数a 的取值范围是.【答案】1,32⎡⎤⎢⎥⎣⎦.5.AFS 国际文化交流组织(AFSInterculturalPrograms )拟将18个中学生交流项目的名额分配给4所学校, 要求每校至少有一个名额且各校分配的名额互不相等, 则不同的分配方法种数为:______________. 【答案】3606.设m>1,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z =x +my 的最大值小于2,则m 的取值范围为__________. 【答案】(1,1+2)7.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则P 点形成的轨迹的长度为. 【答案】27. 8.直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是______________.【答案】69.设实数1a <-,变量x 满足2x ax x +≤-,且2x ax +的最小值为12-,则a =. 【答案】32-10.已知焦点在x 轴上的双曲线的渐近线过椭圆221416x y +=和椭圆221164ax y +=(0<1a ≤)的交点,则双曲线的离心率的取值范围是. 【答案】)321,2[ 二、解答题(4小题,共60分)11.(本小题满分14分)在数列{}n a 中,11a =,122n n a a n +=-+,n ∈*N .求数列{}n a 的前n 项和n S .解:由122n n a a n +=-+得12((1))n n a n a n +-=--,n ∈*N .所以数列{}(1)n a n --是首项为1,且公比为2的等比数列.∴121n n a n -=+-.…………10分所以数列{}n a 的前n 项和(1)212nn n n S -=-+.…………14分 12.(本小题满分14分)已知△ABC 的角A ,B ,C 的对边依次为a ,b ,c ,若满足3tan tan tan 3A B A B ⋅--=(Ⅰ)求∠C 大小;(Ⅱ)若c=2,且△ABC 为锐角三角形,求a2+b2取值范围. 解:(I 3tan tan tan 3A B A B ⋅--=tan tan 3(tan tan 1)A B A B +=⋅-∴tan tan 31tan tan A BA B+=--⋅tan()3A B +=-,∴tan 3C =3C π=…………6分(II )2262sin sin sin 23A a b c B A A B C A B πππππ⎧<⎪⎪⎪<⇒<<==⎨⎪⎪+=⎪⎩,由正弦定理,2222162[sin sin ()]33168sin(2)336512sin(2)1,6266626a b A A A A A A ππππππππ+=+-=+-<<∴<-<∴<-≤,,22208.3a b <+≤即…………14分13.(本小题满分16分)已知双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,过点(0)P m ,(0m >)斜率为1的直线l 交双曲线C 于A 、B 两点,且3AP PB =,3OA OB ⋅=.(1)求双曲线方程;(2)设Q 为双曲线C 右支上动点,F 为双曲线C 的右焦点,在x 轴负半轴上是否存在定点M 使得2QFM QMF ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)由双曲线离心率为2知,2c a =,b =,所以双曲线方程可化为222213x y a a-=.又直线l 方程为y x m =+.由222213x y a a y x m ⎧-=⎪⎨⎪=+⎩,得2222230x mx m a ---=.①设11()A x y ,,22()B x y ,,则12x x m +=,221232m a x x --=.因为3AP PB =,所以1122()3()x m y x y m --=-,,,故123x x =-. 结合12x x m +=,解得132x m =,212x m =-. 代入221232m a x x --=,得2223342m a m ---=,化简得226m a =.又1212121222221212()()2()33OA OB x x y y x x x m x m x x m x xm m a a ⋅=+=+++=+++=-=,因为已知3OA OB ⋅=. 所以21a =.此时,m =2290x --=,显然该方程有两个不同的实根.21a =符合要求.故双曲线C 的方程为2213y x -=.…………8分(2)假设点M 存在,设(0)M t ,.由(1)知,双曲线右焦点为(20)F ,.设00()Q x y ,(01x ≥)为双曲线C 右支上一点.当02x ≠时,00tan 2Q F y QFM k x ∠=-=--,00tan Q M y QMF k x t∠==-,因为2QFM QMF ∠=∠,所以0002000221()y y x ty x x t⨯--=---. 将220033y x =-代入,并整理得,22200002(42)4223x t x t x tx t -++-=--++.于是242243t t t t +=-⎧⎨-=+⎩,解得1t =-. 当02x =时,090QFM ∠=,而1t =-时,045QMF ∠=,符合2QFM QMF ∠=∠. 所以1t =-符合要求.满足条件的点M 存在,其坐标为(10)-,.…………16分 14.(本小题满分16分)已知函数()ln(1)1axf x x x =+++()a ∈R . (Ⅰ)当2a =时,求函数()x f y =的图象在0x =处的切线方程; (Ⅱ)判断函数()f x 的单调性;(Ⅲ)求证:2111ln 1n n n⎛⎫+>- ⎪⎝⎭(*n N ∈).解:(Ⅰ)当2a =时,2()ln(1)1xf x x x =+++, ∴22123()1(1)(1)x f x x x x +'=+=+++, ∴(0)3f '=,所以所求的切线的斜率为3. 又∵()00f =,所以切点为()0,0. 故所求的切线方程为:3y x =. …………4分 (Ⅱ)∵()ln(1)1axf x x x =+++(1)x >-, ∴221(1)1()1(1)(1)a x ax x a f x x x x +-++'=+=+++. ①当0a ≥时,∵1x >-,∴()0f x '>;②当0a <时,由()01f x x '<⎧⎨>-⎩,得11x a -<<--;由()01f x x '>⎧⎨>-⎩,得1x a >--;综上,当0a ≥时,函数()f x 在(1,)-+∞单调递增;当0a <时,函数()f x 在(1,1)a ---单调递减,在(1,)a --+∞上单调递增.…………10分 (Ⅲ)方法一:由(Ⅱ)可知,当1a =-时, ()()ln 11xf x x x =+-+在()0,+∞上单调递增. ∴ 当0x >时,()()00f x f >=,即()ln 11xx x +>+. 令1x n =(*n ∈N ),则111ln 1111n n n n ⎛⎫+>= ⎪+⎝⎭+.另一方面,∵()2111n n n <+,即21111n n n-<+,∴21111n n n>-+. ∴2111ln 1n n n⎛⎫+>- ⎪⎝⎭(*n ∈N ).…………16分方法二:构造函数2()ln(1)F x x x x =+-+,(01)x ≤≤ ∴1(21)'()1211x x F x x x x +=-+=++, ∴当01x <≤时,'()0F x >; ∴函数()F x 在(0,1]单调递增. ∴函数()(0)F x F >,即()0F x >∴(0,1]x ∀∈,2ln(1)0x x x +-+>,即2ln(1)x x x +>- 令1x n =(*n ∈N ),则有2111ln 1n n n⎛⎫+>- ⎪⎝⎭.…………16分 方法三:数学归纳法 酌情给分高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
2024年全国高中数学联赛初赛试题+答案[北京、广西、吉林、内蒙、四川、浙江、重庆]
2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 11一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为.(其中i 为虚数单位)2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为.3.若点A -12,32关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB,则△ABC 最大角的正弦值为.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-a n +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为.7.已知四面体ABCD 满足AB ⊥BC ,BC ⊥CD ,AB =BC =CD =1,且异面直线AD 与BC 所成的角为60°,则四面体ABCD 的外接球的体积为.ABCD A 1D 1O 1O 8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p 0≤p ≤1 的概率消失,有1-p3的概率保持不变,有1-p 3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p 至多为.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分 已知函数f x =ln x -sin x ,若两不相等的实数x 1,x 2∈0,π 满足曲线y =f x 在点x 1,f x 1 和点x 2,f x 2 处的切线斜率相等,求证:f x 1 +f x 2 >-2.10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)一、填空题(每小题8分,共计96分)1.设集合A =x x -12x -1≤0 ,集合B =x ∣x 2+2x +m ≤0 .若A ⊆B ,则实数m 的取值范围为.2.设函数f :{1,2,3}→{2,3,4}满足f f x -1 =f x ,则这样的函数有个.3.函数y =sin 2x +sin x +1sin 2x +1的最大值与最小值之积为.4.已知数列x n 满足:x 1=22,x n +1=x n n n +1x 2n+n n +1,n ≥1,则通项x n =.5.已知四面体A -BCD 的外接球半径为1,若BC =1,∠BDC =60°,球心到平面BDC 的距离为.6.已知复数z 满足z 24=z -1 510=1,则复数z =.7.已知平面上单位向量a ,b 垂直,c 为任意单位向量,且存在t ∈0,1 ,使得向量a +1-t b 与向量c -a 垂直,则a +b -c的最小值为.8.若对所有大于2024的正整数n ,成立n2024=2024i =0a i C in ,a i ∈N ∗,则a 1+a 2024=.9.设实数a ,b ,c ∈(0,2],且b ≥3a 或a +b ≤43,则max {b -a ,c -b ,4-2c }的最小值为.10.在平面直角坐标系xOy 上,椭圆E 的方程为x 212+y 24=1,F 1为E 的左焦点;圆C 的方程为x -a 2+y -b 2=r 2,A 为C 的圆心.直线l 与椭圆E 和圆C 相切于同一点P 3,1 .当∠OAF 1最大时,实数r =.11.设n 为正整数,且nk =0-1 kC knk 3+9k 2+26k +24=1312,则n =.12.设整数n ≥4,从编号1,2,⋯,n 的卡片中有放回地等概率抽取,并记录下每次的编号.若1,2均出现或3,4均出现就停止抽取,则抽取卡片数的数学期望为.二、解答题(13题满分14分,14、15题满分各20分,合计54)13.正实数k 1,k 2,k 3满足k 1<k 2<k 3;实数c 1,c 2满足c 1=k 2-k 1,c 2-c 1=2k 3-k 2 ,定义函数f x =k 1x ,0≤x ≤1k 2x -c 1,1<x ≤2,k 3x -c 2,x >2 g x =k 1x ,0≤x ≤1k 2x -c 112,1<x ≤2k 3x -c 212,x >2 试问,当k 1,k 2,k 3满足什么条件时,存在A >0使得定义在[0,A ]上的函数g x +f A -x 恰在两点处达到最小值?14.设集合S ={1,2,3,⋯,997,998},集合S 的k 个499元子集A 1,A 2,⋯,A k 满足:对S 中任一二元子集B ,均存在i ∈{1,2,⋯,k },使得B ∈A i .求k 的最小值.15.设f x ,g x 均为整系数多项式,且deg f x >deg g x .若对无穷多个素数p ,pf x +g x 存在有理根,证明:f x 必存在有理根.(考试时间:2024年5月19日9:00∼11:00)一、填空题:本大题共8小题,每小题8分,满分64分.1.设函数f x =ln x +x -2的零点都在区间[a ,b ]a ,b ∈Z ,a <b 内,则b -a 的最小值为.2.已知a >b >1,若log a b +log b a =52,则ba +4的最大值为.3.设a ∈R ,若函数f x =ax -ax-2ln x 在其定义域内为单调递增函数,则实数a 的最小值为.4.用f X ,Γ 表示点X 与曲线Γ上任意一点距离的最小值.已知⊙O :x 2+y 2=1及⊙O 1:x -4 2+y 2=4,设P 为⊙O 上的动点,则f P ,⊙O 1 的最大值为.5.设△ABC 中,AC =2,∠ABC =2∠BAC ,则△ABC 面积的最大值为.6.