13实数复习课
实数复习课(第一课时)教学设计
实数复习课(第一课时)教学设计【课题】苏科版数学八年级上册第四章实数复习课(第一课时)【教材简解】“实数”是八年级上册第四章内容,从有理数到实数是数的范围的一次重要的扩充,学生对实数的认识就由有理数的范围扩大到实数范围。
本章的概念多,并且比较抽象,但却是以后学习的基础,在初中数学中占有重要的地位,对今后学习数学有着重要的意义,是后面学习二次根式、一元二次方程以及解直角三角形等知识的基础,也为学习高中数学中不等式、函数以及解析几何等大部分知识作好准备。
【目标预设】1、经历小结与复习,建立本章知识框架图。
2、进一步复习本章知识,强调有关概念、运算的联系与区别及数的范围由有理数扩大到实数后,有关概念和运算的变化情况。
3、通过回顾与思考使学生能进一步掌握实数的相关知识并会灵活运用,体悟相关的数学思想方法。
4、培养学生的数学应用意识,提高学生分析解决问题的能力。
【重点、难点】1、重点:无理数、平方根、算术平方根、立方根及实数的定义与性质,以及实数的运算法则。
2、难点:利用平方根、算术平方根、立方根及实数运算法则解决问题。
【设计理念】复习课并非单纯的知识的重述,而应是知识点的重新整合、深化、升华。
教师在教学过程中应与学生积极互动、共同发展,处理好传授知识与培养能力的关系。
复习课应重视发展学生的数学思维能力,通过复习旧知识,拓展学生思维,提高学生学习能力,增强学生分析问题,解决问题的能力。
同时还应关注个体差异,要尽可能兼顾每一位不同学习层次的学生,要让每一个学生都有所得,满足不同学生的学习需要。
【设计思路】本节课的教学过程由创设情境,引入新课?D?D活动交流,互动探究?D?D知识深化,应用提高?D?D反思提炼,形成结构?D?D评价反馈,挑战自我五个环节构成,以学生活动为主线,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。
通过“做一做”、“议一议”、“练一练”、“想一想”、“试一试”等丰富数学活动的经历积累数学分析的经验,通过“合作与交流”让学生在活动中体验到知识的深化和分析数学问题的快乐,提升自我价值,体现学生的主体地位。
评段振荣老师《实数复习课》
评段振荣老师《实数(复习课)》-、运用学案导学,提高复习效率《实数(复习课)》虽是复习课,,都是已学知识,但基础薄弱的学生群体庞大,不容忽视,在复习中用好学案,可以为提高中考复习课的效率提供一个良好的平台。
段老师将实数部分内容根据中考考察程度,分成基础部分、要点部分以及拓展部分,满足不同层次学生的学习需求,既巩固了基础,又培养了能力。
在基础部分分3个活动,学生自主在课前完成,基本覆盖了实数部分的相关知识点。
在要点部分,段老师重点复习了实数的运算和绝对值的化简,运用基础部分的知识储备进行解题,将单一知识整体化,并在过程中做好一题一练。
拓展部分使用了新运算的题型对学生进行提高,切合当前中考出题方向。
整份学案,知识点涵盖全面,内容设计层层深入,在段老师的串联下,整节课节奏紧凑,学生紧随老师步伐,接受良好。
二、理清知识脉络,夯实基础知识初三一轮复习是以《新课程标准》为指引,着重数学的基础知识,基本技能和基本数学思想与方法展开。
本节课段老师在基础部分与学生一起通过习题,以题理知,温故知新。
题目是在课前完成,题量少而精,且难度不大,呈现一定的层次性。
这样有利于学生对基础知识的再认识与回顾,同时为学好本节课的内容增加信心。
因为是复习课,所以板书不需要很详细,只需要结合学生的回答逐渐建构起结构式框架图,知识点简单明了,利于学生形成完整的知识系统。
关于实数的运算,初中的计算和小学的计算区别就在于初中阶段引入了负数,扩大了数域。
因此在计算过程中,除了需要对算式进行分块,还要引领学生带上符号的研究。
以(一2乃+|1-周一T为例,以“+、-”为分割标志,分为“(_2严、"+|1-√ψ、“一(一)、三块。
"(一2)2”表示“-2的平方”,平方也是一种运算,先定号再计算,强调“一个负数的偶数次方是正数”。
绝对值也是一种计算,绝对值出来一定是个非负数,"一(一{)7”是负指数运算,表示“一[的1次方的倒数的相反数”,在了解具体意义的情况下定号,能帮助学生在计算上事半功倍。
实数(复习)
【实践创新】 1、下列说法正确的是( A、 16 的平方根是 4
C、 任何数都有平方根 2、若 3 m 3 5 ,则 m 3、若 x x 0 ,则 x 的取值范围是
) B、 6 表示 6 的算术平方根的相反数 D、 a 2 一定没有平方根 ; 3 4 x 4 x ,则 x 的取值范围是
D.
4个
。设面积为5的正方形的边长为 x , ,
1 的立方根是 27
22.求下列各式中的 x(10 分,每小题 5 分) (1) 4 x 2 121 (2) ( x 2) 3 125
, -
5 2 的相反数是
, 2 3 =
;
长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
a
b
0
c
0.064 的立方根表示为
3、已知 5 11 的小数部分为 m , 5 11 的小数部分为 n ,则 m n
长春学校
七年级
学科导学案
课型:复习课
编写人 L
审查人:T 、 P
时间:
课题
实数 复习与小结(二)
知识与能力:进一步巩固实数的相关概念,能熟练求一个数的平方根、立方 根等,会进行实数范围内的相关计算。 过程与方法:通过互为逆运算的方法,理解并类比数学思想方法。 情感态度与价值观:感受平方根在现实世界中的客观存在,增强数学知识的 应用意识。 实数的相关运算。 无理数、实数的相关概念的理解与运用。
长春学校
七年级
学科导学案
课型:复习课
课题
实数 复习与小结(一)
知识与能力:建立起本章知识的框架图,形成这一章的完整知识体系。 过程与方法:利用习题在巩固练习、变式训练,增强度学生分析问题、解决 问题的实践能力,拓展学生的思维。 情感态度与价值观:提高学生的归纳和概括能力,形成反思自己学习过程的 意识。 1、平方根、立方根的概念和求法。2、无理数、实数的概念,实数的分类, 相反思、绝对值的求法,实数的运算及大小比较。3 无理数、实数的相关概念的理解与运用。
(完整版)《实数》复习课教案
《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会用计算器进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件、计算器.四、教学过程一、知识疏理,形成体系(课前要求学生对本章知识进行总结)师:本章的主要内容是开方运算.从定义出发解题是解本章有关题目的基本方法,我们注意掌握用计算器进行数的计算的方法的同时,还必须注意区分清楚有理数与无理数的概念,掌握实数的四则运算.下面,我们以组为单位小结一下本章的知识点.生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗? 生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧−−−−−→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.生:我们是这样总结的:1.分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负无理数正无理数无理数负有理数正有理数有理数实数02.每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点又都可以表示成一个实数,它们之间是一一对应的.师:有理数都可以表示成有限小数或无限循环小数.无理数是无限不循环小数,它不能表示成分数形式,任何一个无理数,都可以用给定精确度的有理数来近似地表示.二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解) 1.求下列各数的平方根:(1)972;(2)25;(3)252⎪⎭⎫ ⎝⎛-. 师:本题要审清是求哪个实数的平方根,只有非负实数才有平方根. 生:(1)是求925的平方根;(2)是求5的平方根;(3)是求254的平方根. 由学生独立完成.2.x 取何值时,下列各式有意义.(1)x -2; (2)12+x .师:a 在什么情况下有意义?生:对于a ,必须满足a ≥0,它才有意义,所以被开方数必须是非负数. (1)2-x ≥0;(2)x 2+1≥0.师:如何求出x 的范围呢?生:我们讨论后,得出如下结论:(1)x ≤2;(2)不论x 取什么实数,x 2≥0,x 2+1>0,即x 的取值范围是:x 为全体实数.3.求下列各数的值:(1)()23π-;(2)122+-x x (x ≥1).师:如何化简2a 呢?生:我们认为首先应考虑2a 中a 的范围.(1)当a ≥0时,2a =a ;(2)当a <0时,2a =-a .师:求下列各数的值,必须先确定a 的范围.生:因为3-π<0,所以()23π-=-(3-π)=π-3.