广东省2011年专插本《高等数学》考试大纲(手录入版)

合集下载

2011年广东省初中毕业生数学学科学业考试大纲

2011年广东省初中毕业生数学学科学业考试大纲

广东省2011年初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为数学学科学业考试)是义务教育阶段数学学科的终结性考试,目的是全面、准确地评估初中毕业生达到《全日制义务教育数学课程标准》(以下简称《标准》)所规定的数学毕业水平的程度。

考试的结果既是考查我省初中毕业学生数学学业水平是否达到义务教育阶段数学学科毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。

二、指导思想广东省初中毕业生学业考试数学科考试内容,是以教育部制定的《标准》为依据,结合我省课程改革的实际。

1.数学学科学业考试要体现《标准》的评价理念,有利于引导和促进数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式、丰富学生的数学学习体验、提高学生学习数学的效益和效率,有利于高中阶段学校综合、有效地评价学生的数学学习状况。

2.数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。

3.数学学科学业考试命题应当而向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得相应发展。

三、考试内容与要求作为学生义务教育阶段的终结性考试,应根据《标准》的总体目标关注初中数学体系中基础和核心的内容,试题涉及的知识和技能要求应以以《标准》中的“内容标准”为基本依据,不能拓展范围与提高要求。

要突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决过程中最为重要的,必须掌握的核心概念、思想方法和常用的技能要重点考查。

主要考查的方面包括:基础知识与基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。

2011年高数二考试大纲

2011年高数二考试大纲

2011全国硕士研究生入学统一考试数学二考试大纲考试科目高等数学、线性代数试卷结构试卷满分为150分,考试时间180分钟内容比例高等数学约78 %线性代数约22 %题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分高等数学函数、极限、连续考试内容函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数,函数关系的建立数列极限与函数极限的定义及其性质,函数的左极限和右极限,无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷小量的比较,极限的四则运算,极限存在的两个准则:单调有界准则和夹逼准则,两个重要极限:,函数连续的概念,函数间断点的类型,初等函数的连续性,闭区间上连续函数的性质。

考试要求理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系。

了解函数的有界性、单调性、周期性和奇偶性。

理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

掌握基本初等函数的性质及其图形,了解初等函数的概念。

理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限的关系。

掌握极限的性质及四则运算法则。

掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

理解函数连续性的概念(含左连续和右连续),会判别函数间断点的类型。

10. 了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

一元函数微分学考试内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线与法线,导数和微分的四则运算,基本初等函数的导数,复合函数、反函数和隐函数以及参数方程所确定的函数的微分法,高阶导数,一阶微分形式的不变性,微分中值定理,洛必达(L’Hospital)法则,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数图形的描绘,函数的最大值与最小值,弧微分,曲率的概念,曲率圆与曲率半径考试要求理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

广东高考数学(文科)考试大纲

广东高考数学(文科)考试大纲

2011年普通高等学校招生全国统一考试数学(文科)考试大纲的说明(广东卷)I.命题指导思想坚持“有助于高校科学公正地选拔人才,有助于推进普通高中课程改革,实施素质教育”的基本原则,体现普通高中新课程的理念、以能力立意,将知识、能力和素质融为一体,全面检测考生的数学素养,发挥数学作为主要基础学科的作用,考查考生对中学数学的基础知识、基本技能的掌握程度,考查考生对数学思想方法和数学本质的理解水平,以及进入高等学校继续学习的潜能。

II.考试内容一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。

各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。

对知识的要求依次是了解、理解、掌握三个层次。

(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它。

这一层次所涉及的主要行为动词有了解,知道、识别,模仿,会求、会解等。

(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力。

这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较,判别,初步应用等。

(3)掌握:要求能够对所列知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。

这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论,运用、解决问题等。

2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

2012广东省本科插班生考试大纲《高等数学》

2012广东省本科插班生考试大纲《高等数学》

2012年广东省本科插班生招生考试大纲《高等数学》Ⅰ考试性质普通高等学校本科插班生招生考试是由专科毕业生参加的选拔性考试。

高等学校根据考生的成绩,按照已确定的招生计划,德、智、体全面衡量,择优录取。

因此,本科插班生考试应有较高信度、效度、必要的区分度和适当的难度。

本大纲适用于所有需要参加《高等数学》考试的各专业考生。

Ⅱ考试内容总体要求:考生应按本大纲的要求了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分初步和常微分初步的基本概念与基本理论,掌握或者熟练掌握上述各部分的基本方法。