将边长为1的正方体ABCD -A 1B 1C 1D 1的上底面A 1B 1C 1D 1绕着其中心旋转45°得到一个十面体ABCD -EFGH (如图),则该十面体的体积为.7.若T =100k =1299+k ⋅3101-k ,则T 的末尾数字0的个数为.8.记I ={1,4,5,6},U ={1,2,3,⋯,25},集合U 的子集A =a 1,a 2,a 3,a 4,a 5 ,满足a i -a j ∉I ∀1≤i <j ≤5 ,则符合条件的集合A 的个数为.(用具体数字作答)二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(16分)已知t 为正实数,若曲线y =t ⋅e x 与椭圆C :x 22+y 2=1交于A 、B 两个不同的点,求证:直线AB 的斜率k <22.10.(20分)设复数x ,y ,z 满足:x +2y +3z =1.求x 2+y 2+z 2+x 2+y 2+z 2的最小值.11.(20分)给定正整数n ≥2,数组a 1,a 2,⋯,a n 称为“好数组”是指:a 1,a 2,⋯,a n 均不为0,a 1=1,且对任意的1≤k ≤n -1,均有a k +1+a k a k +1-a k -1 =0.求“好数组”a 1,a 2,⋯,a n 的组数.一、选择题:本大题共6小题,每小题x 分,满分x 分.1.记S =32+432-4+42+442-4+52+452-4+⋯+132+4132-4,则与S 最接近的整数为()A.14B.15C.16D.172.在四边形ABCD 中,AB ⎳CD ,AC =λAB +μAD λ,μ∈R .若λ+μ=32,则CDAB=()A.13B.12C.1D.23.函数f x =ax 3-6x a ∈R ,若f x ≤2对∀x ∈-1,12成立,则()A.f x ≤1对∀x ∈-12,12 成立B.f x ≤32对∀x ∈-12,12成立C.f x ≤18对∀x ∈-32,32成立D.f x ≤352对∀x ∈-32,32成立4.在正四面体ABCD 中,棱AD 的中点和面BCD 的中心的连线为MN ,棱CD 的中点和面ABC 的中心的连线为PQ ,则MN 与PQ 所成角的余弦值为()A.118B.117C.116D.1155.已知函数f x =2x 4-18x 2+12x +68+x 2-x +1,则()A.f x 的最小值为8 B.f x 的最小值为9C.f x =8有1个实根D.f x =9有1个实根6.已知A ,B ,C 是平面上三个不同点,且BC =a ,CA =b ,AB =c ,则c a +b +bc的最小值为()A.2-12B.22-12C.2-22D.1-22二、填空:本大题共6小题,每小题x 分,满分x 分.7.设集合S ={1,2,3,4,5}.若S 的子集A 满足:若x ∈A ,则6-x ∈A ,则称子集A 具有性质p ,现从S 的所有非空子集中,等可能地取出一个,则所取出的非空子集具有性质p 的概率为.8.函数f x =log a 4-ax (a >0,且a ≠1),若f x ≥1对∀x ∈[1,2]成立,则实数a 的取值范围.9.已知甲、乙、丙、丁四位同学对某10道判断题的解答情况如下表:题号12345678910甲×√××√×√√√×乙××√√×√√√××丙√√×√√√×√×√丁××√√××√√××若甲、乙、丙三人均答对7题,则丁答对的题数为.10.已知函数f x =ln x -1x2+2ax -ax .若∃m >0,使得f m ≥a 2,则实数a 的最大值为11.设函数f x =sin x⋅sin3x,若关于x的方程f x =a在(0,π]上有奇数个不同的实数解,则实数a的值为.12.在△ABC中,AP平分∠BAC,AP交BC于P,BQ平分∠ABC,BQ交CA于Q,∠BAC=30°,且AB+BP =AQ+QB,则∠ABC的度数为.三、解答:本大题共4小题,每小题x分,满分x分.13.已知椭圆C1的中心为坐标原点O,焦点在坐标轴上.圆C2的圆心为坐标原点O,过点A-2,0且倾斜角为30°的直线与圆C2相切.(1)求圆C2的方程;(2)过圆C2上任意一点P x0,y0x0⋅y0≠0作圆C2的切线,与椭圆C1交于A,B两点,均有∠AOB=90°成立.判断椭圆C1是否过定点?说明理由.14.已知数列a n满足:a1=1,a2=2,a n+1=1a n+an-1n≥2.求证:2024k=11a k>88.15.如图,⊙O1、⊙O2外切于点A,过点A的直线交⊙O1于另一点B,交⊙O2于另一点C,CD切⊙O1于点D,在BD的延长线上取一点F,使得BF2=BC2-CD2,连接CF交⊙O2于E,求证:DE与⊙O2相切.16.全体正有理数的集合Q+被分拆为三个集合A,B,C(即A∪B∪C=Q+,且A∩B=B∩C=C∩A=∅,满足B*A=B,B*B=C,B*C=A,这里H*K={h⋅k∣h∈H,k∈K}.(1)给出一个满足要求的例子(即给出A,B,C);(2)给出一个满足要求的例子,且1,2,⋯,35中的任意两个相邻正整数均不同时在A中.2024年广西省高中数学联赛初赛试题一、填空题(本大题共8小题,每小题10分,共80分).1.设函数f x =log2x.若a<b且f a =f b ,则a+2024b的取值范围是.2.已知椭圆x 2a2+y2b2=1a>b>0的焦点为F1,F2,M为椭圆上一点,∠F1MF2=π3,OM=153b.则椭圆的离心率为.3.若正实数x,y满足x-2y=2x-y,则x的最大值为.4.方程3x=x37的正整数解为.5.设x1,x2,x3,x4均是正整数,且x i x j x k∣1≤i<j<k≤4=18,36,54.则x1+x2+x3+x4=.6.正三棱雉P-ABC中,AP=3,AB=4.设D是直线BC上一点,面APD与直线BC的夹角为45°,则线段PD的长度是.7.已知四次多项式x4-25x3+ax2+61x-2024的四个根中有两个根的乘积是-253,则实数a=.8.设数列x n满足x1=2001,x n+1=x n+y n,其中y n等于x n的个位数,则x2024=.二、解答题(本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)9.(15分)如图所示,AD=CD,DP=EP,BE=CE,DP<AD<BE,∠ADC=∠DPE=∠BEC=90°.证明:P为线段AB的中点.10.(15分)设A为数集{1,2,3,⋯,2024}的n元子集,且A中的任意两个数既不互素又不存在整除关系.求n 的最大值.11.(20分)用[x]表示不超过x的最大整数.设数列x n满足:x1=1,x n+1=4x n+11x n.求x2024的个位数.12.(20分)图G是指一个有序二元组V,E,其中V称为顶点集,E称为边集.一个图G中的两点x,y的距离是指从x到y的最短路径的边数,记作d x,y.一个图G的直径是指G中任意两点的距离的最大值,记作diam G.∣x,y∈G,即diam G=max d x,y记Z n={[0],[1],[2],⋯,[n-1]}是模n的剩余类,定义Z n上的加法和乘法,均是模n的加法和乘法,例如在Z12={[0],[1],[2],⋯,[11]}中:[3]+[4]=[7],[6]+[9]=[3];[3]⋅[4]=[0],[6]⋅[9]=[6].在Z n中,设[x]≠[0].若存在[y]≠[0]使得[x]⋅[y]=[0],则称[x]是Z n的一个零因子.记Z n的所有零因子的集合为D Z n,它是以={[2],[3],[4],[6],[8],[9],[10]}.Z n的零因子图,记为ΓZ n .例如D Z12D Z n为顶点集,两个不同的顶点[x],[y]之间有一条边相连当且仅当[x]⋅[y]=[0].下图是ΓZ12的例子.证明:对一切的整数n≥2,都有diamΓZ n≤3.2024年内蒙古高中数学联赛初赛试题(2024年5月19日,8:30-9:50)一、填空题(本题满分64分,每小题8分)1.集合M ={1,2,3,5,6}的全部非空子集的元素和等于.2.设a ,b ,c 是实数,满足a +b +c =1,a 2+b 2+c 2=1,a ≠0,bca 3的取值范围为.3.已知正三棱柱ABC -A 1B 1C 1的侧棱长为4,底面边长为2,过点A 的一个平面截此棱柱,与侧棱BB 1,CC 1分别交于点M ,N ,若△MNA 为直角三角形,则△MNA 面积的最大值为.4.已知在△ABC 中BC =3,A =π3,BD =14BC,则线段AD 的最大值为.5.从1,2,⋯,11中任取三个不同的数,则这三个数可以构成等差数列的概率为.6.O 是原点,椭圆x 24+y 25=1,直线l 过1,0 且与椭圆交于A ,B 两点,则△ABO 面积的最大值为.7.数列a n 中,a 1=110,且对任意n ∈N *,a n +1=a 2n +a n ,求2024n =11a n+1 的整数部分是.8.已知关于x 的方程x 3-3x +4=0的三个复数根分别为z 1,z 2,z 3,则z 1-z 2 2z 2-z 3 2z 3-z 1 2的值为.二、解答题(本题满分56分)9.(16分)已知双曲线C :x 24-y 23=1,直线l :y =kx +1与双曲线C 的左右支分别相交于A ,B 两点,双曲线C 在A ,B 两点处的切线相交于点P ,求△ABP 面积的最小值.10.(20分)已知函数f x =e x -1-xax 2-2x +1.(1)当a =0时,讨论f x 在-4,12上的极值.(2)若x =0是f x 的极小值点,求a 的取值范围.11.(20分)设n 是一个给定的正整数,集合S n =i ,j ∣1≤i ,j ≤2n ,i ,j ∈N * ,求最大的正数c =c n ,使得对任意正整数d 1,d 2,都存在集合S n 的子集P ,满足集合P 至少有cn 2个元素,且集合P 的任两个元素i ,j ,k ,l 均有i -k2+j -l 2≠d 1,i -k 2+j -l 2≠d 2.2024年北京市高中数学联赛初赛一试考试时间:8:00-9:20一、填空题(1-8题每题8分,第9题16分,第10,11题每题20分,共120分)1.设整数集合A=a1,a2,a3,a4,a5,若A中所有三元子集的三个元素之积组成的集合为B={-30,-15, -10,-6,-5,-3,2,6,10,15},则集合A={-30,-15,-10,-6,-5,-3,20,10,15},则集合A=.2.已知函数f x =x+2,x<0;ln12x+1,x≥0.若关于x的方程f f x=m恰有三个不相等的实数根x1,x2,x3且满足x1<x2<x3,则2x1+9ln x2+4的取值范围是.3.从1,2,⋯,2024中任取两个数a,b a≤b,则3a+7b的值中,个位数字为8的数有个.4.设复数z满足3z-2i=6,令z1=z2-10z+74z-5+7i,则z1的最大值是.5.已知函数f x =x,若x为无理数;q+1p,若x=qp,其中p,q∈N*,且p,q互质,p>q.则函数f x 在区间89,910上的最大值为.6.对于c>0,若非零实数a,b满足4a2-2ab+4b2-c=0,且使2a+b最大,则3a-4b+2c的最小值为.7.已知函数f x =cos4x+sin4x+a sin4x-b,且f x+π6为奇函数.若方程f x +m=0在[0,π]上有四个不同的实数解x1,x2,x3,x4,则fx1+x2+x3+x44的平方值为.8.已知A⊆{1,2,⋯,2625},且A中任意两个数的差的绝对值不等于4,也不等于9,则A 的最大值为.9.设多项式f x =x2024+2023i=0c ix i,其中c i∈{-1,0,1}.记N为f x 的正整数根的个数(含重根).若f x 无负整数根,N的最大值是.10.在棱长为4的正方体ABCD-A1B1C1D1中,E为棱AA1上的一点,且A1E=1,F为截面A1BD上的动点,则AF+FE的最小值等于.11.数列a n定义如下:设2n!n!n+2024!写成既约分数后的分母为A n ,a n等于2A n 的最大质因数,则a n的最大值等于.2024年北京市高中数学联赛初赛二试考试时间:9:40-12:301.(40分)设a,b,c是三个正数,求证:2a2a2+b2+c2+2ba2+2b2+c2+2ca2+b2+2c2≤32a+b+c5a2+5b2+5c2+ab+bc+ca.2.(40分)如图所示,锐角△ABC的三条高线AD,BE,CF交于点H,过点F作FG⎳AC交直线BC于点G,设△CFG的外接圆为⊙O,⊙O与直线AC的另一个交点为P,过P作PQ⎳DE交直线AD于点Q,连接OD,OQ.求证:OD=OQ.3.(50分)有n个球队参加比赛,球队之间的比赛计划已经安排好了.但是每场比赛的主场客场还没有分配好.这时每个球队都上报了自己能够接受的客场比赛的最大次数.最终组委会发现这些次数加在一起恰好是比赛的总场次,并且组委会还发现任意挑出若干支球队,他们能够接受的客场次数之和都要大于等于他们之间的比赛总场次.请问组委会能否安排好主客场使得每支球队都满意,请证明你的结论.4.(50分)设a1,a2,⋯,a n为n个两两不同的正整数且a1a2⋯a n恰有4048个质因数.如果a1,a2,⋯,a n中任意多个数相乘均不是一个整数的4049次方,求n的最大值.2024年重庆市高中数学联赛初赛试题 2 2024年浙江省高中数学联赛初赛试题 3 2024年四川省高中数学联赛初赛试题 4 2024年吉林省高中数学联赛初赛试题 5 2024年广西省高中数学联赛初赛试题 7 2024年内蒙古高中数学联赛初赛试题 9 2024年北京市高中数学联赛初赛一试 10 2024年北京市高中数学联赛初赛二试 112024年重庆市高中数学联赛初赛试题一、填空题:本大题共8小题,每小题8分,满分64分.1.已知复数z 使得z -4z为纯虚数,则z -1-i 的最小值为2-2.