师:如何化简122+-x x 呢?生:将122+-x x 化为2a 的形式,即()22112-=+-x x x再考虑x -1的范围,由学生独立完成.4.已知:|x -2|+3-y =0,求:x +y 的值.师:认真审题,考虑一下所给的这些数有什么特点.生:|x -2|和3-y 都是非负数.师:两个非负数的和可能是0吗?生:只有当两个非负数都取0时,其和才为0,其他情况下,都大于0. 由学生独立完成.师:哪些数为非负数呢?生:实数a 的绝对值,表示为|a |,|a |是非负数;实数a 的平方,表示为a 2,a 2是非负数;非负实数a 的算术平方根表示为a ,a 是非负数.师:非负数有什么特点?生:(1)几个非负数的和仍为非负数;(2)若几个非负数的和为0,则每一个非负数都必须为0.师:绝对值、平方数、算术平方根都是非负数,解题时要注意这一隐含条件,不可把0漏掉.5.计算:32725-+(精确到0.01). 师:无理数是开方开不尽的数,那么如何计算呢?生:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算.因为精确到0.01,所以在计算过程中可用2.236代替、5,1.732代替3. 由学生独立完成.6.在实数2-、13.0 、3π、71、0.80108中,无理数的个数为_______个. 师:如何判断一个数是无理数?生:一个无理数不能表示成分数形式,或者说成数位无限,且不循环. 7.|x |<2π,x 为整数,求x师:|x |=2π,x 的值是多少?生:当x =2π,x =-2π时,|x |=2π,所以|x |<2π时,x =±2π.师:|x |=2π的含义?生:实数x在数轴上所对应点到原点的距离等于2π.师:|x|<2π的含义呢?生:实数x在数轴上所对应点到原点的距离小于2π.师:结合数轴,你能说出满足|x|<2π这一条件的点在数轴的什么位置上吗?生:→在如图所示的范围内,因为x为整数,所以x=6、5、4、3、2、1、0、-1、-2、-3、-4、-5、-6.师:非常好!三、查缺补漏,归纳提升.1.通过今天的探究学习,你们有哪些收获?2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题时经常会被用到.3.对于本章的内容你还有那些疑问?四、作业1.教科书第19页复习题A组五、板书设计第6章实数1.知识疏理2.巩固训练3.归纳提升六、教学反思(略)七、课堂小卷(1)填一填:1.16的平方根记作_______,等于________.16________.3.31-2-3(1)_______.55.两个无理数的和为有理数,这两个无理数可以是______和_______.6.若│x 2-则x=_______,y=_______.7.已知x 的平方根是±8,则x 的立方根是________.(2)选一选:8.4的平方根是( )A.2B.-2C.±29.下列各式中,无意义的是( )B. 10.下列各组数中,互为相反数的一组是( )A.-2与B.-2C.-2与-12D.│-2│与2 11. 下列说法正确的是 ( )A.1的平方根是1;B.1的算术平方根是1;C.-2是2的平方根;D.-1的平方根是-1(3)做一做:12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (513. 求下列各式中的x:①x 2=1.21; ②27(x+1)3+64=0.14. a≥0a 的算术平方根.由此你会求下列各式有意义时x 的取值范围吗?试试看:(1 (2; (3 (415.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b 的平方根.。
复习课:实数
复习课:实数教学课题 复习课:实数教学目标 巩固实数知识点,归纳相关经典题型进行针对性练习 教学重、难点题型的变式与解法的变通性【知识点】一、有理数无理数的判别概念:有理数是指有限小数和无限循环小数。
无限不循环小数叫做无理数。
无理数可分为正无理数和负无理数。
无理数形式上有三种:①无限不循环小数;1.101001000100001……②开方开不尽的数;23,③含有圆周率π的代数式. 35π『练习』1. 在-1.732,2,,3.14,2+3,3.212212221,3.14π这些数中,无理数的个数为( )A. 5B. 2C. 3D. 4 2.下列实数317,π-,3.14159 ,8,327-,21中无理数有( ) A .2个 B .3个 C .4个 D .5个二、实数的定义1. 有理数和无理数统称为实数2. 实数的分类: (1) 按定义分类:0正整数整数负整数有理数有限循环小数或无限循环小数实数正分数分数负分数正无理数无理数无限不循环小数负无理数⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩(2) 按大小分类:⎧⎪⎨⎪⎩正实数实数负实数【注意】 (1)整数可分为奇数,偶数,零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2-1n 或2+1n (n 为整数)表示.(2)正数和零常称为非负数.『练习』1.下列命题中,正确的是( )。
A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数 2.下列命题错误的是( )A 、3是无理数B 、π+1是无理数C 、23是分数 D 、2是无限不循环小数3. 有下列说法:(1)无理数就是开方开不尽的数; (2)无理数是无限不循环小数;(3)无理数包括正无理数、零、负无理数; (4)无理数都可以用数轴上的点来表示。
其中正确的说法的个数是( ) A .1 B .2 C .3 D .4 4.下列说法错误的是( )A .负数不能开偶次方B .有理数和无理数统称实数C .无限小数是无理数D .数轴上的点和实数一一对应 5.如果有理数与它的倒数相等,那么这种有理数共有_________6.下列各数349,3.1415926,0.131131113,100--中有理数的个数是_________三、算术平方根、平方根的概念1. 算术平方根的定义:正数a 有两个平方根,其中正数a 的正的平方根a 叫做a 的算术平方根。
实数与复习课学案
横江中学“预·练·教·悟”学案年级:七年级 科目:数学 主备人: 备课时间:课题:实数第1课时 课型:新授 审核人:七年级数学备课组 班级: 姓名: 小组学习目标:掌握实数的概念及分类,理解实数与数轴上的点一一对应,培养严密的数学思维。
重点:实数的概念、有理数运算律在实数范围内也适用。
难点:理解实数与数轴上的点一一对应。
一、 旧知回顾 1、什么叫有理数?2、下列各数中,哪些是有理数?—23、1.414、2、9、π、32、327-二、 预习自测1、判断正误,在后面的括号里对的打“√”,错的打“×”,并说明理由。
(1)无理数都是开方开不尽的数。
( )(2)不带根号的数都是有理数。
( ) (3)带根号的数都是无理数。
( )(4)实数包括有限小数和无限小数。
( )2、写出一个大于1且小于4的无理数( )3、实数a 、b 在数轴上对应点的位置如图1所示,则a b 。
(填“﹤”或“﹥”) 探究案一、 学始于疑——我思考、我收获 1、实数有几种分类方法?如何分类?2、怎样理解“实数和数轴上的点一一对应”?学习建议:请同学用2分钟时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
二、 质疑探究——质疑解疑、合作探究 (一)基础知识探究探究点一 实数的概念及分类(重难点)问题1:使用计算器,把下列有理数写成小数的形式,它们有什么特征?3,—35,478,911,13,1190,478,35问题2:我们所学过的数是否都具有问题1中数的特征?能否举例说明?问题3:如果将2和33用计算器计算出来,结果具有何特征我们把这样的数称为什么?0 a b c问题4:实数怎样分类呢?请你利用定义给实数分类。
问题5:还记得有理数的分类吗?模仿有理数的分类给实数另一种分类方法。
探究点二在数轴上表示无理数问题1:我们知道,每个有理数都可以用数轴上的点来表示,那么,无理数是否也可以用在数轴上的点表示呢?问题2:你能在数轴上找到表示2、π这样的无理数的点吗?怎么就可以做到?(二)知识综合应用探究探究点实数的概念及分类(重难点)【例1】将下列各数填入适当的括号内0, 1,—2,0·1235 ,—0·1237 ,1·010010001---,—30.06430.064,3π,—227,32有理数:{ } 无理数:{ } 负实数;{ } 分数:{ } 思考:—30.064= 。
《实数》复习课
多一份睿智 少一份嬉戏 展一份风采
第 2 页 共 2 页
审核人:
复核人:
C. 4 个 D.±5 D. 6 3 D. 3 a ) . D.5 个
A.2 个 B .3 个 2.25 的算术平方根是( ) . A. 5 B.5 C.-5 3. 6 3 的相反数是( ) .