应理解各部分知识结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用基本概念、基本理论和基本方法,正确地判断和证明,准确地计算;能综合运用所掌握知识分析并解决简单的实际问题。

第一部分函数、极限和连续㈠函数⒈考试内容⑴函数的概念:函数的定义,函数的表示法,分段函数。

⑵函数的简单性质:单调性、奇偶性、有界性、周期性。

⑶反函数。

⑷函数的四则运处与复合运处。

⑸基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

⑹初等函数。

⒉考试要求⑴理解函数的概念,会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

⑵掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

⑶理解函数y=f(x)与它的反函数y=f-1(x)之间的关系(定义域、值域、图象),会求单调函数的反函数。

⑷掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

⑸掌握基本初等函数的简单性质及其图象。

⑹掌握初等函数的概念。

㈡极限⒈考试内容:⑴数列和数列极限的定义。

⑵数列极限的性质:唯一性、有界性、四则运算定理、夹逼定理、单调有界数列极限存在性定理。

⑶函数极限的概念:函数在一点处的极限定义,左、右极限及其与极限有关系,趋于无穷大(x→∞,x→+∞,x→-∞)时函数极限的定义,函数极限的几何意义。

2011高考数学考试大纲

2011高考数学考试大纲

2011高考数学考试大纲D2.能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想像能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想像能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想像主要包括有图想图和无图想图两种,是空间想像能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论.抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。

(整理)广东省专插本《高等数学》考纲.

(整理)广东省专插本《高等数学》考纲.

高 等 数 学Ⅰ.考试性质与目的普通高等学校本科插班生招生考试(又称专插本考试)是由专科毕业生参加的选拔性考试,我院将根据考生的成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

考试应有较高的信度、效度,必要的区分度和适当的难度。

本大纲适用于所有需要参加《高等数学》考试的各专业考生。

Ⅱ.考试内容和要求总体要求:考生应按本大纲的要求了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学初步和常微分方程初步的基本概念与基本理论,掌握或者熟练掌握上述各部分的基本方法。

应理解各部分知识结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力;能运用基本概念、基本理论和基本方法,正确地判断和证明,准确地计算;能综合运用所掌握知识分析并解决简单的实际问题。

第一部分函数、极限和连续(一)函数Ⅰ.考试内容(1) 函数的概念:函数的定义,函数的表示法,分段函数。

(2) 函数的简单性质:单调性、奇偶性、有界性、周期性。

(3) 反函数(4) 函数的四则运算与复合运算。

(5) 基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

(6) 初等函数。

2.考试要求(1)理解函数的概念,会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

(2)掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

(3)理解函数)(χf y = 与它的反函数)(1x f y -=之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)掌握初等函数的概念。

(二)极根1.考试内容(1)数列和数列极限的定义。

(2)数列极限的性质:唯一性、有界性、四则运算定理、夹逼定理、单调有界数列极限存在性定理。

(3)函数极限的概念:函数在一点处的极限定义,左、右极限及其与极限的关系,趋于无穷大(),,-∞→+∞→∞→x x x 时函数极限的定义,函数极限的几何意义。

2011年10月自考广东教材

2011年10月自考广东教材
19
00065
国民经济统计概论
2
国民经济统计概论
黄书田、刘娟
中国人民大学出版社
2004年版
20
00066
货币银行学
3
货币银行学
陈雨露
中国财政经济出版社
2010年版
21
00067
财务管理学
1
财务管理学
王庆成、李相国
中国财政经济出版社
2006年版
22
00068
外国财政
2
资本主义财政学
王传伦
武汉大学出版社
54
00227
公司法
2
公司法
顾功耘
北京大学出版社
2008年版
55
00228
环境与资源保护法学
4
环境与资源保护法学
金瑞林
北京大学出版社
2006年版
56
00229
证据法学
3
证据法学
江伟
法律出版社
2004年版
57
00230
合同法
1
合同法
王利明、崔建远
北京大学出版社
2004年版
58
00235
犯罪学(一)
2
犯罪学教程
119
00533
中国古代文学作品选(二)
4
中国古代文学作品选(二)
徐中玉、金启华
华东师范大学出版社
1999年版
120
00534
外国文学作品选
3
外国文学作品选
陈惇、刘建军
华东师范大学出版社
1999年版
121
00536
古代汉语
2
古代汉语
王宁
北京大学出版社