(其中i 为虚数单位)【答案】2-2【解析】z -4z 为纯虚数⇒z -4z =-z -4z⇔z +z =4z +zzz.当z +z=0时,,z -1-i min =1;当z +z≠0时,,则z =2,,此时z -1-i min =2-2<1,,当z =21+i 可取等号.2.设函数f x =2x -2-x 的反函数为y =f -1x ,则不等式f -1x -1 <1的解集为-12,52 .【答案】-12,52 【解析】因为f x 为R 上单调递增的奇函数,,且值域为R ,,所以f -1x 也为R 上单调递增的奇函数.注意f 1 =32,,故f -1x -1 <1⇔-32<x -1<32⇔-12<x <52.3.若点A -12,32 关于直线y =kx 对称的点在圆x -2 2+y 2=1上,则k =3.【答案】3【解析】注意点A 在圆x 2+y 2=1上,,且A 关于直线y =kx 对称的点必然在圆x 2+y 2=1上,,而圆x 2+y 2=1与圆x -2 2+y 2=1仅有唯一公共点B 1,0 ,,因此对称点只能是B .易知∠AOB =120°,,因此k =tan60°= 3.4.在△ABC 中,已知AB ⋅AC =2BC ⋅BA =3CA ⋅CB ,则△ABC 最大角的正弦值为31010.【答案】31010【解析】设△ABC 的内角A ,,B ,,C 所对的边分别为a ,,b ,,c ,,由条件知b 2+c 2-a 22=a 2+c 2-b 2=3a 2+b 2-c 2 2,,解得b 2=85a 2,,c 2=95a 2,,故最大角为角C ,,由余弦定理得cos C =a 2+b 2-c 22ab =1010⇒sin C =31010.5.数列a n 满足a 1=1,a n +1-a n a n =a n +2-an +1a n +2n ∈N * ,若a 1a 2+a 2a 3+⋯+a 6a 7=3,则a 2024=62029.【答案】62029【解析】由a n +1-a n a n =a n +2-a n +1a n +2可得1a n +1a n +2=2a n +1,,则数列1a n 为等差数列,,首项为1a 1=1,,设公差为d ,,则a 1a 2+a 2a 3+⋯+a 6a 7=11+d +11+d 1+2d +⋯+11+5d 1+6d=1d 1-11+d +11+d -11+2d +⋯11+5d -11+6d =61+6d =3⇒d =16,,故1a 2024=1+20236=20296⇒a 2024=62029.6.由1,2,⋯,9这九个正整数构成的所有圆排列中,任意相邻两数之积均不超过60的圆排列的个数为21600.【答案】21600【解析】一个圆排列满足要求当且仅当该排列中8,,9与7,,9这两对数均不能相邻.设满足8,,9相邻的圆排列有N1个,,满足7,,9相邻的圆排列有N2个,,满足8,,9相邻且7,,9相邻的圆排列有N3个,,则N1= N2=A22⋅7!,,N3=A22⋅6!,,从而由容斥原理,,满足要求的排列的个数为N=8!-N1+N2-N3=21600.7.已知四面体ABCD满足AB⊥BC,BC⊥CD,AB=BC=CD=1,且异面直线AD与BC所成的角为60°,则四面体ABCD的外接球的体积为55π6.ABC DA1D1 O1O【答案】55π6【解析】由题设条件,,可将四面体补成直三棱柱ABD1-A1CD,,如图所示.由题知∠A1AD=60°,,AA1=1,,于是A1D=AD1=3,,又AB=BD1=1,,则∠ABD1=120°.设四面体ABCD的外接球球心为O,,则O在平面ABD1的投影O1为△ABD1的外心,,且OO1=12.由正弦定理知,,O1A=1,,从而外接球半径R=OA=52,,于是V=43πR3=55π6.8.一珍稀物种出现在地球,对每个珍稀生物,每天有如下事件发生:有p0≤p≤1的概率消失,有1-p3的概率保持不变,有1-p3的概率分裂成两个,有1-p3的概率分裂成三个.对所有新产生的生物每天也会发生上述事件.假设开始只有一个这样的珍稀生物,若希望最终这种生物灭绝的概率不超过12,则p至多为5 17.【答案】517【解析】设开始有一个珍稀生物、最终灭绝的概率为f1 =q≤12,,那么若开始有n个珍稀生物、最终灭绝的概率则为f n =q n.由题知,,f1 =p+1-p3f1 +1-p3f2 +1-p3f3 ,,从而有q=p+1-p3q+1-p 3q2+1-p3q3即q-11-p3q2+2q+3-1∣=0,,由于q≤12,,则0=1-p3q2+2q+3-1≤1-p 3⋅174-1,,得p≤517.故p至多为517.注:该题也可以用母函数.其第n天的母函数为f n x ,,其中f x =p+1-p3x+1-p3x2+1-p3x3,,考虑limn→+∞f n 0 ≤12即可.二、解答题:共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.16分已知函数f x =ln x-sin x,若两不相等的实数x1,x2∈0,π满足曲线y=f x 在点x1,f x1和点x2,f x2处的切线斜率相等,求证:f x1 +f x2 >-2.【解析】先证一个引理:对x>0,,有sin x<x.引理的证明:令φx =sin x-x,,φ x =cos x-1≤0,,故φx 为减函数,,所以当x>0时,,φx <φ0 =0,,引理得证!4分回到原题:f x =1x-cos x,,由题知f x1=f x2 .不妨x 1>x 2,,则x 1-x 22∈0,π2,,于是由f x 1 =f x 2 并结合引理可得x 1-x 2x 1x 2=cos x 2-cos x 1=2sin x 1+x 22sin x 1-x228分≤2sin x 1-x 22<2×x 1-x22=x 1-x 2,,因此x 1x 2>1.12分所以f x 1 +f x 2 =ln x 1x 2-sin x 1-sin x 2>-sin x 1-sin x 2≥-2.16分10.20分 已知抛物线Ω:y =x 2,动线段AB 在直线y =3x -3上(B 在A 右侧),且AB =2 3.过A 作Ω的切线,取左边的切点为M .过B 作Ω的切线,取右边的切点为N .当MN ⎳AB 时,求点A 的横坐标.【解析】设M x 1,x 21 ,,N x 2,x 22 ,,注意k MN =x 22-x 21x 2-x 1=x 1+x 2,,从而当MN ⎳AB 时,,k MN =k AB =3⇒x 1+x 2= 3.5分因为y =2x ,,所以k AM =2x 1,,可得切线AM 的方程为y -x 21=2x 1x -x 1 ,,即y =2x 1x -x 21.同理可得切线BN 的方程为y =2x 2x -x 22.由题设中A ,,B 的要求,,可设A t ,3t -3 ,,B t +3,3t ,,10分将A t ,3t -3 代入切线AM 的方程,,得3t -3=2tx 1-x 21,,即x 21-2tx 1+3t -3=0,,可求得x 1=t -t 2-3t +3,,这里取较小的根是因为M 为左边的切点.同理可求得x 2=t +3+t 2+3t +3.15分于是x 1+x 2=3⇒t -t 2-3t +3+t +3+t 2+3t +3=3,,整理得t 1+3t 2-3t +3+t 2+3t +3=0⇒t =0.故点A 的横坐标为0.20分11.20分 设x 1=3,x n +1=x n +14-x n +2n ∈N * ,求x 1+x 2+⋯+x n 的值.(其中[x ]表示不超过实数x 的最大整数.)【解析】设f x =x +14-x +2=12x +14+x +2.对于x >0,,f x 连续且单调递减.由于x 1>2,,则0<x 2=f x 1 <f 2 =2,,进而依次可以得到x 3>2,,0<x 4<2,,即0<x 2k <2,,x 2k +1>2.5分令g x =x +f x .由于g x =1+12x +14-12x +2>0恒成立,,故当x ≥0时,,g x 单调递增.又由于g 2 =4,,故当x >2时,,g x >4;当0<x <2时,,g x <4.10分当n 为偶数时,,设n =2k k ∈N * ,,有x 1+⋯+x 2k =x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k =g x 1 +g x 3 +⋯+g x 2k -1 >4k ,,且x 1+⋯+x 2k =x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k -2+x 2k -1 +x 2k =x 1+g x 2 +g x 4 +⋯+g x 2k -2 +x 2k <4k +1,,故x 1+x 2+⋯+x 2k =4k =2n .当n 为大于1的奇数时,,设n =2k +1k ∈N * ,,有x 1+⋯+x 2k +1=x 1+x 2 +x 3+x 4 +⋯+x 2k -1+x 2k +x 2k +1=g x 1 +g x 3 +⋯+g x 2k -1 +x 2k +1>4k +2x 1+⋯+x 2k +1=x 1+x 2+x 3 +x 4+x 5 +⋯+x 2k +x 2k +1=x1+g x2+g x4 +⋯+g x2k<4k+3,,故x1+x2+⋯+x2k+1=4k+2=2n.当n=1时,,x1=3.综上,,当n=1时,,x1=3;当n≥2时,,x1+x2+⋯+x n=2n.20分2024年浙江省高中数学联赛初赛试题一、填空题(每小题8分,共计96分)1.设集合A=x x-12x-1≤0,集合B=x∣x2+2x+m≤0.若A⊆B,则实数m的取值范围为m≤-3.【答案】m≤-3【解析】集合A=x 12<x≤1,,要使A⊆B,,则12+2×1+m≤0,,解得m≤-3.2.设函数f:{1,2,3}→{2,3,4}满足f f x -1=f x ,则这样的函数有10个.【答案】10【解析】令y=f x -1∈{1,2,3},,则f y =y+1.对f1 =2以下三种情况都满足条件f2 =f3 =2;f2 =f3 =3;f2 =f3 =4,,共3种.同理对f2 =3,,f1 =f3 有3种情况;f3 =4,,f1 =f2 也有3种情况.又f1 =2,,f2 =3,,f3 =4显然满足条件.所以满足已知条件的函数共有3×3+1=10个.(可以看出这种映射的限制仅在值域上,,因此也可对值域大小分类讨论.)3.函数y=sin 2x+sin x+1sin2x+1的最大值与最小值之积为34.【答案】34【解析】令t=sin x,,-1≤t≤1,,原式变形y=1+1t+1t ,,当t≠0时,,12≤y≤32.当t=0时,,y=1.所以y的最大、最小值分别为32,,12,,其积为34.4.已知数列x n满足:x1=22,x n+1=xnn n+1x2n+n n+1,n≥1,则通项x n=n3n-1.【答案】n3n-1【解析】将已知条件变形得1x2n+1-1x2n=1n-1n+1,,将上式从1到n叠加得到1 x2n -1x21=1-1n,,即x n=n3n-1.5.已知四面体A-BCD的外接球半径为1,若BC=1,∠BDC=60°,球心到平面BDC的距离为6 3.【答案】63【解析】因为球心在平面BDC上的投影就是△BDC的外心,,由已知求得△BDC的外接圆半径为33,,所以球心到平面BDC的距离为1-332=63.6.已知复数z满足z24=z-1510=1,则复数z=12±32i.【答案】12±32i【解析】由已知得z =z-1=1,,解得z=12±3i2.显然这两个解满足题设条件.。
历年全国高中数学竞赛试卷及答案(77套)
4.已知三个平面α、β、γ,每两个之间的夹角都是θ,且α∩β=a,β∩γ=b,γ∩α=c.若有
命题甲:θ> ;
命题乙:a、b、c相交于一点.
则
A.甲是乙的充分条件但不必要B.甲是乙的必要条件但不充分
C.甲是乙的充分必要条件D.A、B、C都不对
化简得, ①
与抛物线方程联立,得
即 ②
此时,方程②有两个相等的根:
代入①,得
所以直线DE与此抛物线有且只有一个公共点 ……10分
(2) ……15分
设直线DE与x轴交于点G,令
解得
于是
所以 ……20分
16.解:取
(1)先证:
因为
……5分
(2)再证:
综上可知,α的最大值是3,β的最小值是3 ……20分
1988年全国高中数学联赛试题
(2)设直线DE与此抛物线的公共点F,记△BCF与△ADE的面积分别为 ,求 的值.
16.设 为实数,若对任意的实数 恒成立,其中
求 的最大值和 的最小值
2017年全国高中数学联赛(四川初赛)试题
草考答案及评分标准
一,选择题(本大题共6个小题,每小题5分,共30分)
1.A 2.B 3.C 4.C 5.B 6.A
5.在坐标平面上,纵横坐标都是整数的点叫做整点,我们用I表示所有直线的集合,M表示恰好通过1个整点的集合,N表示不通过任何整点的直线的集合,P表示通过无穷多个整点的直线的集合.那么表达式 ⑴M∪N∪P=I; ⑵N≠Ø. ⑶M≠Ø. ⑷P≠Ø中,正确的表达式的个数是
A.1B.2C.3D.4
解:均正确,选D.
⑴ 点(1,1)∈ln,(n=1,2,3,……);
全国高中数学联赛模拟试题及参考答案
.
【解答】展开得,2 + 2 = 2,即s2 + 2 = 2.
故 =
=
∴ >0. ≤
√
2
²
=
,若<0,则<0,这不可能.
其中任意两个相邻数之和都为 2n-1 或 2n.而由抽屉原理知:当|A|≥n+1 时,A 中必然有两个数在上述数列
中相邻,所以,符合条件的 A 的元素个数不大于 n.
综上可知,|A|的最大值为 n。
二、解答题:本道题共 3 个小题,满分 56 分,解答应写出文字说明、证明过程或演算步骤.
9.(本题满分 16 分)设() = + + ( > 0),方程() = 的两个根是 与 ,且 > 0, − >
2018 全国高中数学联合竞赛模拟试题参考答案
一、填空题:本道题共 8 小题,每小题 8 分,共 64 分.