1 16
⑵ (81) 2 2 3 83 解:原式=
解:原式=
A. 6 3 B. 6 3 C. 6 3 4.如果 a 是实数,则下列各式中一定有意义的是( ) . A. a 2008 B. ( a ) 2 C. b D. 2a b C. a a
仪陇县大罗乡小学校
初中七年级(下)数学
导学案
制作人:吴春伶
组别:初中数学组
制作时间:2014-3-1
课题: 《实数》复习课(1) 第一课时 平方根、立方根、实数 学习目标: 1.归纳和整理本章知识点,形成系统知识 2.强化对平方根、算术平方根、立方根、实数等相关概念的理解 3.能够进行简单的实数相关运算 学习重点: 1、强化对本章所有概念的理解 2、能够熟练地进行相关的实数运算 学习难点:实数大小的比较 一、复习内容 1.平方根: _; 平方根的性质:①________________ ② ; ③ ; 平方根与算术平方根的关系: 2.算术平方根的定义:___________________________________________________________________。 a 的双重非负性的理解: a ≥0 (a≥0) 3.立方根的定义:__________________________________________________________________。 ___; 立方根的性质:①___________________ __ ______________________ ② ; __________; ③__________ 4.无理数:______ _____________________; 实数:_____________________________________________. 实数性质:_____________与数轴上的点是一一对应的,有理数的运算法则、运算律等在实数范围内同样适用。 二、专题复习 【专题一:平方根与算术平方根】 错误!未指定书签。 .(1)16 的平方根是 ,算术平方根是____________________. (2) 16 的平方根是 ,算术平方根是____________________. 2.下列说法正确的是( ) A.1 的平方根是 1 B.1 是 1 的平方根 C. (2) 2 的平方根是 2 D.0 没有算术平方根 3.化简: (2)2
《实数》复习课教案
《实数》期末复习教案二中苏元实验学校 陈颍【教学分析】《实数》一章概念较多,且比较抽象,主要是学生对于无理数的认知还缺乏实际经验的积累,算术平方根和平方根概念混淆。
本节为复习课,学生有一定的知识储备,但是预计因理解不到位容易出错,所以这节课定位在:帮助学生构筑知识体系,通过学生自主学习和合作学习暴露学习中的知识性问题,加强理解,归纳典型问题的方法,领会数学思想在解决问题中的作用。
【复习目标】1. 进一步巩固算术平方根,平方根,立方根和实数的的相关概念及性质2. 熟练用根号表示并求数的平方根,立方根3. 能进行实数的简单四则运算,对实数的大小进行比较4. 掌握估算的方法,加强估算能力的培养5. 领会分类思想、类比迁移、数形结合等数学思想方法的运用【教学重点】平方根、算术平方根、立方根及实数的概念与性质,以及实数的运算,大小比较【教学难点】平方根和实数的概念,对符号的认识【教学准备】学案【教学过程】环节一:引导回顾,构筑知识框架师:在《实数》这一章,我们认识了哪些关于数的新知识?学生回忆,师生共同构筑知识线:()⎩⎨⎧−−−−−→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ ⎩⎨⎧无理数有理数实数 (设计意图:本节概念较多,先建立知识框架,后面以题带点覆盖知识点)环节二:强化基础,巩固拓展,完善知识框架题组(一):基本概念过关先让学生独立思考完成,老师巡视发现问题,然后学生小组讨论交流,找出易错点,消化部分呈现问题,接着先请每个小组派代表展示错点,归纳总结易错点,师生一起归纳和完善知识体系。
1. 16的算术平方根是______________.2. 2)9(-的平方根是x , 64的立方根是y ,则y x +=________.3. 式子1-x 在实数范围内有意义,则x 的取值范围是________.4. 下列计算中:①2)7(-=-7;②2)2(2=-;③196=±14;④39-=-3;⑤25425=--;⑥2581-=59-;⑦)21)21(33±=,⑧5)5(2±=,正确的是 .(填序号即可) 5. 已知一个正数的平方根分别是13+a 和11+a ,则a 的值是_______.6. 下列实数:4-,3,113,2π,•7.1,38-,0.3737737773…(相邻两个3之间的7的个数逐次加1),其中属于无理数的是_____________________________________________________.7. 数轴上的点与______一一对应。
实数复习课课堂实录
七年级数学下册第六章:实数《实数复习课》课堂实录玉州区第八初级中学彭钧伟师:同学们是否知道德国数学家康托尔把有理数和无理数统称为实数之后,数学史产生了第一次数学危机。
生:不知道。
师:同学们学了实数之后,有没有感觉听的时候很明白,做到题目的时候又有点不明白。
生:是的。
师:你们想不想解决你们的数学危机,想不想?生:想,想师:好,希望大家通过这节《实数复习课》能帮助大家解决这次数学危机。
师用PPT出示图片生齐读学习目标师:下面检测一下同学们究竟掌握了这章的多少知识,我们来做个热身运动。
个人思考一分钟,并把自己的答案写在微卡上。
看谁又快又准。
生:出示OK手势师:二人小组交互自己的答案。
学科性口号:师:同位角相等,生:两直线平行。
小组活动结束。
(抢答完成判断题:对的站起来,错的坐下。
)热身运动结束之后。
师:为了使大家对这章内容更加清楚掌握,请学生整理这章知识网络图。
1、个人思考,独立整理。
2、四人小组写出本章知识网络图。
四人小组整理知识网络图进行中。
请两组同学汇报自己小组的劳动成果。
同学一正在进行讲解中。
同学二在讲解中。
师:这是老师整理的知识网络图,大家可以一起探讨一下,完善自己的知识网络图。
师:学以致用,下面老师出些题目考考大家。
通过抢答,学生点评,师补充点评,让学生落实这章的基础知识。
师说:老师给大家的题目或许有限,现在我们要借助集体的力量,毕竟人多力量大,下面我们进行活动二。
先个人思考,写在微卡上,然后以团队的形式完成活动。
小组完成任务之后,在班级里展出团队的劳动成果,全班同学以顺时针的形式,浏览之后一起解决问题。
由同学选出最想要解决的问题,然后由该团队长代表发言。
接着老师补充这章书常见的中考题型课堂最后:生小结,师点评。
附:实数复习课教学反思彭钧伟“现在的学生越来越懒了,越来越难教了”,这是在办公室里与其他老师常谈论的话题,这也似乎成了许多老师的共识。
在课堂教学中,也常常会遇到这样一些问题:学生精神不集中、对一些难以理解的数学知识不愿多做思考、提问题时只有少数同学举手或是得到一问一答式的回答等等。
第13章 实数复习课件
3.一个正数x的两个平方根分别是a+1和a-3,则
a=
1
, x=
4
0.3737737773
(相邻两个3之间的7的个数逐次加1)
有理数集合 无理数集合
判断:下列说法是否正确:
1.实数不是有理数就是无理数。 ( )
2.无限小数都是无理数。
3.无理数都是无限小数。
(
(
)
)
4.带根号的数都是无理数。
(
)
)
5.两个无理数之和一定是无理数。(
6.所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数。( )
第一组题目:
1.判断对错:
(1) 2,2 都没有意义( ) (2)0.01是0.1的算数平方根( ) 2.填空: (1)