专插本高数复习

专插本高数复习

专插本高数复习数学复习具有基础性和长期性的特点,数学知识的学习是一个长期积累的过程,要遵循由浅入深的原则,先将知识基础打牢,构建起知识体系,然后再去追求技巧以及方法,一座高楼大厦必定是建立在坚实的地基之上的,因此我们将基础知识的复习安排在第一阶段,希望大家给予足够重视。

同时,有一个科学的学习计划,才能迅速的更有效率的掌握数学知识.因此,我们按照这个原则制定了详尽的数学学习计划,使得同学们能够迅速的巩固基础知识,循序渐进,加快数学学习的步伐.为今后数学水平的提高打下一个坚实的基础。

在插本考试过程中先人一步,胜人一筹。

一.试卷结构高等数学第一章函数、极限与连续(10天)微积分中研究的对象是函数。

函数概念的实质是变量之间确定的对应关系。

极限是微积分的理论基础,研究函数实质上是研究各种类型极限。

无穷小就是极限为零的变量,极限方法的重要部分是无穷小分析,或说无穷小阶的估计与分析。

我们研究的对象是连续函数或除若干点外是连续的函数。

第二章:一元函数微分学(9天)一元函数的导数是一类特殊的函数极限,在几何上函数的导数即曲线切线的斜率,在力学上路程函数的导数就是速度,导数有鲜明的力学意义和几何意义以及物理意义。

函数的可微性是函数增量和自变量增量之间关系的另一种表达形式。

函数微分是函数增量的线性主要部分。

1.导数与微分2.微分中值定理与导数的应用(10天)连续函数是我们研究的基本对象,函数的许多其他性质都和连续性有关。

在理解有关定理的基础上可以利用导数判断函数单调性、凹凸性和求极值、拐点,并体现在作图上。

微分学的另一个重要应用是求函数的最大值和最小值。

第三章:一元函数积分学(9天)积分学是微积分的主要部分之一。

函数积分学包括不定积分和定积分两部分。

在积分的计算中,分项积分法,分段积分法,换元积分法和分部积分法是最基本的方法。

2. 定积分(9天)第六章:定积分的应用(7天)第八章:多元函数微分法及其应用( 7 天)在一元函数微分学的基础上,讨论多元函数的微分法及其应用,主要是二元函数的偏导数、全微分等概念,计算它们的各种方法及其应用。

2011《高等数学》考纲

2011《高等数学》考纲

湖南工业大学2011年“专升本”选拔考试《高等数学》考试大纲(满分150分,时限120分钟)一、函数考核知识点1.函数的概念:函数的定义;函数的表示法;分段函数2.函数的简单性质:有界性;单调性;奇偶性;周期性3.反函数:反函数的定义;反的函数的图形4.基本初等函数及其图形:幂函数 指数函数 对数函数 三角函数 反三角函数5.复合函数6.初等函数考核要求1.理解函数的概念(定义域、对应规律)。

理解函数记号()f x 的意义并会运用。

熟练掌握求函数的定义域、表达式及函数值。

会建立简单实际问题中的函数关系式。

2.了解函数的几种简单性质,掌握函数的有界性、奇偶性的判别。

3.掌握基本初等函数及其图形的有关知识。

4.理解复合函数概念。

掌握将一个复合函数分解为基本初等函数或简单函数的复合方法。

二、极限与连续(一)极限考核知识点1.数列的极限:数列极限的定义;数列极限的性质;数列极限的四则运算法则2.函数的极限:函数极限的定义;左极限与右极限的概念;自变量趋向于有限值时函数极限存在的充分必要条件;函数极限的四则运算法则两个重要极限01sin lim(1)lim 1x x x x e x x→∞→+== 3.无穷小量和无穷大量:无穷小量和无穷大量的定义;无穷小量和无穷大量的关系;无穷小量的性质考核要求1.了解极限概念(对极限定义的“N ε-”,“εδ-”等形式的描述不作要求),了解左极限与右极限概念,知道自变量趋向于有限值时函数极限存在的充分必要条件。

2.掌握极限四则运算法则。

3.掌握用两个重要极限求极限的方法。

4.了解无穷小量、无穷大量的概念。

知道无穷小量的性质,无穷小量与无穷大量的关系。

(二)连续考核知识点1.函数连续的概念函数在一点连续的定义 左连续与右连续 函数(含分段函数)在一点连续的充分必要条件 函数的间断点及其分类2.连续函数的运算与初等函数的连续性3.闭区间上连续函数的性质有界性定理介值定理(包括零点定理) 最大值与最小值定理考核要求1.理解函数在一点连续与间断的概念。

2011年考研数学大纲(数一、数二、数三)

2011年考研数学大纲(数一、数二、数三)

2011考研数学大纲(数一)2011年考研数学大纲,从卷种分类,到题型,题量以及各科所占的分值比例,再到各部分的考试内容和考试要求考试科目高等数学、线性代数、概率论与数理统计试卷结构一、试卷满分及答题时间试卷满分为150分,考试时间为180分钟二、内容比例高等数学约56%线性代数约22%概率论与数理统计约22%三、题型结构单项选择题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分试卷结构的变化2009年大纲与2008年大纲比较1.内容比例无变化2.题型结构无变化高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.本章考查焦点1.极限的计算及数列收敛性的判断2.无穷小的性质二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。

广东专插本高数考纲对比

广东专插本高数考纲对比

广东专插本高数考纲对比1.引言广东专插本高数考试是许多专科生报考本科的一个重要步骤。

了解考试内容和考纲对比对于学生备考至关重要。

本文将对广东专插本高数考纲进行详细对比分析,帮助学生更好地准备考试。

2.传统高校高数考纲传统高校的高数考纲主要包含以下几个方面的内容:2.1基础知识传统高校高数考纲要求学生掌握数学基本概念、定理和公式,例如极限、导数、积分等。

2.2解题技巧考生需要熟练掌握各种解题技巧,包括函数图像的绘制、方程求解、曲线的切线与法线等。

2.3综合应用传统高校高数考纲强调数学与实际问题的应用能力,要求考生能够将数学知识灵活运用到物理、经济等领域的问题解决中。

3.广东专插本高数考纲广东专插本高数考纲相对于传统高校的考纲有所不同,主要体现在以下几个方面:3.1实用性广东专插本高数考纲更加注重实用性,注重培养学生解决实际问题的能力。

考纲内容紧密结合工作实践,将数学应用到现实工作场景中。

3.2职业导向广东专插本高数考纲将更多的关注职业导向的内容。

考生需要掌握相应行业的数学知识和技巧,例如管理学、工程学等。

3.3拓展知识考纲还会包含一些扩展知识,例如概率与统计、线性代数等。

这些知识点对于学生今后深造或者从事相关职业具有一定的帮助。

4.对比与分析传统高校高数考纲与广东专插本高数考纲相比存在一些明显差异。

首先,在考纲内容上,传统高校更注重基础知识和解题技巧,而广东专插本高数考纲更关注实用性和职业导向。

其次,广东专插本高数考纲涵盖的知识范围更广,涉及更多的领域与行业。

在备考上,考生需要针对不同的考纲内容进行有针对性的准备。

对于传统高校考纲的学生,需要注重基础知识和解题技巧的理解与掌握。

而对于广东专插本考纲的学生,在准备之前需要了解所考行业的相关数学知识,将数学与实际问题结合。

5.结论广东专插本高数考纲对于学生的数学基础和实际应用能力提出了更高的要求。

学生在备考时应根据不同的考纲内容有针对性地进行学习和准备。

广东专升本数学考试大纲

广东专升本数学考试大纲

广东专升本数学考试大纲“哎呀,这专升本数学也太难了吧!”我愁眉苦脸地对着同桌说道。

记得那是一个阳光明媚的上午,教室里同学们都在叽叽喳喳地讨论着各种事情。

我正为即将到来的广东专升本数学考试而烦恼着。

同桌看我这样,拍拍我的肩膀说:“别着急呀,咱们一起想想办法。

”这时,数学老师走了进来,听到我们在讨论专升本数学,便笑着说:“同学们,广东专升本数学考试大纲可是很重要的哦,就像我们前进道路上的地图一样。

”老师这么一说,大家都好奇地围了过去。

“老师,这大纲到底都有啥呀?”我迫不及待地问道。

老师耐心地解释道:“它涵盖了很多知识点呀,比如函数、极限、导数等等。

就好像搭积木一样,这些知识点就是一块块的积木,我们要把它们搭建成牢固的知识大厦。

”同学们都若有所思地点点头。

“那我们要怎么去复习这些大纲内容呢?”另一个同学问道。

老师回答说:“要多做题呀,通过做题来加深对知识点的理解和掌握。

就像练武一样,只有不断地练习,才能变得厉害呀!”大家都被老师生动的比喻逗笑了。

我在心里暗暗想:我一定要好好复习,按照大纲的要求一步一个脚印地前进。

在之后的日子里,我和同学们经常一起讨论数学问题,互相帮助。

“嘿,这道题我觉得可以这样做。

”“不对不对,应该是那样。

”我们争得面红耳赤,但也乐在其中。

时间过得飞快,转眼间就到了要考试的时候。

我紧张地走进考场,心里不停地给自己打气:我一定可以的!当拿到试卷的那一刻,我发现很多题目都是我们复习过的,心里顿时踏实了不少。

考试结束后,我长舒了一口气。

我明白了,只要我们认真对待,按照大纲努力复习,就一定能够克服困难。

广东专升本数学考试大纲呀,你虽然像一座大山,但我们也能努力翻越!总之,广东专升本数学考试大纲是我们复习的重要指引,我们一定要紧紧抓住它,努力拼搏,向着自己的目标前进!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学》考试大纲
Ⅰ. 考试内容和要求
总体要求:考生应按本大纲的要求了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、多元函数微积分学初步和常微分方程初步的基本概念与基本理论,掌握或者熟练掌握上述各部分的基本方法。

应理解各部分知识结构及只是的内在联系;应具有一定的抽象思维能力、逻辑推理能力运算能力;能运用基本概念、基本理论和基本方法,正确地判断和证明,准确地计算;能综合运用所掌握知识分析并解决简单的实际问题。

一、函数、极限和连续
(一)函数
Ⅰ.考试内容
(1)函数的概念:函数的定义、函数的表示法、分段函数。

(2)函数的简单性质:单调性、奇偶性、有界性、周期性。

(3)反函数
(4)函数的四则运算与复合运算。

(5)基本初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数。

(6)初等函数。

2、考试要求
(1)理解函数的概念,会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图像。

(2)掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

(3)理解函数у=f(χ)与它的反函数у=f-1(χ)之间的关系(定义域、值域、图象),会求单调函数的反函数。

(4)掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。

(5)掌握基本初等函数的简单性质及其图象。

(6)掌握初等函数的概念。

(二)极限
1、考试内容
(1)数列和数列极限的定义。

(2)数列极限的性质:唯一性、有界性、四则运算定理、夹逼定理、单调有界数列极限存在性定理。

(3)函数极限的概念:函数在一点处的极限定义,左、右极限及其与极限的关系,趋于无穷大(χ→∝,χ→﹢∝,χ→﹣∝)时函数极限的定义,函数极限的几何意义。

(4)函数极限的性质:唯一性、有界性、四则运算定理。

(5)无穷小量与无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量
的性质,两个无穷小量阶的比较。

(6)两个重要极限: 0sin lim 1x x x →=,e x
x x =+∞→)11(lim 。

2、考试要求
(1)了解极限的概念,掌握函数在一点处的左极限与右极限的概念和存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质,会进行无穷小量的比较(高阶、低阶、同阶、等价)。

(4)熟练掌握用两个重要极限求极限的方法。

(三)连续
1、考试内容
(1)函数连续的概念:函数在一点连续、左连续和右连续的定义,函数在一点连续的充分必要条件,函数的间断点及其分类。

(2)函数连续的性质:四则运算连续性、复合函数连续性。

(3)闭区间上连续函数的性质:有界性原理、最大值与最小值原理、介值性定理(含零点定理)。

(4)初等函数的连续性。

2、考试要求
(1)理解函数在一点连续与间断的概念,掌握判断函数(含分段函数)在一点处连续的方法,理解函数在一点连续与极限存在之间的关系。

(2)会求函数的间断点并确定其类型(第一类间断点、第二类间断点)。

(3)理解在闭区间上连续函数的性质。

(4)理解初等函数在其定义区间上的连续性,并会利用函数连续性求极限。

二、一元函数微分学
(一)导数与微分
1、考试内容
(1)导数概念:导数、左导数与右导数的定义,导数的几何意义,可导与连续的关系。

(2)导数的基本公式。

(3)求导方法:函数的四则运算求导法、复合函数的求导法、隐函数的求导法、对数求导法、由参数方程所确定的函数的导数求法。

(4)高阶导数的定义,高阶导数的计算。

(5)微分的定义,微分与导数的关系,微分法则,一阶微分形式不变性。

2、考试要求
(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。

(2)会求曲线上一点处的切线方程和法线方程。

(3)熟练掌握导数的基本公式、四则运算法则、反函数的求导法则以及复合函数的求导方法。

(4)掌握隐函数的求导法、对数求导法和由参数方程所确定的函数的导数求法。

(5)理解高阶导数的概念,会求函数的二、三阶导数。

(6)理解微分的概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)中值定理及导数的应用。

1、考试内容
(1)中值定理:罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理。

(2)洛必达(L’Hospital)法则。

(3)函数单调性的判定法。

(4)函数极值与极值点、最大值与最小值。

(5)曲线的凹凸性、拐点。

(6)函数曲线的水平渐近线及铅垂渐近线。

2、考试要求
(1)了解罗尔中值定理、拉格朗日中值定理及其应用,了解柯西中值定理(知道定理的条件及结论)。

(2)熟练掌握应用洛必达法则求0



,∞
⋅0,∞
-
∞,∞1,00和0∞型未定式
极限的方法。

(3)掌握利用导数判定函数的单调性及求函数的单调区间的方法,会利用函数的单调性证明简单的不等式。

(4)理解函数极值的概念,掌握求函数的极值、最大值和最小值的方法,并会应用极值方法解应用题。

(5)会判定曲线的凹凸性,会求曲线的拐点。

(6)会求曲线的水平渐近线及铅垂渐近线方程。

三、一元函数积分学
(一)不定积分
1、考试内容
(1)原函数与不定积分的定义,不定积分的性质。

(2)基本积分公式。

(3)换元积分法:第一换元法(凑微积分法)、第二换元法。

(4)分部积分法。

(5)一些简单有理函数的微积分。

2、考试要求
(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(仅限三角代换与简单的根式代换)
(4)熟练掌握不定积分的分部积分法。

(5)掌握简单有理函数的不定积分。

(二)定积分
1、考试内容。

(1)定积分的定义及其几何意义,可积条件。

(2)定积分的性质。

(3)定积分的计算:变上限的定积分,牛顿——莱布尼兹(Nenton-leibniz)公式,换元积分法,分部积分法。

(4)掌握牛顿——莱布尼兹公式。

(5)掌握定积分的换元法与分部积分法。

(6)了解无穷区间广义积分的概念,并会进行计算。

(7)掌握直角坐标下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积的方法。

(8)了解直角坐标下计算平面曲线弧长(含参数方程)的方法。

四、多元函数微积分学初步。

1、考试内容
(1)多元函数的概念:多元函数的定义,二元函数的定义域。

(2)偏导数与全微分:一阶偏导数,全微分。

(3)复合函数的偏导数,隐函数的偏听偏信导数。

(4)二重积分的概念,二重积分的性质,直角坐标及坐标下二重积分的计算。

2、考试要求
(1)理解多元函数的概念,会求二元函数的定义域,了解二元函数的几何意义。

(2)理解二元函数的一阶偏导数和全微分的概念,掌握二元函数的一阶偏听偏信导数的求法,掌握二元函数全微分的求法。

(3)掌握复合函数与隐函数的偏导数的求法。

(4)理解二重积分的概念,掌握二重积分的性质,掌握直角坐标及极坐标下二重积分的计算方法。

五、常微分方程初步
1、考试内容
(1)微积分方程的基本概念
(2)一阶微分方程:可分离变量的微分方程、一阶线性微分方程。

(3)二阶常系数线性齐次方程。

2、考试要求
(1)了解微分方程的阶、解、通解及初值条件等基本概念。

(2)会求可分离变量的微分方程、一阶线性微分方程的通解及特解。

(3)会求二阶常系数线性齐次微分方程的通解及特解。

Ⅲ. 考试形式及试卷结构
一、考试形式
闭卷、笔试,试卷满分为100分,考试时间为120分钟,考生使用答题卡答题。

二、试卷内容比例
函数、极限和连续约占20%
一元函数微分学约占27%
一元函数积分学约占23%
多元函数微积分学初步约占20%
常微分方程初步约占20%
三、试卷题型比例
单项选择题约占15%
填空题约占15%
计算题约占48%
综合题约占22%
四、试卷难易度比例
试题按其难度分为容易、中等题、难题,三种试题分值的比例约为4:4:2。

相关文档
最新文档