6 x x 2 的定义域为 A ,函数 y lg kx 2 4 x k 3 的定义域为 B ,当 B A 时,实
1.已知函数 y
数 k 的取值范围是
.
【解答】由题意 得,A = [−2,3], 令() = + 4 + + 3,当 ≥ 0 时,令 x → +∞时不满足题意.故
A
由垂径定理,OF⊥AB,OE⊥CD,由对称性得 O 在 EF 上.
由勾股定理,OF + AF = AO = R = OC = (4 − OF)² + CE²
F
√
解方程得,OF= ,R=
O
,三棱锥 A-BCD 的高 AE=2√2,故三棱锥 A-BCD 的高与
全国高中数学联赛模拟卷(6)(一试+二试 附详细答案)
全国高中数学联赛模拟试题(6)一试一、填空题(每小题8分,共64分)1. 设函数32()3614f x x x x =+++,且()1f a =,()19f b =,则a b += .2. 圆内接四边形,1,2,3, 4.ABCD AB BC CD DA ====则此圆的半径为 .3. 函数xx xx y cos sin 1cos sin ++=的值域是 .4. 函数 y =的最大值是 .5. 设22()53196|53196|f x x x x x =-++-+,则(1)(2)+(50)f f f ++⋅⋅⋅的值为 .6. 已知椭圆2221(1)x y a a +=>,Rt ABC ∆以()0,1为直角顶点,边,AB BC 与椭圆交于两点,.B C 若ABC ∆面积的最大值为278,则a 的值为 . 7. 如果正整数a 的各位数字之和等于5,那么称a 为“吉祥数”.将所有“吉祥数”从小到大排成一列123,,,,a a a 若2012,n a =则3n a = .8. 将2个a 和2个b 共4个字母填在如图所示的25个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有 种(用数字作答).二、解答题(共56分)9. (16分)已知椭圆的两个焦点为12(1,0),(1,0)F F -,且椭圆与直线y x =. (1)求椭圆的方程;(2)过1F 作两条互相垂直的直线12,l l ,与椭圆分别交于,P Q 及,M N ,求四边形PMQN 面积的最大值与最小值.P n10.(20分) 在xoy 平面上有一系列点111222(,),(,),(,),n n n P x y P x y P x y ⋅⋅⋅⋅⋅⋅,对每个正整数n ,点n P 位于函数2(0)y x x =≥的图象上.以点n P 为圆心的⊙n P 与x 轴都相切,且⊙n P 与⊙1n P +彼此外切.若11x =,且1n n x x +<(*n N ∈). (1)求证:数列1{}nx 是等差数列; (2)设⊙n P 的面积为n S,n T =求证:对任意*n N ∈,均有n T <.11. (20分) 设0,0,0,x y z >>>求证:333.2x y z xy yz zxx y y z z x ++++≥+++二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:(1,2,2)是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”的和“2010-幂次”的但不是“2012-幂次”的.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.全国高中数学联赛模拟试题参考答案一试一、填空题(每小题8分,共64分) 1.-2.解:由()()332()361413110f x x x x x x =+++=++++,令3()3g y y y =+,则()g y 为奇函数且单调递增.而()()3()131101f a a a =++++=, ()()3()1311019f b b b =++++=,所以(1)9g a +=-,(1)9g b +=,(1)9g b --=-,从而(1)(1)g a g b +=--,即11a b +=--, 故2a b +=-.2.24. 解:连BD ,设BAD θ∠=,那么BCD πθ∠=-,设四边形外接圆半径为R.ABD ∆中,由余弦定理知22214214cos 178cos BD θθ=+-⨯⨯=-BCD ∆中,由余弦定理知22223223cos()1312cos BD πθθ=+-⨯⨯-=+这样由178cos 1312cos θθ-=+解出1cos ,sin 5θθ==所以5BD ==. 在ABD ∆中,由正弦定理,2sin BD R θ==,从而得到R =.3. 11,11,22⎡⎫⎛⎤---⎪ ⎢⎥⎪ ⎣⎭⎝⎦.解:设=sin +cos ++.224t x x x x x π⎫⎛⎫⎪ ⎪⎪⎝⎭⎭因为-1s i n +1,4x π⎛⎫≤≤ ⎪⎝⎭所以.22≤≤-t 又因为2=1+2sin cos ,t x x 所以2-1sin cos =2t x x ,所以2-11-1==212t t y t ⨯+,所以.212212-≤≤--y 因为-1t ≠,所以121-≠-t ,所以-1y ≠.所以函数值域为.212,11,212⎥⎦⎤⎝⎛--⎪⎪⎭⎫⎢⎣⎡-+-∈ y4. 解:函数的定义域为[15],,且0y ≥.根据柯西不等式有:5y =22≤=5时,等号成立,即12727x =时函数取最大值5. 660.解:由于253196(4)(49)x x x x -+=--,因此449x ≤≤时,2531960x x -+≤,均有()f x =0.因此:(1)(2)...(50)(1)(2)(3)(50)f f f f f f f +++=+++,代入数据得:原式22222(153196)2(2532196)2(3533196)2(505350196)660=-++-⨯++-⨯++-⨯+= 6. 3.解:不妨设AB 的方程()10y kx k =+>,则AC 的方程为11y x k=-+. 由22211y kx x y a=+⎧⎪⎨+=⎪⎩得:2222(1)20a k x a kx ++=2222,1B a k x a k -⇒=+ 由222111y x k x y a ⎧=-+⎪⎪⎨⎪+=⎪⎩得:2222()20a k x a kx +-=2222,C a k x a k ⇒=+由弦长公式可得:AB AC ==于是 2442222224211(1)2212(1)()()1ABC k k k kSAB AC a a a k a k a k a k∆++===+++++. 令12t k k=+≥,有44222222222,(1)(1)ABC a ta Sa a t a a t t∆==-+-+因为2222(1)2(1),a a t a a t -+≥- 21a t a-=时等号成立. 因此当21a t a -=时,3max 2(),1ABC a S a ∆=-令32227(3)(839)018a a a a a =⇒---=-.解得:)3,a a a ===舍.又21=21a t a a -≥⇒≥+a ∴=舍去. 3.a ∴= 7. 100013.解:∵方程12k x x x m +++= 的非负整数解的个数为1m m k C +-.而使11,0(2)i x x i ≥≥≥的整数解个数为12m m k C -+-.现取5m =,可知,k 位“吉祥数”的个数为43().k P k C +=∵4445(1)1,(2)5,P C P C ====46(3)15,P C ==并且对于四位“吉祥数”1abc ,其个数为满足4a b c ++=的非负整数解个数,即443115C +-=个,而2012是形如2abc 的数中的第2个“吉祥数”,因此2012是第1+5+15+15+2=38个“吉祥数”,即382012a =,从而38,3114.n n ==又4378(4)35,(5)56,P C P C ====而51()151********.k P k ==++++=∑∴从小到大的前2个六位“吉祥数”是:100004,100013.∴第114个“吉祥数”是100013,即3100013.n a = 8.33800.解:使2个a 既不同行也不同列的填法有2255200C A =种,同样,使2个b 既不同行也不同列的填法也有2255200C A =种,故由乘法原理,这样的填法共有20020040000⨯=种.其中不符合要求的有两种情况:2个a 所在的方格内都填有b 的情况有200种;2个a 所在的方格内仅有1个方格内填有b 的情况有122516252406000C A =⨯=种.所以,符合题设条件的填法共有40000200600033800--=种.二.解答题(共56分)9.解:(1) 设椭圆方程为22221(0)x y a b a b +=>>.它与直线y x =1个交点,所以方程组22221x y ab y x ⎧+=⎪⎨⎪=⎩只有一解,即2222222()30b a x x a a b +-+-=只有一根(重根)2222222()4()(3)0a b a a b ∴∆=--+-=,化简得223a b +=又 焦点为(-1,0),(1,0),∴221a b -=,∴2221a b ⎧=⎪⎨=⎪⎩∴椭圆方程为:2212x y +=.(2)若PQ 斜率不存在(或为0),则||||22PMQNPQ MN S ⋅===四边形 ①若PQ 斜率存在,设为(0)k k ≠,则MN 的斜率为1k-, ∴直线PQ 的方程为=+y kx k .设PQ 与椭圆交点坐标()1122(,),,P x y Q x y ,P n联立方程2212y kx k x y =+⎧⎪⎨+=⎪⎩,12,x x 为方程2222(21)4220k x k x k +++-=的根,12||||=PQ x x a ∴=-=22121k k +=+同理221||2k MN k +=+.||||42MN PQ S ⋅∴==四边形PMQN2424242121124()2522252k k k k k k k ++=-++++ 24214()24104k k k =-=++22114()124410k k -+⨯+22448k k +≥= ,当且仅当21k =时等号成立, 2211(0,]1184410k k∴∈+⨯+,221116=4(),21294410S k k ⎡⎫∴-∈⎪⎢⎣⎭+⨯+四边形PMQN ② 综合①②可得:PMQN S 四边形的面积的最小值为169,最大值为2. 10.(20分) 解:(1)依题意,⊙n P 的半径2n n n r y x ==, ⊙n P 与⊙1n P +彼此外切, 11n n n n P P r r ++∴=+,1n n y y +=+. 两边平方,化简得 211()4n n n n x x y y ++-=,即 22211()4n n n n x x x x ++-=,10n n x x +>> , ∴112n n n n x x x x ++-=, 即1112()n n n N x x +-=∈,∴ 数列1{}nx 是等差数列. (2) 由题设,11x =,∴111(1)2n n x x =+-⋅,即121n x n =-, 2244(21)n n n n S r y x n ππππ====-,n T =222111]35(21)n =++++-≤111]1335(23)(21)n n ++++⋅⋅-⋅-1111111[(1)()()]23352321n n ⎫+-+-++-⎬--⎭11(1)]221n +--=< 11. (20分) 证明:223()044()x x y x y x y x y ---=≥++ ,∴234x x y x y -≥+.进而可得323.4x x xyx y -≥+类似的3234y y yzy z -≥+,3234z z zx z x -≥+. ∴3332223334x y z x xy y yz z zx x y y z z x -+-+-++≥+++2223()4x y z xy yz zx++---=3()42xy yz zx xy yz zx xy yz zx ++---++≥=二试一.(40分)设a 、b 、c 为正实数,证明:()()()()3525252333aa b b c c a b c -+-+-+≥++.证明:注意到,当0a >时,有()5235323223(2)1(1)(1)a a a a a a a a a -+-+=--+=---3222(1)(1)(1)(1)(1)0a a a a a a =--=-+++≥.所以()5233(2)a a a -+≥+.因此,我们只需证明:3333(2)(2)(2)()a b c a b c +++≥++.为此,我们证明更一般的结论: 对任意正实数,,(1,2,3)i i i x y z i =,均有:3111222333()()()x y z x y z x y z ++++++≥. (1)事实上,由于3121112223331()3x x x x y z x y z x y z =≤++++++++同理,3121112223331()3y y y x y z x y z x y z ≤++++++++,3121112223331()3z z z x y z x y z x y z ≤++++++++,上述3个不等式相加可知(1)式成立.所以3333333(2)(2)(2)(11)(11)(11)()a b c a b c a b c +++=++++++≥++,原命题得证. 二.(40分)设O 和I 分别为ABC ∆的外心和内心,ABC ∆的内切圆与边,,BC CA AB 分别相切于点,,D E F ,直线FD 与CA 相交于点P ,直线DE 与AB 相交于点Q ,点,M N 分别为线段,PE QF 的中点,求证:OI MN ⊥.证明:考虑ABC ∆与截线PFD ,由梅涅劳斯定理,有1CP AF BDPA FB DC⋅⋅=, 所以PA AF BD AF s aCP FB DC DC s c-=⋅==-(s 为ABC ∆的半周长) 于是PA s aCA a c -=-,因此()b s a PA a c-=-,这样()()()2b s a s c s a PE PA AE s a a c a c---=+=+-=-- ()()()()()()21,2s c s a s c s a s a ME PE MA ME AE s a a c a c a c-----===-=--=--- ()()()()2s c s a s c MC ME EC s c a c a c ---=+=+-=--,于是2MA MC ME ⋅=.