3 27 的平方根是( 3) 64的立方根是( 2 ),
(2 )
3
23Βιβλιοθήκη (-3) 23
所以 a2
a
2 ( 3) 3 ( 4) = 4
2
所以( a)
2
a a
实 数
分数
正整数 0 负整数 正分数 负分数
自然数
无理数
无限不循环小数
正无理数 负无理数
1.圆周率 及一些含有
的数
一般有三种情况 2.开不尽方的数
3.有一定的规律,但不循环的无限小数
把下列各数分别填入相应的集合内:
3
2,
20 , 3
1 , 4
4 , 9
7,
,
0,
5 , 2
5,
2,
3 8,
0.2
3 4
(2) 0.512 0.8
实数(复习课)
常州龙文教育个性化辅导教学案教师:方海欧学生:年级:初二学科:数学日期:星期:时段:一、课题实数(复习课)二、教学目标1、熟练平方根、立方根的概念及其应用。
2、熟练实数有关概念,近似数与有效数字的概念。
3、增强应用意识,提高解决问题的能力,体会数学的应用价值。
三、教学重难点理解平方根、立方根、实数、近似数、有效数字等概念,并能灵活运用。
四、教学课时第10课时五、教学方法讲授法、讨论法、练习法六、教学过程【知识要点】平方根1.平方根如果一个数的平方根等于a,那么这个数叫做a的平方根,也可叙述为:“如果2x a=,那么x就叫做a的平方根.”2.开平方求一个数a的平方根的运算叫做开平方,a叫做被开方数.3.平方根的性质一个正数有两个平方根,它们互为相反数.正数a的两个平方根可以用“a±”表示,其中a表示a的正平方根(又叫算术平方根),读作“根号a”; a-表示a的负平方根,读作“负根号a”.零的平方根记作0,00=.因为任何一个正数、负数或零的平方都不是负数,所以负数没有平方根.4.开平方与平方的关系开平方与平方互为逆运算,根据平方根的意义,“如果2x a=,那么x叫做a的平方根”, x记作a±,我们得到:(1)一个正数的平方根的平方等于这个数,即:当0a>时,()22,();a a a a=-=教学过程(2)一个正数的平方的正平方根等于这个数,即:当0a>时,2.a a=一个负数的平方的正平方根等于这个数的相反数,即:当0a<时,2.a a=-立方根1.立方根与平方根类似,有:如果一个数的立方等于a,那么这个数叫做a的立方根,用“3a”表示,读作“三次根号a”,3a 中的a叫做被开方数,“3”叫做根指数;也可叙述为“如果3x a=,那么x就叫做a的立方根”,x记作3a.2.开立方求一个数a的立方根的运算叫做开立方.开立方与立方互为逆运算.3.立方根的性质我们已学过正数的立方是一个正数,负数的立方是一个负数,零的立方等于零,由立方运算可知正数有一个正立方根,负数有一个负立方根,零的立方根是零,也就是说任意一个数都有立方根,而且只有一个立方根.类似于平方与开平方之间的关系,根据立方根的意义,可以得到()3333,a a a a==.(以上a是实数)注意:一个数的立方根记作“3a”,根指数3不能忽略.实数1. 无理数:无限不循环小数叫做无理数,也就是不能用两整数比表示的数.无理数可分为正无理数和负无理数.只有符号不同的两个无理数是互为相反数.2. 实数:有理数和无理数统称为实数.3.实数分类:⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数n次方根1.n次方根如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根,也可叙述为“如果n x a=(n是大于1的整数),那么x就叫做a的n次方根”,x记作n a.平方根和立方根是n次方教学过程2.开n次方求一个数a的n次方根的运算叫做开n次方,a叫做被开方数, n叫做根指数.n次方根简称为“方根”;开n次方简称“开方”.3.n次方根的性质由于n次方根包含平方根和立方根在内,而平方根和立方根有不同的性质,这使得研究n次方根的性质时,必然要把指数按奇数或偶数分别进行研究.与立方根类比:实数a的奇次方根有且只有一个,用“n a”表示,其中被开方数a是任意一个实数,根指数n是大于1的奇数.与平方根类比:正数a的偶次方根有两个,它们互为相反数,正n次根用“n a”表示,读作“n次根号a”,负n次根用“n a-”表示,其中被开方数0a>,根指数n是正偶数(当2n=时,在n a±中省略n),负数的偶次方根不存在.因为零的n次方等于零,所以零的n次方根等于零,表示为00n=方法与技能:研究n次方根,必须用分类思想把指数分为奇数和偶数来考虑,学习奇次根式时与立方根类比,学习偶次根式时与平方根类比,这种类比方法是数学思维重要方法之一.综上,无论n为奇数还是偶数,对于正数a的正n次方根都记作n a,称为正数a的n次算术根.(0的n次算术根为零)正数a的n次算术根,有下列重要性质:.nk nmk ma a=(n为大于或等于2的整数)即根指数与被开方数的指数如果有公因数则可以约去,这一公式可以顺用,即将nk mka化为.n ma反过来,也可以将n ma化为nk mka.【典型例题】【例1】求值:(1)32的五次方根(2)-32的五次方根(3)16的四次方根(4)64的六次方根(4)0.000064的六次方根(6)32243-的五次方根【分析】运用乘方运算求方根的值是常用的方法,对于正数的偶次方根有两个,它们互为相反数要充分理解,求n次方根的值必须考虑指数的奇、偶性,增强分类的意识,学会正确的语言表述是很重要的,给书写也带来简便.【解答】(1)5232=∴32的五次方根5322==(2)()5232-=-∴-32的五次方根5322=-=-教学过程(3)()4216±=∴16的四次方根6642=±=±(4)()6264±=∴64的六次方根6642=±=±(5)()60.20.000064±=∴0.000064的六次方根60.0000640.2=±=±(6)52323243⎛⎫-=-⎪⎝⎭∴32243-的五次方根53222433=-=-【例2】选择题:1.下列语句中,正确的是()(A)正数a的n次方根记作n a(B)如果n是偶数,当且仅当a是非负实数时,则n a有意义(C)零的n次方根无意义(D)任何实数都能开方2.5x-在实数范围内能开偶次方根的条件是()(A)x为任意实数(B)5x≥(C)5x≤(D)0x≤【分析】理解立方根和开立方的概念【解答】1.(B)当n是奇数时,正数a的n次方根记作“n a”, 当n是偶数时,正数a的n次方根记作“n a±”,故(A)错.当a为非负实数时,a有偶次方根,所以n a(n是偶数)有意义,故(B)对.零的n次方为零,故(C)错.负数没有偶次方根,任何实数不一定都能开方,故(D)错.2.(C)由被开方数50x-≥解得5x≤,故选(C).【例3】求适合下列等式中的x.(1)3910x-=(2)4810x=【分析】理解开n次方与n次乘方互为逆运算的关系【解答】(1)x是910-的立方根,因为3391010--=(),所以310-是910-的立方根,因此310x-= ,即教学过程0.001x=.(2)由已知可知,x是810的四次方根,由于248(10)10±=,所以210±是810的四次方根,因此210x=±,即100x=±.近似数的精确度近似数与准确数的接近程度即近似程度,近似的程度的要求叫做精确度.近似数的精确度有以下两种表达方式:一种是精确到哪一个数位.例如精确到千分位(即保留3位小数),那么准确数与近似数的误差不大于0.0005(即万分之五),这是因为近似数是经过四舍五入截取得到的.另一种是指定保留几个有效数字.对于一个近似数,从左边第一个不是零的数字起,往右到末尾数字为止的所有数字,叫做这个近似数的有效数字.如果保留五个有效数字,π的近似值为 3.1416.那么π的准确值在 3.14155与 3.14165之间,绝对误差为0.00005.如用π代表圆周率的准确值,则3.14160.00005.