因为ME 是点M 到ABC ∆的内切圆的切线长,所以2ME 是点M 到内切圆的幂,而MA MC ⋅是点M 到ABC ∆外接圆的幂,等式2MA MC ME ⋅=表明点M 到到ABC ∆外接圆与内切圆的幂相等,因此点M 在ABC ∆外接圆与内切圆的根轴上,同理,点N 也在在ABC ∆外接圆与内切圆的根轴上,故OI MN ⊥.三.(50分)若三元正整数组(,,)a b c 满足a b c ≤≤,(,,)1a b c =且()|n n n a b c a b c ++++,则称(,,)a b c 为“n -幂次”的.例如:()1,2,2是“5-幂次”的.(1)求所有的三元组,使得对所有1n ≥,该数组是“n -幂次”的.(2)求所有的三元组,使之是“2009-幂次”和“2010-幂次”的,但不是“2012-幂次”的.解(1)设(,,)a b c 满足条件,则由222()|a b c a b c ++++得2222()|()()a b c a b c a b c ++++-++,于是()|2()a b c ab bc ca ++++. (1)由333()|a b c a b c ++++,得333222()|()()()a b c a b c a b c a b c ab bc ca ++++-++++--- 于是()|3a b c abc ++ (2)对于任意素因子5p ≥,若|()p a b c ++,则|p abc .不妨设|p a ,则0(mod )b c p +≡.又由(1)式可得0(mod )bc p ≡,于是0(mod )b c p ≡≡,这与(,,)1a b c =矛盾,故a b c ++无大于3的素因子.对于因子3,若3|()a b c ++,与上面相同的推理可得3不整除abc ,故由(2)式知,()a b c ++至多含3的一次因子.对于因子2,若2|()a b c ++,则由(,,)1a b c =,可知,,a b c 的奇偶性为两奇一偶,此时2()2(mod 4)ab bc ca ++≡,所以由(1)式知,()a b c ++至多含2的一次因子;综上所述,我们有()|6a b c ++,由,,a b c 为正整数,容易求得符合条件的数组为(1,1,1),(1,1,4).(2)记n n n n T a b c =++,注意到多项式:()()()()f x x a x b x c =---=32()()x a b c x ab bc ca x abc -+++++-,则32()()()0f a a a b c a ab bc ca a abc =-+++++-=,故32()()a a b c a ab bc ca a abc =++-+++,两边同乘以3n a -,得123()()()n n n n a a b c a ab bc ca a abc a ---=++-+++,对,b c 有类似的结论,将三者相加,得123()()n n n n T a b c T ab bc ca T abcT ---=++-+++.故若有3()|n a b c T -++,且2()|n a b c T -++,则必有()|n a b c T ++.由此,取2012n =,知不存在符合条件的正整数组.四.(50分)如图,在7×8的长方形棋盘的每个小方格的中心点各放一个棋子.如果两个棋子所在的小方格共边或共顶点,那么称这两个棋子相连.现从这56个棋子中取出一些,使得棋盘上剩下的棋子,没有五个在一条直线(横、竖、斜方向)上依次相连.问最少取出多少个棋子才可能满足要求?并说明理由.解:最少要取出11个棋子,才可能满足要求.其原因如下:如果一个方格在第i 行第j 列,则记这个方格为(i ,j ).第一步证明若任取10个棋子,则余下的棋子必有一个五子连珠,即五个棋子在一条直线(横、竖、斜方向)上依次相连.用反证法.假设可取出10个棋子,使余下的棋子没有一个五子连珠.如图1,在每一行的前五格中必须各取出一个棋子,后三列的前五格中也必须各取出一个棋子.这样,10个被取出的棋子不会分布在右下角的阴影部分.同理,由对称性,也不会分布在其他角上的阴影部分.第1、2行必在每行取出一个,且只能分布在(1,4)、(1,5)、(2,4)、(2,5)这些方格.同理(6,4)、(6,5)、(7,4)、(7,5)这些方格上至少要取出2个棋子.在第1、2、3列,每列至少要取出一个棋子,分布在(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(5,3)所在区域,同理(3,6)、(3,7)、(3,8)、(4,6)、(4,7)、(4,8)、(5,6)、(5,7)、(5,8)所在区域内至少取出3个棋子.这样,在这些区域内至少已取出了10个棋子.因此,在中心阴影区域内不能取出棋子.由于①、②、③、④这4个棋子至多被取出2个,从而,从斜的方向看必有五子连珠了.矛盾.图1 图2第二步构造一种取法,共取走11个棋子,余下的棋子没有五子连珠.如图2,只要取出有标号位置的棋子,则余下的棋子不可能五子连珠.综上所述,最少要取走11个棋子,才可能使得余下的棋子没有五子连珠.。
2023全国高中数学联赛模拟试题6及参考答案
2023全国高中数学联赛模拟试题6及参考答案题目1某校3个年级的学生数量比例为5:4:3,其中一年级学生的平均身高为160cm,二年级学生的平均身高为165cm,三年级学生的平均身高为170cm。
求该校学生总体平均身高。
解答1我们可以先计算出每个年级学生的数量占总体的比例:一年级学生数量比例 = 5 /(5 + 4 + 3)= 5 / 12二年级学生数量比例 = 4 /(5 + 4 + 3)= 4 / 12三年级学生数量比例 = 3 /(5 + 4 + 3)= 3 / 12然后,根据每个年级学生的数量比例和平均身高,计算出每个年级学生身高的总和:一年级学生身高总和 = 5 / 12 × 160cm二年级学生身高总和 = 4 / 12 × 165cm三年级学生身高总和 = 3 / 12 × 170cm最后,将三个年级学生身高的总和相加,除以总体学生数量,即可得到该校学生总体平均身高。
计算过程如下:总体平均身高 = (一年级学生身高总和 + 二年级学生身高总和 + 三年级学生身高总和) / (5 + 4 + 3)总体平均身高 = (5 / 12 × 160 + 4 / 12 × 165 + 3 / 12 × 170) / (5 + 4 + 3)计算结果为:166.25cm所以,该校学生总体平均身高为166.25cm。
题目2已知函数f(f)=2f2+3f+1,求f(2)的值。
解答2将 x 的值代入函数f(f)=2f2+3f+1中,计算出f(2)的值。
f(2) = 2 × 2^2 + 3 × 2 + 1计算过程如下:f(2) = 2 × 4 + 6 + 1= 8 + 6 + 1= 15所以,f(2)的值为15。
题目3某圆的周长为10π,求该圆的面积。
解答3已知圆的周长为10π,可以根据周长计算出圆的半径。
圆的周长公式为f=2ff,其中 C 为周长,r 为半径。
2019年全国高中数学联赛模拟试卷9套及答案
全国高中数学联赛模拟试题(一)第一试一、选择题:(每小题6分,共36分)1、 方程6×(5a 2+b 2)=5c 2满足c ≤20的正整数解(a ,b ,c )的个数是 (A )1 (B )3 (C )4 (D )52、 函数12-=x x y (x ∈R ,x ≠1)的递增区间是(A )x ≥2 (B )x ≤0或x ≥2 (C )x ≤0(D )x ≤21-或x ≥23、 过定点P (2,1)作直线l 分别交x 轴正向和y 轴正向于A 、B ,使△AOB (O 为原点)的面积最小,则l 的方程为(A )x +y -3=0 (B )x +3y -5=0 (C )2x +y -5=0 (D )x +2y -4=0 4、 若方程cos2x +3sin2x =a +1在⎥⎦⎤⎢⎣⎡2,0π上有两个不同的实数解x ,则参数a 的取值范围是(A )0≤a <1 (B )-3≤a <1 (C )a <1 (D )0<a <15、 数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是(A )42 (B )45 (C )48 (D )516、 在1,2,3,4,5的排列a 1,a 2,a 3,a 4,a 5中,满足条件a 1<a 2,a 2>a 3,a 3<a 4,a 4>a 5的排列的个数是(A )8 (B )10 (C )14 (D )16二、填空题:(每小题9分,共54分)1、[x ]表示不大于x 的最大整数,则方程21×[x 2+x ]=19x +99的实数解x 是 .2、设a 1=1,a n +1=2a n +n 2,则通项公式a n = .3、数799被2550除所得的余数是 . 4、在△ABC 中,∠A =3π,sin B =135,则cos C = .5、设k 、是实数,使得关于x 的方程x 2-(2k +1)x +k 2-1=0的两个根为sin 和cos ,则的取值范围是 . 6、数()n2245+(n ∈N )的个位数字是 .三、(20分)已知x 、y 、z 都是非负实数,且x +y +z =1.求证:x (1-2x )(1-3x )+y (1-2y )(1-3y )+z (1-2z )(1-3z )≥0,并确定等号成立的条件.四、(20分)(1) 求出所有的实数a ,使得关于x 的方程x 2+(a +2002)x +a =0的两根皆为整数.(2) 试求出所有的实数a ,使得关于x 的方程x 3+(-a 2+2a +2)x -2a 2-2a =0有三个整数根.五、(20分)试求正数r 的最大值,使得点集T ={(x ,y )|x 、y ∈R ,且x 2+(y -7)2≤r 2}一定被包含于另一个点集S ={(x ,y )|x 、y ∈R ,且对任何∈R ,都有cos2+x cos +y ≥0}之中.第二试一、(50分)设a 、b 、c ∈R ,b ≠ac ,a ≠-c ,z 是复数,且z 2-(a -c )z -b =0.求证:()12=-+-+bac zc a b a 的充分必要条件是(a -c )2+4b ≤0. 二、(50分) 如图,在△ABC 中,∠ABC 和∠ACB 均是锐角,D 是BC 边上的内点,且AD 平分∠BAC ,过点D 分别向两条直线AB 、AC 作垂线DP 、DQ ,其垂足是P 、Q ,两条直线CP 与BQ 相交与点K .求证:(1) AK ⊥BC ;ACBD QK P(2) BCS AQ AP AK ABC△2<=<,其中ABC S △表示△ABC 的面积.三、(50分)给定一个正整数n ,设n 个实数a 1,a 2,…,a n 满足下列n 个方程:∑==+=+ni i n j j j i a 1),,3,2,1(124.确定和式∑=+=ni ii a S 112的值(写成关于n 的最简式子).参考答案 第一试二、填空题:1、38181-或381587; 2、7×2n -1-n 2-2n -3;3、343;4、261235-; 5、{|=2n +或2n -2π,n ∈Z } ;6、1(n 为偶数);7(n 为奇数).三、证略,等号成立的条件是31===z y x 或⎪⎩⎪⎨⎧===021z y x 或⎪⎩⎪⎨⎧===021y z x 或⎪⎩⎪⎨⎧===021z z y .四、(1)a 的可能取值有0,-1336,-1936,-1960,-2664,-4000,-2040;(2)a 的可能取值有-3,11,-1,9.五、r max =24.第二试一、证略(提示:直接解出()2i42⋅---±-=b c a c a z ,通过变形即得充分性成立,然后利用反证法证明必要性).二、证略(提示:用同一法,作出BC 边上的高AR ,利用塞瓦定理证明AR 、BQ 、CP 三线共点,从而AK ⊥BC ;记AR 与PQ 交于点T ,则BCS ABC△2=AR >AT >AQ =AP ,对于AK <AP ,可证∠APK <∠AKP ).三、()11212++-=n S .全国高中数学联赛模拟试题(二)第一试一、选择题:(每小题6分,共36分)1、 若集合S ={n |n 是整数,且22n +2整除2003n +2004},则S 为(A )空集∅ (B )单元集 (C )二元集 (D )无穷集2、 若多项式x 2-x +1能除尽另一个多项式x 3+x 2+ax +b (a 、b 皆为常数).则a +b等于(A )0 (B )-1 (C )1 (D )23、 设a 是整数,关于x 的方程x 2+(a -3)x +a 2=0的两个实根为x 1、x 2,且tan(arctanx 1+arctan x 2)也是整数.则这样的a 的个数是(A )0 (B )1 (C )2 (D )4 4、 设一个四面体的体积为V 1,且它的各条棱的中点构成一个凸多面体,其体积为V 2.则12V V 为 (A )21 (B )32 (C )常数,但不等于21和32(D )不确定,其值与四面体的具体形状有关5、 在十进制中,若一个至少有两位数字的正整数除了最左边的数字外,其余各个数字都小于其左边的数字时,则称它为递降正整数.所有这样的递降正整数的个数为 (A )1001 (B )1010 (C )1011 (D )10136、 在正方体的8个顶点中,能构成一个直角三角形的3个顶点的直角三点组的个数是(A )36 (B )37 (C )48 (D )49二、填空题:(每小题9分,共54分)1、 若直线x cos +y sin =cos2-sin2(0<<=与圆x 2+y 2=41有公共点,则的取值范围是 .2、 在平面直角坐标系xOy 中,一个圆经过(0,2)、(3,1),且与x 轴相切.则此圆的半径等于 . 3、 若常数a 使得关于x 的方程lg(x 2+20x )-lg(8x -6a -3)=0有惟一解.则a 的取值范围是 .4、 f (x )=82x +x cos x +cos(2x )(x ∈R )的最小值是 .5、 若k 是一个正整数,且2k整除20034006400624006124006040063C 3C 3C C +++++ i i 则k 的最大值为 .6、 设ABCD 为凸四边形,AB =7,BC =4,CD =5,DA =6,其面积S 的取值范围是(a ,b ] .则a +b = .三、(20分)设椭圆的左右焦点分别为F 1、F 2,左准线为l ,点P 在椭圆上.作PQ ⊥l ,Q 为垂足.试问:对于什么样的椭圆,才存在这样的点P ,使得PQF 1F 2为平行四边形?说明理由(答案用关于离心率e 的等式或不等式来表示). 四、(20分)设a 0=1,a 1=2,a n +1=2a n -1+n ,n =1,2,3,….试求出a n 的表达式(答案用有限个关于n 的式子相加的形式表示,且项数与n 无关). 五、(20分)试求出所有的有序整数对(a ,b ),使得关于x 的方程x 4+(2b -a 2)x 2-2ax +b 2-1=0的各个根均是整数.第二试一、(50分)点P 在△ABC 内,且∠BAP =∠CAP ,连结BP 并延长交AC 于点Q .设∠BAC =60°,且PQPC BP 111=+. 求证:P 是△ABC 的内心.二、(50分)设正数a 、b 满足2b a >且使得关于x 的不等式1-x ≥b x a -+1总有实数解.试求f (a ,b )=a 2-3ab +b 2的取值范围. 三、(50分)试求出正整数k 的最小可能值,使得下述命题成立:对于任意的k 个整数a 1,a 2,…,a k(允许相等),必定存在相应的k 的整数x 1,x 2,…,x k (也允许相等),且|x i |≤2(i =1,2,…,k ),|x 1|+|x 2|+…+|x k |≠0,使得2003整除x 1a 1+x 2a 2+…+x k a k .参考答案第一试二、填空题:1、⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡65,323,6ππππ ;2、5615±;3、⎪⎭⎫⎝⎛--21,6163;4、-1;5、2004;6、2102.三、⎪⎭⎫ ⎝⎛∈1,21e .四、a 2n =2n +2-2n -3;a 2n +1=3×2 n +1-2n -4.五、(a ,b )=(2l ―1,l 2―l ―1)(∀l ∈Z )第二试 一、证略(提示:将条件变形为PQPCPB PA PA PC =+⋅1,然后应用正弦定理,进行三角变换,得∠BPC =120°,利用同一法即证);二、(-∞,-1).三、k min =7.1全国高中数学联赛模拟试题(三)第一试一、选择题(每小题6分,共36分):1、函数()aaxxaxf-+-=22是奇函数的充要条件是(A)-1≤a<0或0<a≤1 (B)a≤-1或a≥1(C)a>0 (D)a<02、已知三点A(-2,1)、B(-3,-2)、C(-1,-3)和动直线l:y=kx.当点A、B、C到直线l的距离的平方和最小时,下列结论中,正确的是(A)点A在直线l上(B)点B在直线l上(C)点C在直线l上(C)点A、B、C均不在直线l上3、如图,已知正方体ABCD-A1B1C1D1,过顶点A1在空间作直线l,使l与直线AC和BC1所成的角都等于60°.这样的直线l可以做(A)4条(B)3条(C)2条(D)1条4、整数的100200C=n两位质因数的最大值是(A)61 B)67 (C)83 (D)975、若正整数a使得函数()axxxfy213-+==的最大值也是整数,则这个最大值等于(A)3 (B)4 (C)7 (D)86、在正整数数列中,由1开始依次按如下规则将某些数染成红色.先染1,再染2个偶数2、4;再染4后面最邻近的3个连续奇数5、7、9;再染9后面最邻近的4个连续偶数10、12、14、16;再染此后最邻近的5个连续奇数17、19、21、23、25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,12,14,16,17,….则在这个红色子数列中,由1开始的第2003个数是(A)3844 (B)3943 (C)3945 (D)4006二、填空题(每小题9分,共54分):1、在复平面上,Rt△ABC的顶点A、B、C分别对应于复数z+1、2z+1、(z+1)2,A为直角顶点,且|z|=2.设集合M={m|z m∈R,m∈N+},P={x|x=m21,m∈M}.则集合P所有元素之和等于.2、函数f(x)=|sin x|+sin42x+|cos x|的最大值与最小值之差等于.3、关于x的不等式()()074547422222222<-+--++-+-++aaxaaxaaxax的解集是一些区间的并集,且这些区间的长度的和小于4,则实数a的取值范围是 .4、银行计划将某项资金的40%给项目M 投资一年,其余的60%给项目N .预计项目M 有可能获得19%到24%的年利润,N 有可能获得29%到34%的年利润.年终银行必须回笼资金,同时按一定的回扣率支付给储户.为使银行的年利润不少于给M 、N 总投资的10%而不大于总投资的15%,则给储户的回扣率的最小值是 .5、已知点(a ,b )在曲线arcsin x =arccos y 上运动,且椭圆ax 2+by 2=1在圆x 2+y 2=32的外部(包括二者相切的情形).那么,arcsin b 的取值范围是 .6、同底的两个正三棱锥内接于同一个球.已知两个正三棱锥的底面边长为a ,球的半径为R .设两个正三棱锥的侧面与底面所成的角分别为、,则tan(+)的值是 .三、(20分)△ABC 的三边长a 、b 、c (a ≤b ≤c )同时满足下列三个条件(i )a 、b 、c 均为整数;(ii )a 、b 、c 依次成等比数列;(iii )a 与c 中至少有一个等于100.求出(a ,b ,c )的所有可能的解.四、(20分)在三棱锥D -ABC 中,AD =a ,BD =b ,AB =CD =c ,且∠DAB +∠BAC +∠DAC =180°,∠DBA +∠ABC +∠DBC =180°.求异面直线AD 与BC 所成的角.五、(20分)设正系数一元二次方程ax 2+bx +c =0有实根.证明:(1) max{a ,b ,c }≥94(a +b +c );(2) min{a ,b ,c }≤41(a +b +c ).第二试一、(50分)已知△ABC的外角∠EAC平分线与△ABC的外接圆交于D,以CD为直径的圆分别交BC、CA于点P、Q.求证:线段PQ平分△ABC的周长.二、(50分)已知x0=1,x1=3,x n+1=6x n-x n-1(n∈N+).求证:数列{x n}中无完全平方数.三、(50分)有2002名运动员,号码依次为1,2,3,…,2002.从中选出若干名运动员参加仪仗队,但要使剩下的运动员中没有一个人的号码数等于另外两人的号码数的乘积.那么被选为仪仗队的运动员至少能有多少人?给出你的选取方案,并简述理由.参考答案 第一试一、选择题:二、填空题: 1、71; 2、2; 3、[1,3];4、10%;5、⎥⎦⎤⎝⎛⎪⎭⎫⎢⎣⎡3,44,6ππππ ;6、aR334-. 三、可能解为(100,100,100),(100,110,121),(100,120,144),(100,130,169),(100,140,196),(100,150,225),(100,160,256),(49,70,100),(64,80,100),(81,90,100),(100,100,100). 四、222arccos a c b -.五(1)证略(提示:令a +b +c =t ,分b ≥t 94和b <t 94讨论); (2)证略(提示:分a ≤t 41和a >t 41讨论);第二试一、证略;二、证略(提示:易由特征根法得x n =()()⎥⎦⎤⎢⎣⎡-++nn22322321,设y n =()()⎥⎦⎤⎢⎣⎡--+nn223223221,于是1222=-n n y x,原结论等价于方程x 4-2y 2=1无整数解,由数论只是可证).三、43.全国高中数学联赛模拟试题(四)第一试一、选择题:(每小题6分,共36分)1、 空间中n (n ≥3)个平面,其中任意三个平面无公垂面.那么,下面四个结论 (1) 没有任何两个平面互相平行;(2) 没有任何三个平面相交于一条直线; (3) 平面间的任意两条交线都不平行;(4) 平面间的每一条交线均与n -2个平面相交. 其中,正确的个数为(A )1 (B )2 (C )3 (D )4 2、 若函数y =f (x )在[a ,b ]上的一段图像可以近似地看作直线段,则当c ∈(a ,b )时,f (c )的近似值可表示为(A )()()2b f a f +(B )⎪⎭⎫⎝⎛+2b a f(C )()()()()()a b b f a c a f c b --+-(D )()()()[]a f b f ab ac a f ----3、 设a >b >c ,a +b +c =1,且a 2+b 2+c 2=1,则(A )a +b >1 (B )a +b =1 (C )a +b <1 (D )不能确定,与a 、b 的具体取值有关4、 设椭圆12222=+b y a x 的离心率23=e ,已知点⎪⎭⎫ ⎝⎛23,0P 到椭圆上的点的最远距离是47,则短半轴之长b = (A )161 (B )81(C )41(D )21 5、 S ={1,2,…,2003},A 是S 的三元子集,满足:A 中的所有元素可以组成等差数列.那么,这样的三元子集A 的个数是(A )32003C(B )2100221001C C +(C )2100221001A A +(D )32003A6、 长方体ABCD -A 1B 1C 1D 1,AC 1为体对角线.现以A 为球心,AB 、AD 、AA 1、AC 1为半径作四个同心球,其体积依次为V 1、V 2、V 3、V 4,则有 (A )V 4<V 1+V 2+V 3 (B )V 4=V 1+V 2+V 3 (C )V 4>V 1+V 2+V 3(D )不能确定,与长方体的棱长有关二、填空题:(每小题9分,共54分)1、已知k ==βαβαcos cos sin sin 33,则k 的取值范围为 . 2、等差数列{a n }的首项a 1=8,且存在惟一的k 使得点(k ,a k )在圆x 2+y 2=102上,则这样的等差数列共有 个. 3、在四面体P -ABC 中,PA =PB =a ,PC =AB =BC =CA =b ,且a <b ,则ba的取值范围为 .4、动点A 对应的复数为z =4(cos +isin ),定点B 对应的复数为2,点C 为线段AB 的中点,过点C 作AB 的垂线交OA 与D ,则D 所在的轨迹方程为 .5、∑=200313k k被8所除得的余数为 .6、圆周上有100个等分点,以这些点为顶点组成的钝角三角形的个数为 .三、(20分)已知抛物线y 2=2px (p >0)的一条长为l 的弦AB .求AB 中点M 到y 轴的最短距离,并求出此时点M 的坐标.四、(20分)单位正方体ABCD -A 1B 1C 1D 1中,正方形ABCD 的中心为点M ,正方形A 1B 1C 1D 1的中心为点N ,连AN 、B 1M .(1)求证:AN 、B 1M 为异面直线; (2)求出AN 与B 1M 的夹角.五、(20分)对正实数a 、b 、c .求证:cabc b ac b a bc a 888222+++++≥9.第二试一、(50分)设ABCD 是面积为2的长方形,P 为边CD 上的一点,Q 为△PAB 的内切圆与边AB 的切点.乘积PA ·PB 的值随着长方形ABCD 及点P 的变化而变化,当PA ·PB 取最小值时,(1)证明:AB ≥2BC ; (2)求AQ ·BQ 的值.二、(50分)给定由正整数组成的数列⎩⎨⎧+===++n n n a a a a a 12212,1(n ≥1). (1)求证:数列相邻项组成的无穷个整点(a 1,a 2),(a 3,a 4),…,(a 2k -1,a 2k ),…均在曲线x 2+xy -y 2+1=0上.(2)若设f (x )=x n +x n -1-a n x -a n -1,g (x )=x 2-x -1,证明:g (x )整除f (x ).三、(50分)我们称A 1,A 2,…,A n 为集合A 的一个n 分划,如果 (1)A A A A n = 21; (2)∅≠j i A A ,1≤i <j ≤n .求最小正整数m ,使得对A ={1,2,…,m }的任意一个13分划A 1,A 2,…,A 13,一定存在某个集合A i (1≤i ≤13),在A i 中有两个元素a 、b 满足b <a ≤89b .参考答案 第一试二、填空题:1、⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--1,2121,1 ;2、17;3、⎪⎭⎫ ⎝⎛-1,32;4、()134122=+-y x ;5、4;6、117600.三、⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--≥-⎪⎪⎭⎫ ⎝⎛<<2222,2,2,20,8,20,8p pl p l M p l p l p l M p l p l .四、(1)证略;(2)32arccos .五、证略.第二试一、(1)证略(提示:用面积法,得PA ·PB 最小值为2,此时∠APB =90°);(2)AQ ·BQ =1.二、证略(提示:用数学归纳法).三、m =117.全国高中数学联赛模拟试题(五)第一试一、 选择题:(每小题6分,共36分)1、在复平面上,非零复数z 1、z 2在以i 对应的点为圆心,1为半径的圆上,21z z ⋅的实部为零,arg z 1=6π,则z 2= (A )i 2323+-(B )i 2323- (C )i 2323+- (D )i 2323- 2、已知函数()⎪⎭⎫ ⎝⎛+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是(A )⎪⎭⎫⎝⎛85,21(B )⎪⎭⎫⎝⎛+∞,23 (C )⎪⎭⎫ ⎝⎛+∞⎪⎭⎫⎝⎛,2385,21(D )⎪⎭⎫⎝⎛+∞,21 3、已知双曲线过点M (-2,4),N (4,4),它的一个焦点为F 1(1,0),则另一个焦点F 2的轨迹方程是(A )()()116425122=-+-y x (y ≠0)或x =1(y ≠0)(B )()()125416122=-+-y x (x ≠0)或x =1(y ≠0)(C )()()116125422=-+-y x (y ≠0)或y =1(x ≠0)(D )()()125116422=-+-y x (x ≠0)或y =1(x ≠0)4、已知正实数a 、b 满足a +b =1,则b a M 2112+++=的整数部分是(A )1(B )2(C )3(D )45、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一角度,人行道的宽度是15米,长度是50米,则人行道间的距离是 (A )9米 (B )10米 (C )12米 (D )15米6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15二、 填空题:(每小题6分,共36分)1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截面AMN 与底面AFH 所成的角是 .2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a 2+b 2=2c 2,则角C 的最大值是 .3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是 .4、已知函数f (x )与g (x )的定义域均为非负实数集,对任意x ≥0,规定f (x )*g (x )=min{f (x ),g (x )}.