π-<利用无理数的近似数作计算时,中间过程中,应比最后要求精确度多保留一位数字,到最后再按四舍五入法,按最后要求取近似值.例题:1.求下列各数的平方根:2.求下列各数的算术平方根:5.解答题:6、比较两个数大小的方法很多,最常见的方法是:(1)类比法;(2)“作差”比较法.下面先学习用类比法比较两个数的大小.解:169,3723,21,0,65,36,12149,81225,1625,1632,196,36125,0,49324,289,521,49,81121,25;11-132=-+-+xxx计算:、.5323554=-+计算:、)32)(32()1(-+2)525()2(-(1)6 2.5;比较与的大小22.5 2.5 6.25==6 6.25<6 2.5∴<练习:比较下列两数的大小.思考:比较215- 和 21的大小;你是怎么比较的?用“作差”比较两数的大小,其步骤是:第一步:求差 第二步:判断值的正负 第三步:做出结论 解:练习:比较解:8、判断下列说法是否正确:(1)无限小数都是无理数; (2)无理数都是无限小数; (3)带根号的数都是无理数; (4)实数都是无理数;(5)无理数都是实数; (6)没有根号的数都是有理数. (7)一个数的立方根不一定是无理数 (8)任何实数都有唯一的立方根(9)只有正实数才有算术平方根 (10)任何数的平方根有两个,它们互为相反数 (11)两个无理数的和一定是无理数 (12)两个无理数的积一定是无理数 (13)若正数a 的一个平方根是b ,那么a 的另一个平方根是-b. (14)若a 为有理数,b 为无理数,则 ab 必为无理数 ()123,4.5()231,5.6515(2)..28-比较与的大小=--85215 =-8954224598⨯-=165818⨯-=88180-0<85215<-∴2323,55-. )( , 32 7的值求代数式部分为,小数的整数部分为记、b a b b a ++(第5题)七、课后练习 1.下列实数722,3,38,4,3π,0.1, 010010001.0-,其中无理数有( ) A.2个 B.3个 C.4个 D.5个2. 对0.000009进行开平方运算,对所得结果的绝对值再进行开平方运算……随着开方次数的增加,其运算结果( )A.越来越接近1B.越来越接近0C.越来越接近0.1D.越来越接近0.33.地球七大洲的总面积约是1494800002km ,如对这个数据保留3个有效数字可表示为( ) A .1492km B .1.5×1082km C .1.49×1082km D .1.50×1082km4、对于10.08与0.1008这两个近似数,它们的( )A .有效数字与精确位数都不相同B .有效数字与精确位数相同C .精确位数不同,有效数字相同D .有效数字不同,精确位数相同5. 右图是2002年8月在北京召开的国际数学家大会的会标,它取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形和一个小正方形的拼成的大正方形,如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短边为a ,较长边为b ,那么(a +b )2的值是( )A .13B .19C .25D .169第6题6.如图,阴影部分是以直角三角形的三边为直径的半圆,两个小半圆的直径之比是3∶4,面积和为100,则大的半圆面积是___________.7.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(涂上阴影).⑴在图1中,画一个三角形,使它的三边长都是有理数;图2图3图18、如图,是4个完全相同的直角三角形适当拼接后形成的图形,这些直角三角形的两直角边分别为a 、b,斜边为c 。
人教版七年级数学下册第六章《实数》小结与复习说课稿
4.生活实践:让学生收集生活中的实数问题,进行分析和解决,培养学生的数学应用意识。
(四)总结反馈
在总结反馈阶段,我将采取以下措施引导学生自我评价,并提供有效的反馈和建议:
1.让学生总结本节课所学知识,分享自己的学习心得;
(2)掌握实数运算的顺序和法则;
(3)解决实数混合运算中的实际问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,具备一定的独立思考能力。在认知水平上,他们已经掌握了基本的算术运算,具备了一定的数学逻辑思维能力。然而,由于年龄和经验的限制,他们对实数概念的理解可能还不够深入,对实数运算的掌握也可能不够熟练。
2.互动教学:设计课堂提问、小组讨论等活动,引导学生积极参与,提高他们的学习主动性;
3.激励评价:对学生在课堂上的表现给予积极的评价和鼓励,增强他们的自信心;
4.举一反三:通过典型例题的讲解,引导学生发现解题规律,提高他们解决问题的能力;
5.数学游戏:设计一些与实数相关的数学游戏,让学生在游戏中学习,提高他们的学习兴趣。
板书在教学过程中的作用是帮助学生构建知识框架,直观展示教学内容的逻辑关系。为确保板书清晰、简洁且有助于学生把握知识结构,我将采取以下措施:
1.提前规划板书内容,确保知识点完整、系统;
2.使用不同颜色的粉笔,区分重点、难点和关键点;
3.板书过程中,适时引导学生关注,解释板书中的逻辑关系;
4.在适当位置留下空白,用于记录学生的疑问和课堂生成性内容。
2.提高练习:设计一些综合性较强的实数题目,培养学生的解题能力和思维能力;
《实数》复习课教案
第2章实数回顾与思考一、学生起点分析本章学习至此,学生已经认识了无理数,学习了实数概念及相关运算,从而将原有有理数扩充到了实数范围,使得对数的认识更进一步深入,让学生感受到了数系扩充的必要性与作用.在前面的探究活动中,学生已经掌握了相关数学知识,并具备了一定的数学能力,掌握了类比、数形结合等数学思想方法,也具备了一定的合作学习经验,为学习本节“知识回顾与思考”奠定了基础.二、教学任务分析本章是在学习了勾股定理及有理数等知识的基础上,进行的数系第二次扩张,使学生对数的认识进一步深入.本课是对整章内容的复习与归纳,在教学过程中不必多过地追求概念,只要学生能够结合具体情境,从意义上理解主要概念即可.作为复习归纳课,学生虽对相关知识基本掌握,但是知识间的联系还不够清楚,对于一些综合性较强的题在方法上还有所欠缺,因此本节的教学中应将整章知识点进行梳理整合,并以典型题作为载体让学生从题中悟知识点,从题中悟数学思想与方法.因此,本节课的教学目标是:①复习无理数、算术平方根、平方根、立方根、实数、二次根式及相关概念,会用根号表示,并会求数的平方根、立方根并进行相关运算;②在实数的有关概念和运算律、运算法则的教学中,让学生体会类比的思想;③通过复习提高学生归纳整理的能力,并在师生互动、生生互动的过程中让学生学会倾听学会交流;本章概念较多,学生容易混淆,因此本节的重点应帮助学生理清无理数、算术平方根、平方根、立方根、实数、二次根式的概念.本章的难点体现在以下几处:①算术平方根的双重非负性有着重要的作用,常与平方、绝对值等具有非负性的知识结合在一起应用;②实数的混合运算也一向是学生计算的难点,学生往往在运算顺序、运算法则上出错;③本章对学生数形结合的能力有较高要求,如实数与几何知识勾股定理结合在一起就是学生掌握的难点.本章的知识结构框图222333(0)x a x a x a x a x ax a a x x a x a x a x a x a a a ⎧⎧⎨⎪⎪⎩⎨⎧⎪⎨⎪⎩⎩⎧=⎪⎪==±⎨⎪=⎪⎩⎧=⎪⎨==⎪⎩≥整数有理数分数实数分类正无理数无理数负无理数定义:如果一个数的平方等于,即,那么这个数叫做的平方根平方根表示:若,则算术平方根:若,则的算术平方根为定义:如果一个数的立方等于,即,那么这个数叫做的立方根立方根表示:若,则实数定义:式子叫做二次根式二次根式最简二次223333()(0)()(0,0)(0,0)a a a a a a a a a a b ab a b a a a b b b ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎨⎪⎪⎩⎪⎪⎧=≥⎪⎪⎪⎪=⎪⎪⎪=⎪⎪⎪⎪⎨=⎪⎪⎪⎪⋅=≥≥⎪⎪⎪⎪=≥≥⎪⎪⎩⎪⎪⎩根式:被开方数不含分母,也不含能开得尽方的因数或因式重要性质实数的性质应用三、教学过程设计本节课设计了五个教学环节:第一环节:知识回顾;第二环节:典例精析;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业.第一环节 知识回顾知识点填空:(1) 无限不循环小数 叫做无理数.(2) 有理数和无理数 统称为实数.⎧⎧⎪⎪⎨⎪⎪⎩⎨⎧⎪⎪⎨⎪⎪⎩⎩整数有理数分数实数分类正无理数无理数负无理数. (3) 实数 和数轴上的点是一一对应的.(4)=2a a ;)0()(2≥=a a a ;a a =33)(;a a =33;)0,0(≥≥=⋅b a ab b a ;)0,0(≥≥=b a ba b a. (5)把分母中的根号化去,叫做 分母有理化 .(6)最简二次根式应满足的条件是被开方数不含分母,也不含能开得尽方的因数或因式 .(7)同类二次根式:几个二次根式化成 最简二次根式 后,如果被开方数相同,这几个二次根式就叫做同类二次根式;化简时,有同类二次根式要合并,可以约分的分式要约分.设计说明:以上7个填空题老师可带着学生共同完成,通过填空让学生清晰本章的几个重要概念,特别是(4)中的几个易混点可通过此环节帮助学生理清楚.这样也为解决下一环节中的经典例题做好知识点的扎实铺垫.第二环节 典例精析(一)实数的相关概念例1、下列各数中,哪些是有理数,哪些是无理数?23,35,3.14159265,9,π-,31-,2(5)-,3.1010010001…(相邻两个1之间0的各数逐次加1)设计说明:此题考查概念.整数和分数统称为有理数,这是有理数的判断方法.无理数是无限不循环的小数,这是无理数的判断方法.而无限不循环小数主要有以下几种:①开方开不尽的方根;②含π的数;③是无限小数且不循环.在判断时还应注意,一定要抓住概念的本质而不是根据数的形式,如此题中的9,2(5)-虽然都含有根号,但它们都是有理数.所以此题中的有理数有:3.14159265,9,2(5)-;无理数有:23,35,π-,31-,3.1010010001…(相邻两个1之间0的各数逐次加1)(二)实数的相关性质及运算例2、实数a 、b 在数轴上的位置如图所示,化简2()a b b a ++-.设计说明:此题考查算术平方根的意义,也培养学生的读图能力,体现数学中的数形结合思想方法.由数轴上a 、b 的位置可知0a b +<,0b a ->,从而根据算术平方根与绝对值的意义有:2()()2a b b a a b b a a b b a a ++-=-++-=--+-=-例3、计算:(1)14010- (2) 4821319125+- 设计说明:意在复习实数的运算法则及二次根式的化简.111019104041021010101010-=-=-=- 11113512948543916310392310333239332233-+=-+=-⋅+=-+=例4、(1)已知a 、b 满足230a b -++=,求2013()a b +的值(2)已知242423y x x =---+,求y x 的值.设计说明:运用算术平方根的双重非负性解决此题,这也是本章的难点之一.解:(1)20,30a b -≥+≥ 又230a b -++=20,30a b ∴-=+=2,3a b ∴==-201320132013()(23)(1)1a b ∴+=-=-=-(2)240,420x x -≥-≥24420x x ∴-=-=2x ∴=0033y ∴=-+=328y x ∴==(三)实数中的数形结合例5、已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为多少?设计说明:此题是关于运用实数相关知识解决三角形中线段长度的问题.其易错点是△ABC 的形状有两种情况,学生容易忽略钝角三角形的情况.通过此题意在提高学生运用分类讨论的思想解决数学问题的能力.分析:(1)当△ABC 为锐角三角形时,易求BD =15,DC =6,从而求得BC =15+6=21.(2)当△ABC 为钝角三角形时,易求BD =15,DC =6,从而求得BC =15-6=9. 第三环节 运用巩固1.下列说法错误的是( )A .4的算术平方根是2B .2是2的平方根C .-1的立方根是-1D .-3是2(3)-的平方根2.当32<<x 时,求代数式21616426x x x -++-的值.3.若12x x +-有意义,求x 的取值范围. 4.一等腰三角形的腰长与底边之比为5:6,它底边上的高为68,求这个等腰三角形的周长与面积.设计说明:通过这几道题意在巩固第二环节的学习效果,让学生自己动笔练习,并在独立完成后通过小组合作来进行交流订正.答案:1.D 2.2 3.2x > 4.817ABC C ∆=,51ABC S ∆=BC AD B C AD第四环节 课堂小结请同学们认真思考下列问题:1、通过本堂课的学习我收获了什么?2、我还有哪些没有解决的困惑?设计说明:用2分钟左后时间让学生思考这两个问题,并请学生回答,及时肯定学生的收获并加以归纳,同时发现学生的困惑及时答疑.第五环节 布置作业完成课本4951P 复习题知识技能1题、4题、10题;数学理解14题;问题解决21题.设计说明:1题是关于有理数与无理数概念的题;4题为实数的运算题;10题考查的是“实数与数轴上的点一一对应”这一知识点,巩固数形结合的思想方法;14题看似简单,其实考查了本章的众多概念,特别适合用于检验学生对基础知识的掌握情况;21题为实数的应用,在考查计算的同时也锻炼了学生作图、读图、数形结合的综合能力.四、教学设计反思1.选择性的使用例题在此教学设计中,例题数量并不少,针对不同的学生群体,老师可适当删减,做到有的放矢,但是建议概念例题保留.2.给予学生充分的表达和交流的机会老师可以在前四个环节中根据具体情况采用不同的教学方法,可以师生互动也可以生生互动,通过交流讨论让学生学会表达、学会倾听、学会归纳.其实教学活动最主要的意图就是让学生主动起来,应多给予学生交流的时间与机会.3.注意收集学生生成性的学习资源在师生的问答活动中、在学生的独立思考中、在生生之间的互动交流中都会迸发出许多我们难以预料的惊喜或困惑,也许是一些精彩的发言、也许是一个精妙的方法、也许是一个典型的错误、也许一个重要的经历、也许是一串宝贵的收获…这些在课堂中新生成的资源是学生学习过程中的宝贵财富,因此我们应鼓励学生多收集这些闪光点用以形成自己可以学习借鉴的学习资源.。
中考数学实数的有关概念学案
(2)有理数减法法则:减去一个数,等于加上____________。
(3)有理数乘法法则:
①两数相乘,同号_____,异号_____,并把_________。任何数同0相乘,
都得________。
②几个不等于0的数相乘,积的符号由____________决定。当______________,
C.有最大的负数 D.有绝对值最小的有理数
3.在 这七个数中,无理数有()
A.1个;B.2个;C.3个;D.4个
4.下列命题中正确的是()
A.有限小数是有理数B.数轴上的点与有理数一一对应
C.无限小数是无理数D.数轴上的点与实数一一对应
5.近似数0.030万精确到位,有个有效数字,用科学记数法表示为万二:【经典考题剖析】
积为负,当_____________,积为正。
③几个数相乘,有一个因数为0,积就为__________.