若f (x )=3-x ,g (x )=52+x ,则f (x )*g (x )的最大值为 .5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则可有不同的取法.6、若实数a >0,则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②()663,2;③()+∞,36;④()32,0.其中正确的是 .三、 (20分)求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面的面积四、 (20分)直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q 两点,O 为坐标原点,且OP ⊥OQ .求证:2222222BA b a C b a ++=.五、 (20分)某新建商场建有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c(万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?第二试一、 (50分)矩形ABCD 的边AD =·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE 2+BF 2=AB 2,试求正实数的值.二、 (50分)若a i ∈R +(i =1,2,…,n ),∑==ni iaS 1,且2≤n ∈N .求证:∑=-nk kk a S a 13≥∑=-n k k a n 1211.三、 (50分)无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||,而0≤c 1≤1. (1)证明:仅当c 1是有理数时,数列自某一项开始成为周期数列.(2)存在多少个不同的c 1值,使得数列自某项之后以T 为周期(对于每个T =2,3,…)?参考答案第一试二、填空题:1、6π; 2、3π;3、na ⎪⎭⎫ ⎝⎛-11;4、132-;5、2500;6、③④.三、证略.四、证略.五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).第二试 一、22=λ;二、证略.三、 (1)证略. (2)无穷个.全国高中数学联赛模拟试题(六)第一试一、选择题:(每小题6分,共36分)7、 a 、b 是异面直线,直线c 与a 所成的角等于c 与b 所成的角,则这样的直线c 有(A )1条 (B )2条 (C )3条 (D )无数条8、 已知f (x )是R 上的奇函数,g (x )是R 上的偶函数,若f (x )-g (x )=x 2+2x +3,则f (x )+g (x )=(A )-x 2+2x -3 (B )x 2+2x -3 (C )-x 2-2x +3 (D )x 2-2x +39、 已知△ABC ,O 为△ABC 内一点,∠AOB =∠BOC =∠COA =32π,则使AB +BC +CA ≥m (AO +BO +CO )成立的m 的最大值是 (A )2(B )35(C )3(D )23 10、 设x =0.820.5,y =sin1,z =log 37则x 、y 、z 的大小关系是(A )x <y <z (B )y <z <x(C )z <x <y(D )z <y <x11、整数⎥⎦⎤⎢⎣⎡+31010951995的末尾两位数字是(A )10 (B )01 (C )00 (D )2012、 设(a ,b )表示两自然数a 、b 的最大公约数.设(a ,b )=1,则(a 2+b 2,a 3+b 3)为(A )1 (B )2 (C )1或2 (D )可能大于2二、填空题:(每小题9分,共54分)1、若f (x )=x 10+2x 9-2x 8-2x 7+x 6+3x 2+6x +1,则f (2-1)= .2、设F 1、F 2是双曲线x 2-y 2=4的两个焦点,P 是双曲线上任意一点,从F 1引∠F 1PF 2平分线的垂线,垂足为M ,则点M 的轨迹方程是 .3、给定数列{x n },x 1=1,且nn n x x x -+=+3131,则x 1999-x 601= .4、正方体ABCD -A 1B 1C 1D 1的棱长为1,E 是CD 中点,F 是BB 1中点,则四面体AD 1EF 的体积是 .5、在坐标平面上,由条件⎪⎩⎪⎨⎧+-≤--≥321x y x y 所限定的平面区域的面积是 .6、12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要 周.三、(20分)已知椭圆12222=+by a x 过定点A (1,0),且焦点在x 轴上,椭圆与曲线|y |=x 的交点为B 、C .现有以A 为焦点,过B 、C 且开口向左的抛物线,抛物线的顶点坐标M (m ,0).当椭圆的离心率e 满足1322<<e ,求实数m 的取值范围. 四、(20分)a 、b 、c 均为实数,a ≠b ,b ≠c ,c ≠a .证明:23≤ac c b b a b a c a c b c b a -+-+--++-++-+222<2.五、(20分)已知f (x )=ax 4+bx 3+cx 2+dx ,满足 (i )a 、b 、c 、d 均大于0;(ii )对于任一个x ∈{-2, -1,0,1,2},f (x )为整数; (iii )f (1)=1,f (5)=70.试说明,对于每个整数x ,f (x )是否为整数.第二试一、(50分)设K 为△ABC 的内心,点C 1、B 1分别为边AB 、AC 的中点,直线AC 与C 1K 交于点B 2,直线AB 于B 1K 交于点C 2.若△AB 2C 2于△ABC 的面积相等,试求∠CAB .二、(50分)设5sini 5cosππ+=w ,f (x )=(x -w )(x -w 3)(x -w 7)(x -w 9).求证:f (x )为一整系数多项式,且f (x )不能分解为两个至少为一次的整系数多项式之积.三、(50分)在圆上有21个点.求在以这些点为端点组成的所有的弧中,不超过120°的弧的条数的最小值.参考答案 第一试二、填空题: 1、4; 2、x 2+y 2=4; 3、0; 4、245; 5、16;6、5.三、⎪⎪⎭⎫⎝⎛+423,1.四、证略.五、是.第二试一、60°;二、证略.三、100.全国高中数学联赛模拟试题(七)第一试一、选择题:(每小题6分,共36分)1、设log a b 是一个整数,且2log log 1log a b bb a a>>,给出下列四个结论 ①21a b b>>;②log a b +log b a =0; ③0<a <b <1; ④ab -1=0. 其中正确结论的个数是(A )1 (B )2(C )3(D )42、若△ABC 的三边长a 、b 、c 满足⎩⎨⎧=+-+=---03220222c b a c b a a ,则它的最大内角度数是(A )150°(B )120°(C )90°(D )60°3、定长为l (a b l 22>)的线段AB 的两端点都在双曲线12222=-by a x (a >0,b >0),则AB 中点M 的横坐标的最小值为 (A )222ba al + (B )222ba l a ++(C )()2222ba a l a +- (D )()2222ba a l a ++4、在复平面上,曲线z 4+z =1与圆|z |=1的交点个数为(A )0(B )1(C )2(D )35、设E ={(x ,y )|0≤x ≤2,0≤y ≤2}、F ={(x ,y )|x ≤10,y ≥2,y ≤x -4}是直角坐标平面上的两个点集,则集合G =()()⎭⎬⎫⎩⎨⎧∈∈⎪⎭⎫ ⎝⎛++F y x E y x y y x x 22112121,,,2,2所组成的图形面积是(A )6(B )2(C )6.5(D )76、正方形纸片ABCD ,沿对角线AC 对折,使D 在面ABC 外,这时DB 与面ABC 所成的角一定不等于(A )30°(B )45°(C )60°(D )90°二、填空题:(每小题9分,共54分)1、已知24πα=,则αααααααααααc os sin c os 2c os sin 2c os 3c os sin 3c os 4c os sin +++的值等于 .2、2004321132112111+++++++++++= . 3、在Rt △ABC 中,AB =AC ,以C 为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB 内,且椭圆过A 、B 点,则这个椭圆的离心率等于 .4、从{1,2,3,…,20}中选出三个数,使得没有两个数相邻,有 种不同的选法.5、设a 、b 均为正数,且存在复数z 满足⎪⎩⎪⎨⎧≤+=⋅+1iz b a z z z ,则ab 的最大值等于 .6、使不等式137158<+<k n n 对惟一的一个整数k 成立的最大正整数n 为 . 三、(20分)已知实数x 、y 满足x 2+y 2≤5.求f (x ,y )=3|x +y |+|4y +9|+|7y -3x -18|的最大值与最小值.四、(20分)经过点M (2,-1)作抛物线y 2=x 的四条弦P i Q i (i =1,2,3,4),且P 1、P 2、P 3、P 4四点的纵坐标依次成等差数列.求证:44332211MQ M P MQ M P MQ MP MQ M P ->-.五、(20分)n 为正整数,r >0为实数.证明:方程x n +1+rx n -r n +1=0没有模为r 的复数根.第二试一、(50分)设C (I )是以△ABC 的内心I 为圆心的一个圆,点D 、E 、F 分别是从I 出发垂直于边BC 、CA 和AB 的直线C (I )的交点.求证:AD 、BE 和CF 三线共点.二、(50分)非负实数x 、y 、z 满足x 2+y 2+z 2=1.求证:1≤xyzzx y yz x +++++111≤2. 三、(50分)对由n 个A ,n 个B 和n 个C 排成的行,在其下面重新定义一行(比上面一行少一个字母),若其头上的两个字母不同,则在该位置写上第三个字母;若相同,则写上该字母.对新得到的行重复上面的操作,直到变为一个字母为止.下面给出了n =2的一个例子.A CBC B A B A A A C C A A B B A C C B A求所有的正整数n ,使得对任意的初始排列,经上述操作后,所得的大三角形的三个顶点上的字母要么全相同,要么两两不同.参考答案 第一试二、填空题:1、33; 2、20054008; 3、36-; 4、816; 5、81;6、112.三、最大值5627+,最小值10327-.四、证略.五、证略.第二试一、证略;二、证略.三、 n =1.全国高中数学联赛模拟试题(八)第一试一、选择题:(每小题6分,共36分)1、已知n 、s 是整数.若不论n 是什么整数,方程x 2-8nx +7s =0没有整数解,则所有这样的数s 的集合是(A )奇数集 (B )所有形如6k +1的数集 (C )偶数集(D )所有形如4k +3的数集2、某个货场有1997辆车排队等待装货,要求第一辆车必须装9箱货物,每相邻的4辆车装货总数为34箱.为满足上述要求,至少应该有货物的箱数是 (A )16966 (B )16975 (C )16984 (D )170093、非常数数列{a i }满足02121=+-++i i i i a a a a ,且11-+≠i i a a ,i =0,1,2,…,n .对于给定的自然数n ,a 1=a n +1=1,则∑-=1n i ia等于 (A )2(B )-1(C )1(D )04、已知、是方程ax 2+bx +c =0(a 、b 、c 为实数)的两根,且是虚数,βα2是实数,则∑=⎪⎪⎭⎫⎝⎛59851k kβα的值是(A )1 (B )2(C )0(D )3i5、已知a +b +c =abc ,()()()()()()abb a acc a bcc b A 222222111111--+--+--=,则A 的值是(A )3(B )-3(C )4 (D )-46、对x i ∈{1,2,…,n },i =1,2,…,n ,有()211+=∑=n n x ni i ,x 1x 2…x n =n !,使x 1,x 2,…,x n ,一定是1,2,…,n 的一个排列的最大数n 是 (A )4 (B )6 (C )8(D )9二、填空题:(每小题9分,共54分)1、设点P 是凸多边形A 1A 2…A n 内一点,点P 到直线A 1A 2的距离为h 1,到直线A 2A 3的距离为h 2,…,到直线A n -1A n 的距离为h n -1,到直线A n A 1的距离为h n .若存在点P 使nn h a h a h a +++ 2211(a i =A i A i +1,i =1,2,…,n -1,a n =A n A 1)取得最小值,则此凸多边形一定符合条件 .2、已知a 为自然数,存在一个以a 为首项系数的二次整数系数的多项式,它有两个小于1的不同正根.那么,a 的最小值是 .3、已知()2cos 22sin 2,22++++=θθθa a a a a F ,a 、∈R ,a ≠0.那么,对于任意的a 、,F (a ,)的最大值和最小值分别是 .4、已知t >0,关于x 的方程为22=-+x t x ,则这个方程有相异实根的个数情况是 .5、已知集合{1,2,3,…,3n -1,3n },可以分为n 个互不相交的三元组{x ,y ,z },其中x +y =3z ,则满足上述要求的两个最小的正整数n 是 .6、任给一个自然数k ,一定存在整数n ,使得x n +x +1被x k +x +1整除,则这样的有序实数对(n ,k )是(对于给定的k ) .三、(20分)过正方体的某条对角线的截面面积为S ,试求最小最大S S 之值.四、(20分)数列{a n }定义如下:a 1=3,a n =13-n a (n ≥2).试求a n (n ≥2)的末位数.五、(20分)已知a 、b 、c ∈R +,且a +b +c =1.证明:2713≤a 2+b 2+c 2+4abc <1.第二试一、(50分)已知△ABC中,内心为I,外接圆为⊙O,点B关于⊙O的对径点为K,在AB 的延长线上取点N,CB的延长线上取M,使得MC=NA=s,s为△ABC的半周长.证明:IK⊥MN.二、(50分)M是平面上所有点(x,y)的集合,其中x、y均是整数,且1≤x≤12,1≤y≤13.证明:不少于49个点的M的每一个子集,必包含一个矩形的4个顶点,且此矩形的边平行于坐标轴.三、(50分)实系数多项式f(x)=x3+ax2+bx+c满足b<0,ab=9c.试判别此多项式是否有三个不同的实根,说明理由.参考答案第一试二、填空题: 1、该凸多边形存在内切圆; 2、5; 3、32+,32-;4、9;5、5,8;6、(k ,k )或(3m +2,2)(m ∈N +).三、332.四、7.五、证略.第二试一、证略;二、证略.三、 有.全国高中数学联赛模拟试题(九)第一试一、选择题:(每小题6分,共36分)1、 设集合M ={-2,0,1},N ={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有x +f (x )+xf (x )是奇数,则这样的映射f 的个数是(A )45 (B )27 (C )15 (D )112、 已知sin2=a ,cos2=b ,0<<4π,给出⎪⎭⎫ ⎝⎛+4tan πθ值的五个答案:①ab-1; ②b a-1; ③ab+1; ④b a +1; ⑤11-++-b a b a . 其中正确的是:(A )①②⑤ (B )②③④ (C )①④⑤ (D )③④⑤3、 若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是(A )64 (B )66 (C )68 (D )704、 递增数列1,3,4,9,10,12,13,…,由一些正整数组成,它们或者是3的幂,或者是若干个3的幂之和,则此数列的第100项为 (A )729 (B )972 (C )243 (D )9815、 14951C C C C +++++m n n n n (其中⎥⎦⎤⎢⎣⎡-=41n m ,[x ]表示不超过x 的最大整数)的值为 (A )4cos2πn n(B )4sin2πn n (C )⎪⎭⎫⎝⎛+-4cos 22211πn nn (D )⎪⎭⎫ ⎝⎛+-4sin 22211πn nn 6、 一个五位的自然数abcde 称为“凸”数,当且仅当它满足a <b <c ,c >d >e (如12430,13531等),则在所有的五位数中“凸”数的个数是(A )8568 (B )2142 (C )2139 (D )1134二、填空题:(每小题9分,共54分)1、 过椭圆12322=+y x 上任意一点P ,作椭圆的右准线的垂线PH (H 为垂足),并延长PH 到Q ,使得HQ =PH (≥1).当点P 在椭圆上运动时,点Q 的轨迹的离心率的取值范围是.2、 已知异面直线a 、b 所成的角为60°,过空间一点P 作与a 、b 都成角(0<<90°)的直线l ,则这样的直线l 的条数是f ()= .3、 不等式()92211422+<+-x xx 的解集为 .4、 设复数z 满足条件|z -i|=1,且z ≠0,z ≠2i ,又复数使得i2i 2-⋅-z zωω为实数,则复数-2的辐角主值的取值范围是 . 5、 设a 1,a 2,…,a 2002均为正实数,且21212121200221=++++++a a a ,则a 1a 2…a 2002的最小值是 .6、 在一个由十进制数字组成的数码中,如果它含有偶数个数字8,则称它为“优选”数码(如12883,787480889等),否则称它为“非优选”数码(如2348756,958288等),则长度不超过n (n 为自然数)的所有“优选”数码的个数之和为 .三、(20分)已知数列{a n }是首项为2,公比为21的等比数列,且前n 项和为S n . (1) 用S n 表示S n +1;(2) 是否存在自然数c 和k ,使得cS cS k k --+1>2成立.四、(20分)设异面直线a 、b 成60°角,它们的公垂线段为EF ,且|EF |=2,线段AB 的长为4,两端点A 、B 分别在a 、b 上移动.求线段AB 中点P 的轨迹方程.五、(20分)已知定义在R +上的函数f (x )满足(i )对于任意a 、b ∈R +,有f (ab )=f (a )+f (b ); (ii )当x >1时,f (x )<0; (iii )f (3)=-1.现有两个集合A 、B ,其中集合A ={(p ,q )|f (p 2+1)-f (5q )-2>0,p 、q ∈R +},集合B ={(p ,q )|f (q p )+21=0,p 、q ∈R +}.试问是否存在p 、q ,使∅≠B A ,说明理由.第二试一、(50分)如图,AM 、AN 是⊙O 的切线,M 、N 是切点,L 是劣弧MN 上异于M 、N 的点,过点A 平行于MN 的直线分别交ML 、NL 于点Q 、P .若POQ O S S △⊙32π=,求证:∠POQ =60°.二、(50分)已知数列a 1=20,a 2=30,a n +2=3a n +1-a n (n ≥1).求所有的正整数n ,使得1+5a n a n +1是完全平方数.三、(50分)设M 为坐标平面上坐标为(p ·2002,7p ·2002)的点,其中p 为素数.求满足下列条件的直角三角形的个数:(1) 三角形的三个顶点都是整点,而且M 是直角顶点; (2) 三角形的内心是坐标原点.参考答案 第一试一、选择题:PQ二、填空题:1、⎪⎪⎭⎫⎢⎣⎡1,33;2、()⎪⎪⎪⎩⎪⎪⎪⎨⎧︒<<︒︒=︒<<︒︒=︒<<︒=900,460,36030,230,1300,0ααααααf ;3、⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡-845,00,21 ;4、⎪⎭⎫⎢⎣⎡-ππ,34arctan; 5、40022002;6、⎪⎪⎭⎫⎝⎛-+++63142789102111n n .三、(1)2211+=+n n S S ; (2)不存在.四、1922=+y x .五、不存在.第二试一、证略;二、n =3.三、 p ≠2,7,11,13时,324个;p =2时,162个;p =7,11,13时,180个.。
全国高中数学联赛省级预赛模拟试题及答案
全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分) 参考公式1.三角函数的积化和差公式sin α•cos β=21[sin(α+β)+sin(α-β)], cos α•sin β=21[sin(α+β)-sin(α-β)], cos α•cos β=21[cos(α+β)+cos(α-β)], sin α•sin β=21[cos(α+β)-cos(α-β)].2.球的体积公式V 球=34πR 3(R 为球的半径)。
一、选择题(每小题5分,共60分)1.设在xOy 平面上,0<y ≤x 2,0≤x ≤1所围成图形的面积为31。
则集合 M={(x,y)|x ≤|y|}, N={(x,y)|x ≥y 2| 的交集M ∩N 所表示的图形面积为 A .32 B .31 C .1 D .61 2.在四面体ABCD 中,设AB=1,CD=3,直线AB 与直线CD 的距离为2,夹角为3π。
则四面体ABCD 的体积等于 A .23 B .31 C .21 D .333.有10个不同的球,其中,2个红球、5个黄球、3个白球。
若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A .90B .100C .110D .1204.在ΔABC 中,若(sinA+sinB)(cosA+cosB)=2sinC ,则 A .ΔABC 是等腰三角形,但不一定是直角三角形 B .ΔABC 是直角三角形,但不一定是等腰三角形 C .ΔABC 既不是等腰三角形,也不是直角三角形 D .ΔABC 既是等腰三角形,也是直角三角形5.已知f(x)=3x 2-x+4, f(g(x))=3x 4+18x 3+50x 2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A .8B .9C .10D .116.设0<x<1, a,b 为正常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国高中数学联赛模拟试题(六)
第一试
一、 选择题:(每小题6分,共36分)
1、在复平面上,非零复数z 1、z 2在以i 对应的点为圆心,1为半径的圆上,
21z z ⋅的实部为零,arg z 1=6
π
,则z 2=
(A )i 2323+-
(B )
i 2323- (C )i 2
323+- (D )
i 2
323- 2、已知函数()⎪⎭⎫ ⎝
⎛
+-=21log 2x ax x f a 在[1,2]上恒正,则实数a 的取值范围是
(A )⎪⎭
⎫
⎝⎛85,21
(B )⎪⎭⎫ ⎝⎛+∞,23
(C )⎪⎭
⎫
⎝⎛+∞⎪⎭⎫ ⎝⎛,2385,21
(D )⎪⎭
⎫ ⎝⎛+∞,21
3、已知双曲线过点M (-2,4),N (4,4),它的一个焦点为F 1(1,0),则另一个焦点F 2的轨迹方程是
(A )()()116
42512
2=-+
-y x (y ≠0)或x =1(y ≠0)
(B )()()125
416122=-+
-y x (x ≠0)或x =1(y ≠0)
(C )()()116
125422=-+
-y x (y ≠0)或y =1(x ≠0)
(D )
()()125
116422=-+-y x (x ≠0)或y =1(x ≠0)
4、已知正实数a 、b 满足a +b =1,则b a M 2112+++=的整数部分是 (A )1 (B )2 (C )3 (D )4
5、一条笔直的大街宽是40米,一条人行道穿过这条大街,并与大街成某一
角度,人行道的宽度是15米,长度是50米,则人行道间的距离是
(A )9米 (B )10米 (C )12米 (D )15米
6、一条铁路原有m 个车站,为适应客运需要新增加n 个车站(n >1),则客
运车票增加了58种(注:从甲站到乙站需要两种不同的车票),那么原有车站的个数是 (A )12 (B )13 (C )14 (D )15
二、 填空题:(每小题6分,共36分)
1、长方形ABCD 的长AB 是宽BC 的32倍,把它折成无底的正三棱柱,使AD 与BC 重合折痕线EF 、GH 分别交原对角线AC 于M 、N ,则折后截
面AMN 与底面AFH 所成的角是 .
2、在△ABC 中,a 、b 、c 是角A 、B 、C 的对边,且满足a 2+b 2=2c 2,则角C
的最大值是 .
3、从盛满a 升(a >1)纯酒精的容器里倒出1升,然后填满水,再倒出1
升混合溶液后又用水填满,如此继续下去.则第n 次操作后溶液的浓度是 .
4、已知函数f (x )与g (x )的定义域均为非负实数集,对任意x ≥0,规定
f (x )*
g (x )=min{f (x ),g (x )}.若f (x )=3-x ,g (x )=52+x ,则f (x )*g (x )的最大值为 .
5、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,
则可有 不同的取法. 6、若实数a >0,则满足a 5-a 3+a =2的a 值属于区间:①()63,0;②
(
)
66
3,2;
③
()+∞,36
;④()3
2,0.其中正确的是 .
三、 (20分)
求证:经过正方体中心的任一截面的面积不小于正方体的一个侧面
的面积
四、 (20分)
直线Ax +Bx +C =0(A ·B ·C ≠0)与椭圆b 2x 2+a 2y 2=a 2b 2相交于P 、Q
两点,O 为坐标原点,且OP ⊥OQ .求证:2
22
2222B
A b a C b a ++=.
五、 (20分)
某新建商场建有百货部、服装部和家电部三个经营部,共有190名
售货员,计划全商场日营业额(指每日卖出商品的总金额)为60万元,根据经验,各部商品每1万元营业额所需售货员人数如表1,每1万元营业额所得利润如表2.商场将计划日营业额分配给三个经营部,同时适当安排各部的营业员人数,若商场预计每日的总利润为c(万元)且满足19≤c≤19.7,又已知商场分配给经营部的日营业额均为正整数万元,问这个商场怎样分配日营业额给三个部?各部分别安排多少名售货员?
表
第二试
一、 (50分)
矩形ABCD 的边AD =λ·AB ,以AB 为直径在矩形之外作半圆,在半圆上任取不同于A 、B 的一点P ,连PC 、PD 交AB 于E 、F ,若AE 2+BF 2=AB 2,试求正实数λ的值.
二、 (50分)
若a i ∈R +
(i =1,2,…,n ),∑==n
i i a S 1,且2≤n ∈N .
求证:∑=-n
k k
k a S a 13
≥∑=-n k k a n 12
11.
三、 (50分)
无穷数列{c n }可由如下法则定义:c n +1=|1-|1-2c n ||,而0≤c 1≤1. (1)证明:仅当c 1是有理数时,数列自某一项开始成为周期数列. (2)存在多少个不同的c 1值,使得数列自某项之后以T 为周期(对于每个T =2,3,…)?
参考答案
第一试
二、填空题:
1、6
π
;
2、
3
π;
3、n
a ⎪⎭
⎫
⎝⎛-11;
4、132-;
5、2500;
6、③④.
三、证略.
四、证略.
五、8,23,29或10,20,30(万元),对应40,92,58或50,80,60(人).
第二试
一、2
2
=
λ;
二、证略.
三、 (1)证略. (2)无穷个.。