(4)有理数除法法则:
①除以一个数,等于_______________________.__________不能作除数。
②两数相除,同号_____,异号_____,并把_________。 0除以任何一个
4. 的平方根是______
5.计算
(1) 32÷(-3)2+|- |×(- 6)+ ;(2)
二:【经典考题剖析】
1.已知x、y是实数,
2.请在下列6个实数中,计算有理数的和与无理数的积的差:
3.比较大小:
4.探索规律:31=3,个位数字是3;32=9,个位数字是9;33=27,个位数字是7;34=81,个位数字是1;35=243,个位数字是3;36=729,个位数字是9;…那么37的个位数字是;320的个位数字是;
实数的基本概念 复习课
3 无理数的个数有 ___ 个。
无限不循环小数叫做无理数 ( 强调: 无限 、 不循环.) 无理数常见的4种典型:
2 1、带根号的(指开方开不尽的数):2,
3 3+1,9
(3)、无限不循环小)
(4)、三角函数型:tan60°,sin45 °...
返回
1 4 3+ 2 、含有的数: ,,
二、实数的基本概念
一.负数:在正数前面加“—”的数; 0既不是正数,也不是负数。 1、判断: 1)a一定是正数; (× 2)-a一定是负数; (× 3)-(-a)一定大于0; ( × 4)0是正整数。 (×
) ) ) )
2、(1)如果零上5℃记作5℃,则零下2℃记作_____ (2) 如果上升10m记作10m,那么-5m表示____
已知 x a(a 0), 求x时,注意x a。 即绝对值的原数是双值性。
1、已知数轴上的A点所表示的数是2,那么在数 B 轴上到A点的距离是3的点所表示的数有() A.1个 B.2个 C.3个 D.4个 2、若x的相反数是3,∣y∣=5,则x+y的值为 -8或2 . 3、若3,m,5为三角形三边,化简: 2m-10 •绝对值的性质——要注意正确区分数的三种情 况,尤其是负数去掉绝对值应变为其相反数。
1、下列各组数中,互为相反数的是( c ) 1 2 2 A.2与 B. 1 与1 C. 1与 1 D.2与 2 2
2、若|a-3|-3+a=0,则a的取值范围是( ) c A.a≥3 B.a<3 C.a≤3 D.a>3
3、 3 的相反数是 A.-3 B. -1/3 ( A ) C. 3 D. 3 (2004广东)
要点、考点聚焦 一、实数的分类:
浙教版数学七年级上册第三章《实数》复习教学设计
浙教版数学七年级上册第三章《实数》复习教学设计一. 教材分析浙教版数学七年级上册第三章《实数》是学生在初中阶段首次接触实数的概念。
本章主要内容包括实数的定义、分类、运算以及实数与数轴的关系。
本章内容是后续学习代数和几何知识的基础,因此,对于学生的理解和掌握至关重要。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学符号和运算规则有一定的了解。
但实数概念较为抽象,学生可能难以理解。
因此,在教学过程中,需要注重引导学生从具体实例中抽象出实数的概念,并理解实数与数轴的关系。
三. 教学目标1.理解实数的定义和分类,掌握实数的运算规则。
2.理解实数与数轴的关系,能够利用数轴解释和解决实数问题。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和分类。
2.实数的运算规则。
3.实数与数轴的关系。
五. 教学方法1.采用问题驱动的教学方法,引导学生从具体实例中抽象出实数的概念。
2.利用数轴辅助教学,帮助学生理解实数与数轴的关系。
3.采用小组合作学习的方式,让学生在讨论中巩固实数的运算规则。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作数轴教具,用于教学演示。
3.准备实数运算的练习题,用于巩固练习。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学的有理数知识,如整数和分数的关系,有理数的运算规则等。
为学生引入实数的概念做铺垫。
2.呈现(15分钟)呈现实数的定义和分类,让学生从具体实例中抽象出实数的概念。
通过讲解和示例,让学生理解实数与数轴的关系。
3.操练(15分钟)让学生进行实数运算的练习,巩固学生对实数运算规则的理解。
教师可提供解答过程,让学生跟随讲解,逐步掌握实数的运算方法。
4.巩固(10分钟)采用小组合作学习的方式,让学生在小组内讨论实数运算问题,共同解决难题。
教师可适时给予指导,帮助学生巩固实数的运算规则。
5.拓展(10分钟)让学生利用数轴解释和解决实数问题,如判断实数的大小关系、求解实数的相反数等。
实数复习课件
3、数轴上的点与( D )一一对应。 A.整数; B.有理数; C.无理数; D.实数。
填空
(1) 3 的倒数是
1 3
;
(2) 3-2的绝对值是 2 - 3 ; (3)若 x 1, y 2 ,且xy>0,x+y= 3或- 3。
3 5, (4) 点A在数轴上表示的数为 点B在数轴上对应的数为 5, 则A,B两点的距离为
x 1
当方程中出现立方时,一般都只有一个解!
13.比较大小 (1) 35与6 2 ( 2) 5 1与 2
a a=
2
a
a
3
3
2
a
a
0
a 0 a 0
a 0
(a 0)
a a
3
2
a 为任何数 a a
3
a为任何数
3
已知a o, 求 a a 的值
你知道算术平方根、平方根、立方根联 系和区别吗?
平方根
立方根
3
a的取值
性 质
正数 0 负数
Байду номын сангаасa≥
0
a
0
≠
a a≥ 0
0 没有
a
a 是任何数
0 负数(一个)
正数(一个) 互为相反数(两个) 正数(一个)
没有
开
方 是本身
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
0,1
0
0,1,-1
1. 说出下列各数的平方根和算术平方根:
(1) 169
14 ( 3) 2 25
(2) 0.16
7 (5) 2 9
2. 说出下列各数的立方根:
实数复习课件
【解析】20160+2|1-sin
0
1 ( )1 -2cos45°. 2
【自主解答】原式= 2 +1+2-2〓 2
2
= 2 +3- 2
=3.
【答题关键指导】实数运算的三个关键
(1)运算法则:乘方和开方运算、幂的运算、指数(特别
是负整数指数,0指数)运算、根式运算、特殊三角函数 值的计算以及绝对值的化简等.
(2)运算顺序:乘方、开方为三级运算,乘、除为二级运
(×)
(√) (×)
9.用科学记数法表示-0.00059=-5.9×10-3.
考点一
实数的分类
【示范题1】(2016·岳阳中考)下列各数中为无理数的 是 ( )
A.-1
B.3.14
C.π
D.0
【自主解答】选C.π是无限不循环小数.
【答题关键指导】无理数常见的四个类型
(1)π 及与π 有关的某些数.如π ,π -1, 等.
乘方、开方 再算_____, 乘除 最后算_____, 加减 先算___________, 运算顺 如果有括号,先算括号里边的.若没有括号, 序 从左到右 进行运算 在同一级运算中,要_________ b+a 交换律 a+b=____ 加法 a+(b+c) 结合律 (a+b)+c= ________ ba 运算律 交换律 ab=___ a(bc) 乘法 结合律 (ab)c= ______ 分配律 ab+ac a(b+c)= ______
2.(2016·天津中考)估计
19的值在
(
)
A.2和3之间
C.4和5之间
B.3和4之间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 0.512 0.8
5 5 (4) -15 8 2
3.说出下列各式的值:
(1) - 81
2
9
(4)
3
125
3
5
(2) (-25) 25 (5) - 0.027 0.3
25 36
(3)
5 125 3 (6) 8 6
5 2
有限小数及无限循环小数
整数
有理数
实 数
分数
正整数 0 负整数 正分数 负分数
自然数
无理数
无限不循环小数
正无理数 负无理数
1.圆周率 及一些含有
的数
一般有三种情况 2.开不尽方的数
3.有一定的规律,但不循环的无限小数
把下列各数分别填入相应的集合内:
3
2,
20 , 3
1 , 4
4 , 9
7,
,
0,
5 , 2
5,
2,
3 8,
a b 0 c
(1) a 2 - |a-b|+|c-a|+ (b c) 2
(2)|a+b-c|+|b-2c|+
2 (b a ) 2 -2 a
第八组题目: 1.如果一个数的平方根为a+1和2a-7, 求这个数
2.已知等腰三角形两边长a,b满足
2a 3b 5 (2a 3b 13) 2 0
乘方
互 为 逆 运 算
有理数
开方
实数
无理数
平方根
立方根
你知道算术平方根、平方根、立方根联系和区别吗? 算术平方根
表示方法
平方根
立方根
3
a
a的取值
性
正数 0 负数
a≥
0 没有
0
a a≥ 0
0 没有
a
a 是任何数
0 负数(一个)
正数(一个) 互为相反数(两个) 正数(一个)
质
开方 是本身
0,1
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
x 2 2 x 3 ,求
y x的算数平方根
x 已知: 、y满足
求
x 2 y 3 (2 x 3 y 5) 0 ,
2
x 8y
的平方根
第五组题目:
. . . . .
3
x 2, 且( y 1) z 3 0, 求 x y z 的值。
3 3
a
3
4 4 (-4) 4 所以 a a
3
3 3a a =2 Nhomakorabeaa
0
a
3
2
a
a 0
a
a 0 a 0
(a 0)
a
3
3
a
a
a为任何数 a为任何数
a
3
第二组题目:
1.计算:
(1) 1.44 0.16 1 3 8
3
(2) 3
1.要注意算术平方根与平方根的 表示的区别 2.进行开方运算时要注意审题,即 是开平方还是开立方. 3.注意 a与 a中被开方数a是非负数 4.在解有关x的方程时,要看x是否具有实际 意义,若x有意义,则一般取正数,若没有实 际意义,则按平方根或立方根的定义求值.
-√2
-1 0
1 √2
2
实数与数轴上的点是一一对应关系.
b a c a c c b c
a b a a b
a
b c a b b
b
c a
对比两个图形,你能直接观察验证出勾股定理吗?
提示:图中的两个大正方形面积相等吗? 两幅图中彩色的四个直角三角形总面积呢? 空白部分的面积呢?那剩余的
通过这节课的学习,你有何收获? 通过这节课的学习,你有何收获?
0
0,1,-1
1.说出下列各数的平方根和算术平方根:
(1) 169 (2) 0.16
13和13
0.4和0.4 7 5 5 2 (4) 10 10和10 (5) 2 和 9 3 3
2.说出下列各数的立方根:
14 8 8 (3) 2 和 25 5 5
(1) -0.008 0.2
27 (3) 64
0.3737737773
(相邻两个3之间的7的个数逐次加1)
有理数集合 无理数集合
判断:下列说法是否正确:
1.实数不是有理数就是无理数。 ( )
2.无限小数都是无理数。
3.无理数都是无限小数。
(
(
)
)
4.带根号的数都是无理数。
(
)
)
5.两个无理数之和一定是无理数。(
6.所有的有理数都可以在数轴上表示,反过来, 数轴上所有的点都表示有理数。( )
2.解方程:
6
6
3
(1)(x-1) 125
3
(2)2 3 x 1 8
2
第三组题目:
1.当x X≥0.5 时,2x-1没有平方根
3 2.若 3 ,则x的值是 (x-7) 7 x
X=7
3.一个正数x的两个平方根分别是a+1和a-3,则
a=
,x= 1
4
第四组题目:
已知:y
求此等腰三角形的周长
3.已知y= 求2(x+y)的平 方根 4.已知5+ 11 的小数部分为 m, 7- 23 的小数部分为n,求m+n的值 5.已知满足 3 a a 4 a ,求a的值
1 2x 1 1 2x 2
如图是两个边长1的正方形 拼成的长方形, 其面积是2. √2 现剪下两个角重新拼成一个 正方形, 新正方形的边长是_____ √2 下图数轴中, 正方形的对角线长 为____, 以原点为圆心, 对角线长为 √2 半径画弧截得一点, 该点 与原点的距离是____, √2 √2 该点表示的数是____. √2
第一组题目:
1.判断对错: (1) 都没有意义( ) 2,2 (2)0.01是0.1的算数平方根( ) 2.填空: (1) 的立方根是( 64 ),
2
2
3 的平方根是 27
(
(2)
) 3 32
2
3
(-3)
3
所以 a 2
2
a
2 ( 3) 3 ( 4)= 4
所以( a)
2 2 3 3
第六组题目:
1.已知 x 和 x 的和为0,则x的范围是为( B ) A.任意实数 B.非正实数 C .非负实数 D. 0 2.若- m =
3
3
7 8
,则m的值是
( B
)
A
7 8
B
7 8
C
7 8
343 D 512
)
3. 若 ( x 2) 2 x 成立,则x的取值范围是( A A.x≤2 B. x≥2 C. 0 ≤x ≤ 2 D.任意实数
考点综述: 对于实数,中考中重点考查平方根、算术平 方根、立方根、无理数、实数的概念,用有 理数估计无理数的近似值,以及根式的化简、 实数的简单四则运算。主要题型以填空、选 择、计算为主,主要考查方向以概念理解及 基础知识的运用能力为主,在考查基础知识、 基本技能、基本方法的同时,会加强考查运 用所学知识分析和解决实际问题的能力。
2
3 4.若 3 (4 x) =4-x成立,则x的取值范围是( D ) A.x≤4 B. x≥4 C. 0 ≤x ≤ 4 D.任意实数
第七组题目:
一.求下列各式的值: 1.
( 2 1) 2
2. (1 3 ) 2
3.
(1 x)
2
(x≥1)
4.
( x 1) (x≤1)
2
二.已知实数a、b、c,在数轴上的位置如下图所示, 试化简: