邛崃市2015年八年级数学学科质量监测模拟试题六及参考答案(1)
邛崃市2015年八年级数学学科质量监测模拟试题八无答案0
2015数学质量监测模拟 第 1 页 共 3 页邛崃市2015年八年级数学学科质量监测模拟试题八数 学注意事项:1.全卷总分100分,考试时间100分钟.2.在作答前,考生务必将自己的姓名、准考证号涂写在答题卡上.3.选择题部分必须使用2 B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚.4.请按照题号在答题卡上各题对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸上、试题卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.第Ⅰ卷(选择题,共30分)一、选择题(本大题共l0个小题,每小题3分,共30分.每小题均有四个选项,其中只有一项符合题目要求)1、下列四个实数中,是无理数的为( ▲ )A .-2B .3C .72D .0 2、点(1,-1)在平面直角坐标系中所在的象限是( ▲ )A.第一象限B.第二象限C.第三象限D.第四象限3、下列计算正确的是( )(A )2+3=5; (B )=-3333;(C )752863=+; (D )942188+=+ A. 5 B. -5 C. 6 D. -64、下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是(▲ )A. 3,4,5B. 4,5,6C. 6,8,10D. 5,12,13 5、在函数xx y 2+=中,自变量x 的取值范围是( ▲ ) A .2-≥x 且0x ≠ B .2->x 且0x ≠ C .0>xD .2-≤x6、如图,三个正方形恰好围成一个直角三角形,其中两个正方形的面积为S 1=169,S 2=144,则另一个正方形面积S 3等于( )A .25B .30C .50D .1007、已知|a|=5,2b =7,且|a+b|=a+b ,则a -b 的值为 ( )A.2或12B.2或-12C.-2或12D.-2或-12 8、一次函数y=-x+1的图象是( )2015数学质量监测模拟 第 2 页 共 3 页9、如图,P 是矩形ABCD 内一点,PA =3,PD =4,PC =5,则PB 为( )A .4.5 B...4 10、小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后, 小亮骑自行车沿相同路线行进,两人均匀速前行,先后到达目的地.他们的路程差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小文后到达青少年宫; ②小文每分钟走80米,小亮每分钟行驶200米; ③a=24; ④b=480。
成都邛崃市2015-2016年八年级上期中调研考试数学试题含答案
13.若直角三角形的两直角边长为 a、b,且满足
,则该直角三角形的斜边
长为
.
14.若点 P(x,y)的坐标满足 x+y=xy,则称点 P 为“和谐点”。请写出一个“和谐点”的坐标,
答:
.
三、解答题(每小题 6 分,共 18分)
15.计算:(1)9 32 ( 3) 0 2 2 8 .
A.6
B.8
C.10
) D.0
D.以上都不对
3.在平面直角坐标系中,点 M(-1,3)关于 x 轴对称的点在( )
A.第一象限 B.第二象限 C.第三象限
D.第四象限
4.如图,矩形 OABC 的边 OA 长为 2,边 AB 长为 1,OA 在数轴上,以原点 O 为圆心,对角线 OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
D.2 是 4 的平方根
7.在平面直角坐标系中,点 P(-2,x2 +1)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
8.若正比例函数 y=kx 的图象经过点(1,2),则 k 的值为( )
A.
1 2
B. -2
C.
1 2
D. 2
9.在△ABC 中,∠BAC=90°,AB=3,AC=4.AD 平分∠BAC 交 BC 于 D,则 BD 的长为( )
五、解答题(19题 10分,20题 10分,共 20分)
19.在如图所示的正方形网格中,每个小正方形的边长为 1,格点三角形(顶点是网格线的交点的 三角形)ABC 的顶点 A,C 的坐标分别为( 4 ,5),( 1 ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系; ⑵请作出△ABC 关于 y 轴对称的△A′B′C′;
2015年秋学期期中学业质量测试八年级数学试卷附答案
2015年秋学期期中学业质量测试八年级数学试卷注意:1.本试卷共6页,满分为150分,考试时间为120分钟. 2.答题前,考生务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置上. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分) 1.下列交通标志是轴对称图形的是( ▲ )A .B .C .D .2.在下列实数中,无理数是 ( ▲ )A .227BC .2π+ D3. 下列各组数是勾股数的是( ▲ )A . 5,12,13B . 4,5,6C . 7,12,13D . 9,12,134. 在三角形面积公式S=12ah 中,a=2,下列说法正确的是( ▲ ) A . S 、a 是变量,12h 是常量 B .S 、h 是变量,12是常量C . S 、h 是变量,12a 是常量D .S 、h 、a 是变量,12是常量5. 若一个三角形成轴对称图形,且有一个内角为60°,则这个三角形一定是( ▲ ) A .直角三角形 B .等腰直角三角形C .等边三角形D .底和腰不相等的等腰三角形6.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( ▲ )二.填空题(本大题共10小题,每小题3分,共30分)7.16的算术平方根是 ▲.B. A .C.D . (1) (2) (3) (4)(第6题图)8.奥运火炬接力传递的总路程约为137000000米,这个数用科学记数法表示为▲米.9.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈▲.10.已知等腰三角形的两边长分别为2和5,则它的周长为▲.11.有一个数值转换机,原理如下:(第11题图)当输入的x=81时,输出的y= ▲.12.如图,在△ABC中,∠C=28°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= ▲°.B(第12题图)(第13题图)(第14题图)(第15题图)13. 如图,点A的坐标是(1,1),如果将线段OA绕点O按逆时针方向旋转135°,那么点A旋转后的对应点的坐标是▲.14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、4、2、3,则最大正方形E的面积是▲.15.如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.若CD=1,则EF的长为▲.16.在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体. 一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是▲分米.三.解答题(本大题共10小题,共102分)17.(本题满分12分)求下列各式中的x:(第16题图)-3-2-154321(1) 已知3216x =-,求x ; (2)18. (本题满分8分)作图题(不写作法,保留作图痕迹):(1)如图,已知△ABC ,∠C =Rt ∠,AC <BC ,D 为BC 上一点,且到A 、B 两点的距离相等. 用直尺和圆规,作出点D 的位置;(第18题①图)(2)用直尺和圆规在如图所示的数轴上作出表示的点.(第18题②图)19. (本题满分8分)如图,把长方形纸片ABCD 沿EF 折叠后,使得点D 与点B 重合,点C 落在点C ′的位置上.(1)△BEF 是等腰三角形吗?试说明理由; (2)若AB =8,DE =10,求CF 的长度.B(第19题图)20. (本题满分8分)在弹性限度内,弹簧长度y (cm )是所挂物体的质量x (g )的一次函数.已知一根弹簧挂10g 物体时的长度为11cm ,挂30g 物体时的长度为15cm . (1)求y 与x 的函数表达式;(2)当所挂物体的质量为14g 时,求弹簧的长度.21.(本题满分10分)按下列要求确定点的坐标.(1)已知点A 在第四象限,且到x 轴距离为1,到y 轴距离为5,求点A 的坐标; (2)已知点B (a -1,-2a +8),且点B 在第一、三象限的角平分线上,求a ;(3)试判断(1)、(2)中的点A、B与坐标原点O围成的△ABO是何种特殊三角形?并说明理由.(第21题图)22.(本题满分10分)如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为▲;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.(第22题图)23.(本题满分10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a).∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.图1 图2(第23题图)请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°.求证:a2+b2=c2.证明:24.(本题满分10分)如图,在△ABC中,CE⊥BA的延长线于E,BF⊥CA的延长线于F,M为BC的中点,分别连接ME、MF、EF.(1)若EF=3,BC=8,求△EFM的周长;(2)若∠ABC=28°,∠ACB=48°,求△EFM的三个内角的度数.FB(第24题图)25.(本题满分12分)如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.(1)若∠APC=30°,求证:AB=AP;(2)若AP=8,BP=16,求AC的长;(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M. 你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.B(第25题图)26.(本题满分14分)如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.(1)试求点M的坐标和△AOM的周长;(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线..CO 方向匀速运动,设运动时间为t秒(t>0).①若△POM的面积等于△AOM的面积的一半,试求t的值;②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.(第26题图)(备用图)2015年秋学期期末学业质量测试八年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.C ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.4; 8.1.37×108; 9.3.142; 10.12; 11. 12.96;13.( ; 14.38; 15. 16. 149得3分; 13或157得2分 .三、解答题(共10题,102分.下列答案....仅供参考....,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)38x =-(3分);2x =-(3分).(2)(本小题6分)原式=3-2+5(3分,每对1个得1分)=6(3分). 18.(本题满分8分)(1)(本小题4分)作图正确(3分),标出点D (1分).(2)(本小题4分)作图正确(3分),标出点(1分)(的点且正确得2分) 19. (本题满分8分)(1)(本小题4分)(课本63页改编)△BEF 是等腰三角形(1分);沿EF 折叠得∠DEF =∠BEF (1分),由长方形纸片的上下两边平行,可得∠DEF =∠BFE (1分),所以∠BEF=∠BFE ,根据“等角对等边”可知△BEF 是等腰三角形(1分); (2)(本小题4分)由勾股定理得AE=6(2分);CF=6(2分)。
2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案
2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案导读:就爱阅读网友为您分享以下“2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷附答案”资讯,希望对您有所帮助,感谢您对的支持!义务教育八年级数学第1页(共11页)2015—2016学年度第一学期期末教学质量检测义务教育八年级数学试卷(本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,全卷满分120分,考试时间120分钟。
)第Ⅰ卷(选择题共30分)一、选择题(本大题10个小题,每小题3分,共30分。
请在每小题给出的4个选项中,将唯一正确的答案序号填在题后括号里。
)1.下列各数中,无理数的个数有( ) -0.2020020002,2,12π2,-4, 23 A .1个 B .2个 C .3个 D .4个2.下列说法正确的是() A .9的算术平方根是3 B .0.16的平方根是0.4 C .0没有立方根 D .1的立方根是±1 3.下列真命题中,逆命题也是真命题的是()A .全等三角形的对应角都相等; B .如果两个实数相等,那么这两个实数的平方相等; C .5,12,13是勾股数;D .如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.4.已知a 、b 、c 是△ABC 的三边,a 2-2ab +b 2=0且2b 2-2c 2=0,那么△ABC 的形状是()A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形5.下列运算中错误的是()A .3xy -(x 2-2xy ) =5xy -x 2B .5x (2x 2-y ) =10x 3-5xyC .5mn (2m +3n -1) =10m 2n +15mn 2-1D .[(a 2b ) 2-1](a +b ) =a 5b 2+a 4b 3-a -b 6.如图1,AB =AC ,CF ⊥AB 于F ,BE ⊥AC 于E ,CF 与BE 交于点D .有下列结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上;④点C 在AB 的中垂线上. 以上结论正确的有( )个. A .1B .2C .3D .47.若3x =4,9y =7,则3x -2y 的值为( ) A .47 B 74C .-3 D278.如图2是某商场销售雨伞的情况,从折线图中我们可以看到雨伞销售量最大的季度是() A .第一季度B .第二季度 C .第三季度D .第四季度9.如图3,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是() A .2cm 2 B .2a cm 2 C .4a cm 2 D .(a 2-1)cm 210.如图图1义务教育八年级数学第3页(共11页)A .2m B .3m C .6m D .9m第Ⅱ卷(非选择题共90分)二、填空题(本大题6个小题,每小题3分,共18分。
2015年学业水平模拟考试数学试题附答案
2015年学业水平模拟考试数学试题一、选择题:本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在括号内.每小题选对得3分,选错、不选或选出的答案超过一个均记0分,满分36分。
1、下列一元二次方程中,没有实数根的是( )A.2210x x +-= B.2x +22x+2=0 C.2210x x ++= D.220x x -++=2、菱形的对角线长为8cm 和6cm ,则该菱形面积为( )A .48 cm 2B .24 cm 2C .25 cm 2D .14 cm 23、下列各式计算正确的是( )A .3x -2x =1B .a 2+a 2=a 4C .a 5÷a 5=a D . a 3•a 2=a 54、一次函数y =kx +b 的图象如图所示,则方程kx +b =0的解为() A .x =2 B .y =2 C .x =-1 D .y =-15、把分式)0(≠++y x yx x中的分子、分母的x 、y 同时扩大2倍,那么分式的值( )A. 扩大2倍B. 缩小2倍C. 改变原来的14D. 不改变6、给出下列命题:(1)平行四边形的对角线互相平分; (2)对角线相等的四边形是矩形;(3)菱形的对角线互相垂直平分; (4)对角线互相垂直的四边形是菱形. 其中,真命题的个数是( )A.4 B.3 C.2 D.17、如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为( ) A .13 B .12 C .22D .3 8、在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D9、下列各函数中,y 随x 增大而增大的是( ) ①1y x =-+. ②3y x=-(x < 0) ③21y x =+. ④23y x =- A .①② B .②③ C .②④ D .①③10、若抛物线22y x x c =-+与y 轴的交点坐标为(0,3)-,则下列说法不正确的是( ) A.抛物线的开口向上 B.抛物线的对称轴是直线1x = C.当1x =时y 的最大值为4- D.抛物线与x 轴的交点坐标为(1,0)-、(3,0) 11、 如图,D 是△ABC 一边BC上一点,连接AD,使 △ABC ∽ △DBA 的条件是( ). A . AC :BC=AD :BD B . AC :BC=AB :AD C . AB 2=CD·BC D . AB 2=BD·BCDAC B12、反比例函数k y x=的图象如左图所示,那么二次函数221y kx k x =--的图象大致为( ) y y y yx x x x二、填空题:本大题共6个小题,每小题填对最后结果得4分,满分24分。
2014-2015学年度邛崃市数学二诊试题及参考答案01
邛崃市2015届初中第二次诊断性检测数 学注意事项:1.全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2.考生必须在答题卡上作答,答在试题卷、草稿纸上无效。
3.在答题卡上作答时,考生需首先准确填写自己的姓名、准考证号,并用2B 铅笔准确填涂好自己的准考证号。
A 卷的第Ⅰ卷为选择题,用2B 铅笔填涂作答;A 卷的第Ⅱ卷以及B 卷中横线及框内上注有 “▲”的地方,是需要考生在答题卡上作答的内容或问题,用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
请按照题号在各题目对应的答题区域内作答,超出答题区域书写的答案无效。
4.保持答题卡面清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1. 在实数0、2-、3-、1-中,最小的是( ▲ ) A .0B .2-C .|3|-D .-12.如图,由几个小正方体组成的立体图形的左视图是( ▲ )3.某种流感病毒的直径是约为000043.0毫米,用科学记数法表示为( ▲ )毫米 A. 41043.0-⨯ B. 5103.4⨯ C. 5103.4-⨯ D.6103.4-⨯ 4.下列运算正确的是( ▲ )A. 632a a a =⋅ B.44)(a a =- C. 532a a a =+ D.532)(a a =5. 下列图形中,是中心对称图形的是 ( ▲)A .B .C .D .6.若分式11+x 有意义,则x 的取值范围是( ▲ ) A .1≠x B .1-≠x C .1-≥x D .1->x7.如图,已知CD AB //,CE 交AB 于点F ,若 20=∠E ,45=∠C ,则A ∠的度数为( ▲ )A. B. C.D.A .5°B .15°C .25°D .35° 8.某班抽取6名同学参加体能测试,成绩如下:85,95,85,80,80,85.下列表述错误..是( ▲ )A .众数是85B .平均数是85C .方差是20D .极差是15 9. 将2x y =向上平移2个单位后所得的抛物线的解析式为( ▲ ) A .y=x 2+2B .y=x 2-2C .y=(x+2)2D .y=(x-2)210.如图,AB 是O 的直径,∠ABC=300,6=OA ,则扇形AOC 面积为( ▲ )A .π2B .π4C . π6D .π8第II 卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,把一块含有30°的三角板的两个顶点放在一长方形纸片的对边上.如果∠1=20°,那么∠2的度数是 ▲ 度.12.若x =1是一元二次方程x 2+x +c =0的一个解,则=2c ▲ .13.如图,△ABC 的外接圆的圆心坐标为 ▲ .14.如图,ABC △与A B C '''△是位似图形,且顶点都在格点上,则位似中心的坐标是▲ .yx O AB CA 'B 'C '1 2 3 4 5 6 7 8 910 11 12 12 3 4 5 6 7 8 9 10 11 21(第11题图)三、解答题(本大题共6个小题,共54分。
2015-2016学年八年级下阶段性教学水平数学测试卷及答案
页脚初中二学期教学水平测试卷一、选择题(本题共16小题,每小题3分,共48分。
每小题都有A 、B 、C 、D 四个选项,其中只有一个选项是正确的。
) 1.若分式21+-x x 的值为零,则x 等于A .x =0B .x =1C .x =-2D .x =-12.将分式ba b a 5.021+-中分子与分母的各项系数都化成整数,正确的是 A .ba ba +-22 B .b a b a +-2 C .b a b a +-222 D .b a b a +-3.某种流感病毒的直径为0.00000008m ,这个数据用科学记数法表示为 A .8×10-6m B .8×10-7m C .8×10-8m D .8×10-9m4.函数1--=x xy 中自变量x 的取值围是 A .x ≥0 B .x <0且x ≠1 C .x <0 D .x ≥0且x ≠1 5.一次函数21y x =-的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 6.如图,AD ⊥BC ,D 是BC 的中点,那么下列结论错误..的是 A .△ABD ≌△ACD B .∠B=∠CC .△ABC 是等腰三角形页脚D .△ABC 是等边三角形7.若点(-3,y 1),(-2,y 2),(-1,y 3)在反比例函数xy 1-=图像上, 则下列结论正确的是A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1 8.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门 校课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为 A .33 B .36 C .39 D .429.下列命题中,逆命题是假命题的是A .全等三角形的对应角相等B .直角三角形两锐角互余C .全等三角形的对应边相等D .两直线平行,同位角相等 10.用尺规作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧分别交OA 、OB 于点C 、D , 再分别以点C 、D 为圆心,以大于CD 21长为半径画弧,两弧交于点P ,作射线OP ,由作法得 △OCP ≌△ODP 的根据是A .SASB .SSSC .AASD .ASA11.某校八年级1班一个学习小组的7名同学在半期考试中数学成绩分别是:85,93,62,99,56,93,89,这七个数据的众数和中位数分别是A.93、89 B.93、93 C. 85、93 D.89、93 12.将一矩形纸对折再对折,然后沿着右图中的虚线剪下,打开,这个图形一定是一个A.三角形 B.矩形C.菱形 D.正方形13.等腰梯形两底的差是4,两腰的长也是4,则这个等腰梯形的两锐角都是A.750 B.600 C.450 D.30014. 如图,矩形ABCD中,BE、CF分别平分∠ABC和∠DCB,点E、F都在AD上,下列结论不正确...的是A.△ABE≌△DCFB.△ABE和△DCF都是等腰直角三角形C.四边形BCFE是等腰梯形D. E、F是AD的三等分点15. 一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了 2h,他再次点燃了蚊香,下列四个图像中,大致能表示蚊香长度y(cm)与所经过的时间x(h)之间的函数关系的是页脚页脚16. 如图,点p 是菱形ABCD 一点,PE ⊥AB ,PF ⊥AD ,垂足分别是E 和F ,若PE=PF ,下列说法不正确...的是 A .点P 一定在菱形ABCD 的对角线AC 上 B .可用H ·L 证明Rt △AEP ≌Rt △AFP C .AP 平分∠BADD .点P 一定是菱形ABCD 的两条对角线的交点 二、填空题(每小题4分,32共分)17.计算:(a -3)2(ab 2)-3= ▲ 。
2015年四川省成都市邛崃市中考数学一诊试卷及参考答案
2015年四川省成都市邛崃市中考数学一诊试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×1083.(3分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠25.(3分)下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5D.(﹣a)3÷(﹣a)=a2 6.(3分)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是107.(3分)用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.58.(3分)如图,⊙O的直径CD过弦EF的中点G,∠DCF=40°,则∠EOD等于()A.10°B.20°C.40°D.80°9.(3分)如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A.6 B.12 C.24 D.4810.(3分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A.x(x﹣10)=200 B.2x+2(x﹣10)=200 C.2x+2(x+10)=200 D.x(x+10)=200二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)不等式x+3<﹣1的解集是.12.(4分)如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)13.(4分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是.14.(4分)如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么cos ∠ABD的值是.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(12分)(1)计算:+||﹣(π﹣3)0+3tan30°=(2)解不等式组:.并写出该不等式组的最大整数解.16.(6分)先化简,再求值:÷(﹣x﹣2),其中x为﹣1≤x≤3的整数.17.(8分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)18.(8分)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,已知A(2,0),B(0,1),点C(﹣2,m)在直线AB上,反比例函数y=的图象经过点C.(1)求一次函数及反比例函数的解析式;(2)结合图象直接写出:当x<0时,不等式的解集.19.(10分)在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.20.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y轴、x 轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.一、填空(本大题5个小题,每小题4分,共20分.)21.(4分)已知m是方程x2﹣x﹣2=0的一个实数根,则代数式的值为.22.(4分)在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.23.(4分)如图,点A为直线y=﹣x上一点,过A作OA的垂线交双曲线y=(x <0)于点B,若OA2﹣AB2=12,则k的值为.24.(4分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB 的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S=5S△BDF,其中正确的结论序号是.△ABC25.(4分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n 的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.(8分)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?27.(10分)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.(1)求证:BC=CF;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.28.(12分)如图,二次函数y=﹣x2+mx+m+的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(1)当m=时,求tan∠ADH的值;(2)当60°≤∠ADB≤90°时,求m的变化范围;(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC 的距离.2015年四川省成都市邛崃市中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(3分)2014年3月5日,李克强总理在政府工作报告中指出:2013年全国城镇新增就业人数约13100000人,创历史新高,将数字13100000用科学记数法表示为()A.13.1×106B.1.31×107C.1.31×108D.0.131×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:13100000=1.31×1073.(3分)由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图象判定则可.【解答】解:从正面可看到从左往右三列小正方形的个数为:1,1,2.故选:C.4.(3分)函数y=中自变量x的取值范围是()A.x>2 B.x≥2 C.x≤2 D.x≠2【分析】二次根式的被开方数大于等于零.【解答】解:依题意,得2﹣x≥0,解得x≤2.故选:C.5.(3分)下列计算正确的是()A.a+3a=4a2B.a4•a4=2a4C.(a2)3=a5D.(﹣a)3÷(﹣a)=a2【分析】计算出选项中各个式子的正确结果,即可判断哪个选项是正确的.【解答】解:a+3a=4a,a4•a4=a8 ,(a2)3=a6,(﹣a)3÷(﹣a)=(﹣a)2=a2,故选:D.6.(3分)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是10【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A.极差=14﹣7=7,结论错误,故A不符合题意;B.众数为7,结论正确,故B符合题意;C.中位数为8.5,结论错误,故C不符合题意;D.平均数是9,结论错误,故D不符合题意;故选:B.7.(3分)用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.5【分析】根据扇形统计图可以得出“陆地”部分占地球总面积的比例,根据这个比例即可求出落在陆地的概率.【解答】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选:B.8.(3分)如图,⊙O的直径CD过弦EF的中点G,∠DCF=40°,则∠EOD等于()A.10°B.20°C.40°D.80°【分析】由垂径定理得出,再由圆周角定理即可得出结果.【解答】解:∵⊙O的直径CD过弦EF的中点G,∴,∴∠EOD=2∠DCF=80°;故选:D.9.(3分)如图,菱形ABCD的周长是20,对角线AC,BD相交于点O,若BD=6,则菱形ABCD的面积是()A.6 B.12 C.24 D.48【分析】由菱形ABCD的周长是20,即可求得AB=5,然后由股定理即可求得OA 的长,继而求得AC的长,则可求得菱形ABCD的面积.【解答】解:∵菱形ABCD的周长是20,∴AB=20÷4=5,AC⊥BD,OB=BD=3,∴OA==4,∴AC=2OA=8,∴菱形ABCD的面积是:AC•BD=×8×6=24.故选:C.10.(3分)某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为()A.x(x﹣10)=200 B.2x+2(x﹣10)=200 C.2x+2(x+10)=200 D.x(x+10)=200【分析】根据花圃的面积为200列出方程即可.【解答】解:∵花圃的长比宽多10米,花圃的宽为x米,∴长为(x+10)米,∵花圃的面积为200,∴可列方程为x(x+10)=200.故选:D.二、填空题(本大题共4个小题,每小题4分,共16分)11.(4分)不等式x+3<﹣1的解集是x<﹣4.【分析】移项、合并同类项即可求解.【解答】解:移项,得:x<﹣1﹣3,合并同类项,得:x<﹣4.故答案是:x<﹣4.12.(4分)如图,添加一个条件:∠ADE=∠ACB,使△ADE∽△ACB,(写出一个即可)【分析】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件.【解答】解:由题意得,∠A=∠A(公共角),则可添加:∠ADE=∠ACB,利用两角法可判定△ADE∽△ACB.故答案可为:∠ADE=∠ACB(答案不唯一).13.(4分)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是50°.【分析】根据平行线性质由AB∥CD得到∠1=∠BCD=40°,再根据垂直的定义得∠CBD=90°,然后利用三角形内角和定理计算∠2的度数.【解答】解:∵AB∥CD,∴∠1=∠BCD=40°,∵DB⊥BC,∴∠CBD=90°,∴∠2=90°﹣40°=50°.故答案为50°.14.(4分)如图,已知AB是⊙O的直径,弦CD⊥AB,AC=2,BC=1,那么cos∠ABD的值是.【分析】由圆周角定理得出∠ACB=90°,∠ABD=∠ABC,由勾股定理求出AB,因而求sin∠ABD的值的问题,就可以转化为求∠ABC的三角函数的值的问题.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∴AB==3,∵CD⊥AB,∴,∴∠ABD=∠ABC,∴cos∠ABD=cos∠ABC==,故答案为:.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(12分)(1)计算:+||﹣(π﹣3)0+3tan30°=3+2(2)解不等式组:.并写出该不等式组的最大整数解.【分析】(1)将=4,||=,(π﹣3)0=1,tan30°=代入到原式,再利用实数的运算法则即可得出结论;(2)解不等式组得出3≤x<5,从而得出结论.【解答】解:(1)原式=4+﹣1+3×,=4+﹣1+,=3+2.故答案为:3+2.(2)解,得,即3≤x<5.故该不等式组的最大整数解是4.16.(6分)先化简,再求值:÷(﹣x﹣2),其中x为﹣1≤x≤3的整数.【分析】先根据分式混合运算的法则把原式进行化简,再选出合适的x的值代入进行计算即可.【解答】解:原式=÷=•=,∵x为2时,原代数式无意义,∴x=﹣1或0或1或3,当x=﹣1时,原式=﹣.17.(8分)如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)【分析】易得∠A的度数为60°,利用60°正切值可得BC的值.【解答】解:∵CE∥AB,∴∠ECB=90°∴∠A=∠ECA=60°,∴BC=AB×tan60°=500×=500m.答:该军舰行驶的路程为500m.18.(8分)如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与x轴交于点A,与y轴交于点B,已知A(2,0),B(0,1),点C(﹣2,m)在直线AB上,反比例函数y=的图象经过点C.(1)求一次函数及反比例函数的解析式;(2)结合图象直接写出:当x<0时,不等式的解集.【分析】(1)将A,B的坐标代入一次函数解析式中,求出a,b的值,得出一次函数解析式;把点C的坐标代入一次函数解析式求出m的值,确定出反比例函数式;(2)结合图象可得出当x<﹣2时,不等式.【解答】解:(1)依题意,得解得∴一次函数的解析式为.∵点C(﹣2,m)在直线AB上,∴,把C(﹣2,2)代入反比例函数y=中,得k=﹣4.∴反比例函数的解析式为.(2)如图,结合图象可知:当x<0时,不等式的解集为x<﹣2.19.(10分)在一副扑克牌中,拿出红桃2、红桃3、红桃4、红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果即可.(2)从数对中找出方程x+y=5的解,然后根据概率公式求出该事件的概率即可解答.【解答】解:(1)出现的情况如下:一共有16种.(2)数对(2,3),(3,2)是方程x+y=5的解,所以P(和等于5)==.20.(10分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.易证:CE=CF.(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE,BE,GD三线段之间的数量关系,并证明你的结论.(2)运用(1)中解答所积累的经验和知识,完成下面两题:①如图2,在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α,∠ECG=β,试探索当α和β满足什么关系时,图1中GE,BE,GD三线段之间的关系仍然成立,并说明理由.②在平面直角坐标中,边长为1的正方形OABC的两顶点A,C分别在y轴、x 轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图3).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?若不变,请直接写出结论.【分析】(1)由SAS证得△EBC≌△FDC,再由SAS证得△ECG≌△FCG,可得到EG=FG,即可得出结果;(2)①延长AD到F点,使DF=BE,连接CF,可证△EBC≌△FDC,结合条件可证得△ECG≌△FCG,故EG=GF,可得出结论;②延长BA交y轴于E点,可证得△OAE≌△OCN,进一步可证得△OME≌△OMN,可求得MN=AM+AE【解答】解:(1)GE=BE+GD,理由如下:∵四边形ABCD是正方形,F是AD延长线上一点,∴BC=DC,∠FDC=∠EBC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∵∠GCE=45°,∴∠BCE+∠DCG=90°﹣45°=45°,∴∠DCG+∠DCF=45°,∴∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;(2)①α=2β时,GE=BE+GD;理由如下:延长AD到F点,使DF=BE,连接CF,如图(2)所示:∵∠B=∠D=90°,∴∠B=∠FDC=90°,在△EBC和△FDC中,,∴△EBC≌△FDC(SAS),∴∠DCF=∠BCE,CE=CF,∴∠BCE+∠DCG=∠GCF,当α=2β时,∠ECG=∠FCG,在△ECG和△FCG中,,∴△ECG≌△FCG(SAS),∴EG=GF,∴GE=BE+GD;②在旋转正方形OABC的过程中,P值无变化;延长BA交y轴于E点,如图(3)所示:则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOM,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.在△OAE和△OCN中,∴△OAE≌△OCN(ASA).∴OE=ON,AE=CN.在△OME和△OMN中,.∴△OME≌△OMN(SAS).∴MN=ME=AM+AE.∴MN=AM+CN,∴P=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.∴在旋转正方形OABC的过程中,P值无变化.一、填空(本大题5个小题,每小题4分,共20分.)21.(4分)已知m是方程x2﹣x﹣2=0的一个实数根,则代数式的值为4.【分析】先把所求的分式变形得到(m2﹣m)(m﹣+1)=(m2﹣m)•,再根据一元二次方程的解的定义得到m2﹣m﹣2=0,变形得到m2﹣m=2和m2﹣2=m,然后把它们整体代入所求的代数式中即可得到代数式的值.【解答】解:∵m是方程x2﹣x﹣2=0的一个实数根,∴m2﹣m﹣2=0,∴m2﹣m=2,m2﹣2=m,∴(m2﹣m)(m﹣+1)=(m2﹣m)•=2×=2×2=4.故答案为4.22.(4分)在正方形ABCD中,N是DC的中点,M是AD上异于D的点,且∠NMB=∠MBC,则tan∠ABM=.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM===.故答案是:.23.(4分)如图,点A为直线y=﹣x上一点,过A作OA的垂线交双曲线y=(x <0)于点B,若OA2﹣AB2=12,则k的值为﹣6.【分析】延长AB交x轴于C点,作AF⊥x轴于F点,BE⊥x轴于E点,由于直线y=﹣x为第二、四象限的角平分线,则△AOB、△BEC为等腰直角三角形,根据等腰直角三角形的性质得AC=AO=AF,BC=BE=CE,AF=OC,可得到AB=AC﹣BC=(AF﹣BE),利用OA2﹣AB2=12变形得2AF•BE﹣BE2=6,即BE(2AF ﹣BE)=6,由于OC=2AF,BE=EC,所以BE•OE=6,则得到B点的横纵坐标之积为﹣6,从而得到k的值为﹣6.【解答】解:延长AB交x轴于C点,作AF⊥x轴于F点,BE⊥x轴于E点,如图,∵点A为直线y=﹣x上一点,∴∠AOC=90°,∵AB⊥直线y=﹣x,∴△AOC、△BEC为等腰直角三角形,∴AC=AO=AF,BC=BE=CE,AF=OC,∴AB=AC﹣BC=(AF﹣BE),∵OA2﹣AB2=12,∴(AF)2﹣[(AF﹣BE)]2=12,整理得2AF•BE﹣BE2=6,∴BE(2AF﹣BE)=6,∴BE(OC﹣CE)=6,即BE•OE=6,设B点坐标为(x,y),则BE=y,OE=﹣x,∴BE•OE=﹣xy=6,∴xy=﹣6,∴k=﹣6.故答案为﹣6.24.(4分)如图,在Rt△ABC中,∠ABC=90°,BA=BC.点D是AB的中点,连接CD,过点B作BG丄CD,分别交CD、CA于点E、F,与过点A且垂直于AB 的直线相交于点G,连接DF.给出以下四个结论:①;②点F是GE的中点;③AF=AB;④S=5S△BDF,其中正确的结论序号是①③.△ABC【分析】首先根据题意易证得△AFG∽△CFB,根据相似三角形的对应边成比例与BA=BC,继而证得正确;由点D是AB的中点,易证得BC=2BD,由等角的余角相等,可得∠DBE=∠BCD,即可得AG=AB,继而可得FG=BF;即可得AF=AC,又由等腰直角三角形的性质,可得AC=AB,即可求得AF=AB;=6S△BDF.则可得S△ABC【解答】解:∵在Rt△ABC中,∠ABC=90°,∴AB⊥BC,AG⊥AB,∴AG∥BC,∴△AFG∽△CFB,∴,∵BA=BC,∴,故①正确;∵∠ABC=90°,BG⊥CD,∴∠DBE+∠BDE=∠BDE+∠BCD=90°,∴∠DBE=∠BCD,在△ABG和△BCD中,故△ABG≌△BCD(ASA),则AG=BD,∵AB=CB,点D是AB的中点,∴BD=AB=CB,∵tan∠BCD==,∴在Rt△ABG中,tan∠DBE==,∵=,∴FG=FB,∵GE≠BF,∴点F不是GE的中点.故②错误;∵△AFG∽△CFB,∴AF:CF=AG:BC=1:2,∴AF=AC,∵AC=AB,∴AF=AB,故③正确;∵BD=AB,AF=AC,∴S=6S△BDF,△ABC故④错误.故答案为:①③.25.(4分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△A n B n C n的顶点B n、C n在圆上.如图1,当n=1时,正三角形的边长a1=;如图2,当n=2时,正三角形的边长a2=;如图3,正三角形的边长a n=(用含n的代数式表示).【分析】(1)设PQ与B1C1交于点D,连接OB1,由特殊角的三角函数值可得,OD=A1D﹣OA1=a1﹣1,再由勾股定理即可求出a1的值;(2)设PQ与B2C2交于点E,连接OB2,由特殊角的三角函数值可得OE=2A1A2﹣OA1=a2﹣1,再由Rt△OB2E勾股定理即可求出a2的值;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中利用勾股定理可得,a n=.【解答】解:(1)设PQ与B1C1交于点D,连接OB1,则OD=A1D﹣OA1=a1﹣1,在Rt△OB1D中,OB12=B1D2+OD2,即12=(a1)2+(a1﹣1)2,解得,a1=;(2)设PQ与B2C2交于点E,连接OB2,则OE=2A1A2﹣OA1=a2﹣1,在Rt△OB2E中,OB22=B2E2+OE2,即12=(a2)2+(a2﹣1)2,解得,a2=;(3)设PQ与B n C n交于点F,连接OBn,则OF=na n﹣1,在Rt△OB n F中,OB n2=B n F2+OF2,即12=(a n)2+(na n﹣1)2,解得,a n=.故答案为:,,.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.(8分)某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【分析】(1)根据题意可以得到y与x之间的函数关系式,然后将函数关系式化为顶点式,即可得到y的最大值;(2)根据第一问可以得到第一个月获得的最大利润,然后根据题意,即可得到相应的方程,从而可以得到第二个月里应该将销售单价定为多少.【解答】解:(1)由题意可得,y与x的函数关系式为:y=(x﹣50)•w=(x﹣50)•(﹣2x+240)=﹣2x2+340x ﹣12000;∵y=﹣2x2+340x﹣12000=﹣2(x﹣85)2+2450,∴当x=85时,y的值最大为2450元.(2)∵在第一个月里,按使y获得最大值的销售单价进行销售所获利润为2450元,∴第1个月还有3000﹣2450=550元的投资成本没有收回.∴要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,∴﹣2(x﹣85)2+2450=2250,解得,x1=75,x2=95.根据题意,x2=95不合题意应舍去.答:当销售单价为75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.27.(10分)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.(1)求证:BC=CF;(2)若AD=6,DE=8,求BE的长;(3)求证:AF+2DF=AB.【分析】(1)根据切线的性质首先得出CO⊥ED,再利用平行线的判定得出CO ∥AD,进而利用圆周角、圆心角定理得出BC=CF;(2)首先求出△EOC∽△EAD,进而得出r的长,即可求出BE的长;(3)利用全等三角形的判定得出Rt△AGC≌Rt△ADC,进而得出Rt△CGB≌Rt△CDF,即可求出AD+DF=AB得出答案即可.【解答】(1)证明:如图,连接OC,∵ED切⊙O于点C,∴CO⊥ED,∴CO∥AD,∴∠OCA=∠CAD,∵∠OCA=∠OAC,∴∠OAC=∠CAD,∴=,∴BC=CF;(2)解:在Rt△ADE中,∵AD=6,DE=8,根据勾股定理得AE=10,∵CO∥AD,∴△EOC∽△EAD,∴=,设⊙O的半径为r,∴OE=10﹣r,∴=,∴r=,∴BE=10﹣2r=;(3)证明:过C作CG⊥AB于G,∵∠OAC=∠CAD,AD⊥EC,∴CG=CD,在Rt△AGC和Rt△ADC中,∵,∴Rt△AGC≌Rt△ADC(HL),∴AG=AD,在Rt△CGB和Rt△CDF中,∴Rt△CGB≌Rt△CDF(HL),∴GB=DF,∵AG+GB=AB,∴AD+DF=AB,AF+DF+DF=AB,∴AF+2DF=AB.28.(12分)如图,二次函数y=﹣x2+mx+m+的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(1)当m=时,求tan∠ADH的值;(2)当60°≤∠ADB≤90°时,求m的变化范围;(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC 的距离.【分析】(1)先将m=代入y=﹣x2+mx+m+,运用配方法改写成顶点式,求出顶点D,与x轴的交点A与B的坐标,得到DH,AH的长度,再根据正切函数的定义即可求出tan∠ADH的值;(2)先将y=﹣x2+mx+m+运用配方法改写成顶点式,求出顶点D,与x轴的交点A与B的坐标,得到DH,AH的长度,再由抛物线的对称性可知当60°≤∠ADB≤90°时,30°≤∠ADH≤45°,然后根据30°,45°角的正切函数值及锐角三角函数的增减性即可求出m的变化范围;(3)设DH与BC交于点M,则点M的横坐标为m.先运用待定系数法求出直=S△ABC求线BC的解析式,则可用含m的代数式表示点M的坐标,再根据S△DBC=×6×=.设出m的值,从而得出A(﹣1,0),B(5,0),C(0,),S△ABC点D到直线BC的距离为d,根据S=BC•d=,即可求出d的值.△DBC【解答】解:(1)∵当m=时,y=﹣x2+x+2=﹣(x﹣)2+,∴顶点D(,),与x轴的交点A(﹣1,0),B(4,0),∴DH=,AH=﹣(﹣1)=,∴tan∠ADH===;(2)y=﹣x2+mx+m+=﹣(x﹣m)2+,∴顶点D(m,),令y=﹣x2+mx+m+=0,解得:x=﹣1或2m+1则与x轴的交点A(﹣1,0),B(2m+1,0),∴DH=,AH=m﹣(﹣1)=m+1,∴tan∠ADH==.当60°≤∠ADB≤90°时,由对称性得30°≤∠ADH≤45°,∴当∠ADH=30°时,=,∴m=2﹣1,当∠ADH=45°时,=1,∴m=1,∴1≤m≤2﹣1;(3)设DH与BC交于点M,则点M的横坐标为m.设过点B(2m+1,0),C(0,m+)的直线解析式为;y=kx+b,则,解得,即y=﹣x+m+.当x=m时,y=﹣m+m+=,∴M(m,).∴DM=﹣=,AB=(2m+1)﹣(﹣1)=2m+2,=S△ABC,又,∵S△DBC∴•(2m+1)=(2m+2)•(m+),又∵抛物线的顶点D在第一象限,∴m>0,解得m=2.当m=2时,A(﹣1,0),B(5,0),C(0,),∴BC==,=×6×=.∴S△ABC设点D到直线BC的距离为d.=BC•d,∵S△DBC∴וd=,∴d=.答:点D到直线BC的距离为.赠送初中数学几何模型【模型二】半角型:图形特征:AB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-aaBE挖掘图形特征:x-a a-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
八年级数学模拟卷6答案
2019---2020学年度下学期期末教学质量监测八年级数学试题(六)考试时间:90分钟 满分:150分注意事项:考生答题时必须将答案写在答题卡上,写在试卷上无效 第一部分 客观题(请用2B 铅笔将正确答案涂在答题卡对应的位置上)一、选择题(每小题3分,共24分)1. A 2 C. 3 D.4 A. 5 C. 6 C. 7 B. 8 D.二、填空题(每小题3分,共24分)9. 10. 1260 11. =52,≤52 12. 2 13. -2 14. 1 15. m (m+2n )16. 83.三、计算题(第17题5分,第18题(1)6分、(2)6分,(3)7分,共24分)17.解不等式组,解:解不等式①,得x ≥﹣1.-----2分解不等式②,得x <2.----4分所以不等式组的解集是﹣1≤x <2.-----5分18.因式分解:;解:(1)2()3()m a b n b a ---2()3()m a b n a b =-+----3分()()23a b m n =-+;----6分(2)481x -()2229x =----2分 ()()2299x x =+-----4分()()()2933x x x =++-;----6分(3)先化简,再求值: 144)131(2++-÷+-x x x x =2)2(1131-+•+-+x x x x =2)2(112-+•+-x x x x=21-x ---5分 当x=21-时,21-x =2211--=52------7分 四、(第19题12分)19解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;---6分(2)如图所示,连接BA 2,交x 轴于点P ,则点P 即为所求设直线BA 2的解析式为y kx b =+,由B (-3,2),A 2(3,-3)可得,3233k b k b -+=⎧⎨+=-⎩,解得5612k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴直线BA 2的解析式为y=5162x =-- 当y=0时,51062x --= 解得35x =- ∴305P ⎛⎫- ⎪⎝⎭,;---12分 五、解答题:(第20题12分,第21题12分,共24分)20.列分式方程解题:解:设乙种粽子的单价为x 元,则甲种粽子的单价为(1+20%)x 元, 由题意得,+=260,---5分解得:x=2.5,---8分经检验,x=2.5是原分式方程的解,---9分答:乙种粽子的单价为2.5元.-----12分21.解:设”三好学生”人数有x 人,甲旅行社的费用为y 1,乙旅行社的费用为y 2,根据题意得:y 1=260+260•x •50%;y 2=260(x+1)•60%-----6分当y 1>y 2时,解得x <4时,当y 1=y 2时,解得x=4时,;当y 1<y 2时,解得x >4时,.------9分x <4时,选择乙旅行社合算;x=4时,选择甲、乙旅行社一样;x>4时,选择甲旅行社合算.------12分六、证明题(第22题12分,第23题14分,共26分)22.(1)证明:如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE与△CBF中,∴△ADE≌△CBF(ASA),∴AE=CF;-------6分(2)证明:∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF,∴四边形EBFD是平行四边形.-------12分23..解:,BE⊥EC.证明:∵,点D是AC的中点,∴.∵∠∠45°,∴∠∠135°.∵,∴△EAB≌△EDC.----6分∴∠∠.∴∠∠90°.∴⊥. ------12分七、(第24题16分)24.解答:解:(1)DE=BC——————4分∵∠ACB=90°,∠A=30°,∴∠B=60°,∵点D是AB的中点,∴DB=DC,∴△DCB为等边三角形,∵DE⊥BC,∴DE=BC;故答案为DE=BC.(2)BF+BP=DE.理由如下:∵线段DP绕点D逆时针旋转60°,得到线段DF,∴∠PDF=60°,DP=DF,而∠CDB=60°,∴∠CDB﹣∠PDB=∠PDF﹣∠PDB,∴∠CDP=∠BDF,在△DCP和△DBF中,∴△DCP≌△DBF(SAS),∴CP=BF,而CP=BC﹣BP,∴BF+BP=BC,∵DE=BC,∴BC=DE,∴BF+BP=DE;------10分(3)如图,与(2)一样可证明△DCP≌△DBF,∴CP=BF,而CP=BC+BP,∴BF﹣BP=BC,∴BF﹣BP=DE.--------16分。
2015-2016学年成都市邛崃市八年级(上)期中数学试卷(含解析)
2015-2016学年成都市邛崃市八年级(上)期中数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分)1.在﹣5,﹣,﹣3,0这四个实数中,最大的是()A.﹣3 B.﹣C.﹣1 D.02.点P(6,8)到原点的距离为()A.6 B.8 C.10 D.以上都不对3.在平面直角坐标系中,点M(﹣1,3)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限4.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.5 B.2C.D.5.式子有意义的x的取值范围是()A.x≥﹣且x≠1 B.x≠1 C.D.6.下列说法正确的是()A.﹣81的平方根是±9B.任何数的平方是非负数,因而任何数的平方根也是非负数C.任何一个非负数的平方根都不大于这个数D.2是4的平方根7.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若正比例函数y=kx的图象经过点(1,2),则k的值为()A.﹣B.﹣2 C.D.29.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.10.一条直线y=kx+b,其中k+b=﹣5,kb=6,那么该直线经过()A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限二、填空题(每小题4分,共16分)11.1.44的平方根是.12.写出一组直角三角形的三边长.(要求是勾股数但3、4、5和6、8、10除外)13.若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.14.如果点P(x,y)的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:.三、解答题(共54分)15.(12分)计算:(1)9×3﹣2+(π﹣3)0﹣|﹣2|.(2)4.16.(6分)计算:(﹣)﹣﹣|﹣3|17.(8分)已知(2a﹣1)的平方根是±3,(3a+b﹣1)的平方根是±4,求a+2b的平方根.18.(8分)如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.19.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)写出点B′的坐标.20.(10分)某企业有甲、乙两个长方体的蓄水池,将甲池中的水以每小时6立方米的速度注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如图所示,结合图象回答下列问题:(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数关系式;(2)求注水多长时间甲、乙两个蓄水池水的深度相同;(3)求注水多长时间甲、乙两个蓄水池的蓄水量相同.B卷(50分)一、填空题(每小题4分,共20分)21.若实数a、b满足|a+2|,则=.22.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.23.如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10.设AE=x,则x的取值范围是.24.将1、、、按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是.25.已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为.二、解答题(共30分)26.(8分)已知a、b、c满足|a﹣|++(c﹣)2=0(1)求a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.27.(10分)图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.28.(12分)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.参考答案与试题解析1.【解答】解:∵|﹣5|=5,|﹣|=,|﹣3|=3,∴5>3>,∴﹣5<﹣3<﹣<0,∴最大的是0;故选:D.2.【解答】解:过P作PA⊥x轴于A,如图所示:则∠OAP=90°,∵P(6,8),∴PA=8,OA=6,由勾股定理得:OP==10,故选:C.3.【解答】解:点M(﹣1,3)关于x轴对称的点坐标为(﹣1,﹣3),在第三象限,故选:C.4.【解答】解:由勾股定理可知,∵OB=,∴这个点表示的实数是.故选:D.5.【解答】解:根据题意得,2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1.故选:A.6.【解答】解:A:由于负数没有平方根,故A选项错误;B:任何数的平方为非负数,正确;但只有非负数才有平方根,且平方根有正负之分(0的平方根为0).故选项B错误;C:任何一个非负数的平方根都不大于这个数,不一定正确,如:当0<a<1时,a>a2,故选项错误;D:2的平方是4,所以2是4的平方根,故选项正确.故选:D.7.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.8.【解答】解:∵正比例函数y=kx的图象经过点(1,2),∴2=k,解得,k=2.故选:D.9.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选:A.10.【解答】解:∵k+b=﹣5、kb=6,∴k<0,b<0∴直线y=kx+b经过二、三、四象限,故选:D.11.【解答】解:∵(±1.2)2=1.44,∴1.44的平方根是±1.2.故答案为±1.2.12.【解答】解:52+122=132,因此5,12,13可以构成直角三角形,又都是正整数,因此5,12,13是勾股数,故答案为:5,12,13.13.【解答】解:∵,∴a2﹣6a+9=0,b﹣4=0,解得a=3,b=4,∵直角三角形的两直角边长为a、b,∴该直角三角形的斜边长===5.故答案是:5.14.【解答】解:∵点P(x,y)的坐标满足x+y=xy,当x=2时,代入得:2+y=2y,∴y=2,故答案为:(2,2).15.【解答】解:(1)原式=1+1﹣2+4=4;(2)原式=2+﹣2=.16.【解答】解:(﹣)﹣﹣|﹣3|=﹣3﹣2﹣(3﹣)=﹣6.17.【解答】解:∵2a﹣1的平方根为±3,3a+b﹣1的平方根为±4,∴2a﹣1=9,3a+b﹣1=16,解得:a=5,b=2,∴a+2b=5+4=9,∴a+2b的平方根为±3.18.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.19.【解答】解:(1)(2)如图;(3)点B′的坐标为(2,1).20.【解答】解:(1)设y甲=kx+b,把(0,2)和(3,0)代入得∴k=﹣,b=2,∴y甲=﹣x+2,设y乙=mx+n,把(0,1)和(3,4)代入得∴m=1,n=1,∴y乙=x+1;(2)根据题意,得解得x=.所以注水小时甲、乙两个蓄水池中水的深度相同;(3)设甲蓄水池的底面积为S1,乙蓄水池的底面积为S2,t小时甲、乙两个蓄水池的蓄水量相同.∵甲水深度下降2米,而乙水池深度升高3米,所以甲乙两水池的底面积比是3:2,∴2S1=3×6,∴S1=9,(4﹣1)S2=3×6,∴S2=6,∵S1(﹣t+2)=S2(t+1)解得t=1.∴注水1小时甲、乙两个蓄水池的蓄水量相同(1分)21.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.22.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.23.【解答】解:设折痕为PQ,点P在AB边上,点Q在BC边上.如图1,当点Q与点C重合时,根据翻折对称性可得EC=BC=10,在Rt△CDE中,CE2=CD2+ED2,即102=(10﹣AE)2+62,解得:AE=2,即x=2.如图2,当点P与点A重合时,根据翻折对称性可得AE=AB=6,即x=6;所以,x的取值范围是2≤x≤6.故答案是:2≤x≤6.24.【解答】解:(5,4)表示第5排从左向右第4个数是:,(15,7)表示第15排从左向右第7个数,可以看出奇数排最中间的一个数都是1,第15排是奇数排,最中间的也就是这排的第8个数是1,那么第7个就是:,•=2.故答案为:2.25.【解答】解:当OD=PD(P在右边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=OA=5,根据勾股定理得:DQ=3,故OQ=OD+DQ=5+3=8,则P1(8,4);当PD=OD(P在左边)时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形DPQ中,PQ=4,PD=OD=5,根据勾股定理得:QD=3,故OQ=OD﹣QD=5﹣3=2,则P2(2,4);当PO=OD时,根据题意画出图形,如图所示:过P作PQ⊥x轴交x轴于Q,在直角三角形OPQ中,OP=OD=5,PQ=4,根据勾股定理得:OQ=3,则P3(3,4),综上,满足题意的P坐标为(2,4)或(3,4)或(8,4).故答案为:(2,4)或(3,4)或(8,4)26.【解答】解:(1)由题意得,a﹣=0,b﹣5=0,c﹣=0,解得a=2,b=5,c=3;(2)∵2+3=5>5,∴以a、b、c为边能构成三角形,周长=2+3+5=5+5.27.【解答】解:(1)如图①,符合条件的C点有5个:;(2)如图②,正方形ABCD即为满足条件的图形:;(3)如图③,边长为的正方形ABCD的面积最大..28.【解答】解:(1)直线y=﹣x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,故y=﹣x+4.(2)当直线y=﹣x+b过点M(3,2)时,2=﹣3+b,解得:b=5,5=1+t,解得t=4.当直线y=﹣x+b过点N(4,4)时,4=﹣4+b,解得:b=8,8=1+t,解得t=7.故若点M,N位于l的异侧,t的取值范围是:4<t<7.(3)如右图,过点M作MF⊥直线l,交y轴于点F,交x轴于点E,则点E、F为点M在坐标轴上的对称点.过点M作MD⊥x轴于点D,则OD=3,MD=2.已知∠MED=∠OEF=45°,则△MDE与△OEF均为等腰直角三角形,∴DE=MD=2,OE=OF=1,∴E(1,0),F(0,﹣1).∵M(3,2),F(0,﹣1),∴线段MF中点坐标为(,).直线y=﹣x+b过点(,),则=﹣+b,解得:b=2,2=1+t,解得t=1.∵M(3,2),E(1,0),∴线段ME中点坐标为(2,1).直线y=﹣x+b过点(2,1),则1=﹣2+b,解得:b=3,3=1+t,解得t=2.故点M关于l的对称点,当t=1时,落在y轴上,当t=2时,落在x轴上.。
初二数学模拟试卷带答案解析
初二数学模拟试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.(2015秋•泸县期末)如图案是轴对称图形的有( )A .1个B .2个C .3个D .4个 2.下列各式:其中分式共有( )个。
A .2B .3C .4D .5 3.若分式的值为零,则x 的取值为( )A .x≠3B .x≠﹣3C .x=3D .x=﹣3 4.下列事件是必然发生事件的是( ) A .打开电视机,正在转播足球比赛 B .小麦的亩产量一定为1500千克C .在只装有5个红球的袋中摸出1球,是红球D .农历十五的晚上一定能看到圆月5.如果,那么x 的取值范围是( )A .x≤2B .x ﹤2C .x≥2D .x ﹥26.有一本新书,每10张厚为1 mm ,设从第1张到第x 张的厚度为y (mm ),则( ) A .y =x B .y =10x C .y =+x D .y =7.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .众数 B .中位数 C .平均数 D .加权平均数8.将一张长方形纸片按如图所示的方式折叠,BC,BD为折痕,则∠CBD 的度数为()A.60° B.75° C.90° D.95°9.已知反比例函数,下列结论不正确的是( )A.图象经过点(1,1)B.当时,随着的增大而增大C.当时,D.图象在第一、三象限10.已知一次函数y=kx-4的图象经过点P(2,-1),则函数y=kx-4的解析式为()A.B.C.D.二、判断题11.如图,已知直线,且线段,若,则的度数是______:12.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.13.解分式方程:.14.已知的三边长为,,,化简.15.解下列不等式(组):(1)3(1﹣x)<2(x+9)并把解表示在数轴上;(2)三、填空题16.若,则= 。
2014-2015年八年级下学期期末名校质量检测数学试题及答案
2014-2015年八年级下学期期末名校质量检测数学试题时间120分钟 满分100分 2015.6.12一、选择题(每小题2分,共36分)1、如果x --21是二次根式,那么x 应满足的条件是( )A 、x ≠2的实数B 、x <2的实数C 、x >2的实数D 、x >0且x ≠2的实数2、一个多边形的内角和与外角和相等,则这个多边形是( )A 、三角形B 、四边形C 、五边形 D、六边形3、在12、32x 、5.0中、22y x -、x 73中,最简二次根式的个数有( ) A、4 B、3 C 、2 D 、14、即是轴对称图形,又是中心对称图形的是( )A 、菱形 B、等腰梯形 C、平行四边形 D、等腰三角形 5、下面结论正确的是( )A 、无限小数是无理数B 、无理数是开方开不尽的数C 、带根号的数是无理数D 、无限不循环小数是无理数6、一个多边形的内角和与外角的和为540°,则它是( )边形。
A 、5B 、4C 、3D 、不确定7、计算38-的值为( )A 、-2 B、2 C、±2 D、22-8、矩形各内角的平分线能围成一个( )A、矩形 B、菱形 C、等腰梯形 D、正方形 9、二次根式21x +中x 的取值范围是( )A、x >-1 B 、x <-1 C 、x ≠-1 D 、一切实数10、平行四边形、矩形、菱形、正方形共有的性质是( )A 、对角线相等B 、对角线互相平分C 、对角线互相垂直D 、对角形互相垂直平分11、计算2)3(π-的值是( )A 、π-3B 、-0.14C 、 3-πD 、 2)3(π-12、矩形ABCD 的两条对角线相交于点O ,∠AOD =120°,AB =5cm ,则矩形的对角线长是() A 、5cm B 、10cm C 、cm 52 D 、2.5cm13、161的算术平方根是( )A 、41B 、41- C 、21 D 、±21 14、直角梯形的一个内角为120°,较长的腰为6cm ,一底为5cm ,则这个梯形的面积为( )A 、23221cmB 、23239cmC 、2325cmD 、 23221cm 或23239cm 15、将11)1(---c c 中的根号外的因式移入根号内后为( ) A 、c -1 B 、1-c C 、 1--c D 、 c --1 16、下面四组二次根式中,同类二次根式是( )A 、181163和-B 、ac b b a 435)1(9+和 C 、)(625y x yx x y ++和 D 、175)1(1253++c c 与 17、不能判定四边形ABCD 为平行四边形的题设是( )A 、AB =CD AB ∥CD B 、∠A =∠C ∠B =∠DC 、AB =AD BC =CD D 、AB =CD AD =BC18、若12,1212+++=x x x 则等于( )A 、2B 、22+C 、2D 、12- 二、填空题(每小题3分,共15分)1、一个菱形的两条对角线分别为12cm 、16cm ,这个菱形的边长为______;面积S =_________。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
成都市邛崃市2014-2015学年八年级下期中数学试卷(有答案)-(北师大版)AKqnlP
2014-2015学年四川省成都市邛崃市八年级(下)期中数学试卷A卷(共100分)一、选择题:在每题所给出的四个选项中,只有一项符合题意.把所选项前的字母代号填在答案栏中.1.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+92.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或173.若将分式中的a与b的值都扩大为原来的10倍,则这个分式的值将()A.扩大为原来的10倍B.分式的值不变C.缩小为原来的D.缩小为原来的4.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠05.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°6.分式的值为0时,x的值是()A.0 B.1 C.﹣1 D.﹣27.分解因式a3﹣a的结果是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)(a﹣1)D.(a2+a)(a﹣1)8.计算的结果为()A.B.C.﹣1 D.29.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.25°B.30°C.35°D.40°10.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A.B. C.D.二、填空题11.若式子有意义,则实数x的取值范围是.12.分解因式:x2﹣4=.13.化简:=.14.若a+b=6,ab=7,则a2b+ab2的值是.15.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C=°.三、解答题(第16题每小题18分,共18分)16.(1)分解因式:ax2+2ax﹣3a(2)分解因式:(3x+2)(﹣x6+3x5)+(3x+2)(﹣2x6+x5)+(x+1)(3x6﹣4x5)(3)(+)÷,其中x=2.四、解方程与解不等式组(第17题每小题12分,18题8分,共20分)17.解方程:(1)+=(2)=+1.18.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.五、解答题(共17分)19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.20.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?B卷(共50分)一.填空题21.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.22.已知x、y为实数,且方程为(x2+y2)(x2﹣2+y2)=15,则x2+y2=.23.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是.24.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.25.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是.二.解答题(共30分)26.观察下列各式:,,,,,…(1)请猜想出表示上面各式的特点的一般规律,用含x(x表示正整数)的等式表示出来.(2)请利用上述规律计算:.(x为正整数)(3)请利用上述规律,解方程:.27.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC 的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.2014-2015学年四川省成都市邛崃市八年级(下)期中数学试卷参考答案与试题解析A卷(共100分)一、选择题:在每题所给出的四个选项中,只有一项符合题意.把所选项前的字母代号填在答案栏中.1.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x﹣1 C.x2﹣1 D.x2﹣6x+9【考点】因式分解-运用公式法.【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项分析判断后利用排除法求解.【解答】解:A、x2+x+1不符合完全平方公式法分解因式的式子特点,故A错误;B、x2+2x﹣1不符合完全平方公式法分解因式的式子特点,故B错误;C、x2﹣1不符合完全平方公式法分解因式的式子特点,故C错误;D、x2﹣6x+9=(x﹣3)2,故D正确.故选:D.【点评】本题考查了用公式法进行因式分解,能用公式法进行因式分解的式子的特点需熟记.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.3.若将分式中的a与b的值都扩大为原来的10倍,则这个分式的值将()A.扩大为原来的10倍B.分式的值不变C.缩小为原来的D.缩小为原来的【考点】分式的基本性质.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变,可得答案.【解答】解:将分式中的a与b的值都扩大为原来的10倍,则这个分式的值将缩小为原来的,故选:C.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数,分式的值不变.4.若分式有意义,则a的取值范围是()A.a=0 B.a=1 C.a≠﹣1 D.a≠0【考点】分式有意义的条件.【专题】计算题.【分析】根据分式有意义的条件进行解答.【解答】解:∵分式有意义,∴a+1≠0,∴a≠﹣1.故选C.【点评】本题考查了分式有意义的条件,要从以下两个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;5.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°【考点】旋转的性质.【专题】几何图形问题.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.6.分式的值为0时,x的值是()A.0 B.1 C.﹣1 D.﹣2【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣1=0,x+2≠0,解可得答案.【解答】解:由题意得:x﹣1=0,x+2≠0,解得:x=1,故选:B.【点评】此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.7.分解因式a3﹣a的结果是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)(a﹣1)D.(a2+a)(a﹣1)【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式a,再利用平方差公式进行二次分解即可.【解答】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1),故选:C.【点评】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8.计算的结果为()A.B.C.﹣1 D.2【考点】分式的加减法.【专题】计算题.【分析】分母相同的分式,分母不变,分子相加减.【解答】解:﹣===﹣1故选:C . 【点评】本题主要考查同分母的分式的运算规律:分母不变,分子相加减.9.如图,在Rt △ACB 中,∠ACB=90°,∠A=25°,D 是AB 上一点.将Rt △ABC 沿CD 折叠,使B 点落在AC 边上的B ′处,则∠ADB ′等于( )A .25°B .30°C .35°D .40°【考点】翻折变换(折叠问题).【专题】压轴题.【分析】先根据三角形内角和定理求出∠B 的度数,再由图形翻折变换的性质得出∠CB ′D 的度数,再由三角形外角的性质即可得出结论.【解答】解:∵在Rt △ACB 中,∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵△CDB ′由△CDB 反折而成,∴∠CB ′D=∠B=65°,∵∠CB ′D 是△AB ′D 的外角,∴∠ADB ′=∠CB ′D ﹣∠A=65°﹣25°=40°.故选D .【点评】本题考查的是图形的翻折变换及三角形外角的性质,熟知图形反折不变性的性质是解答此题的关键.10.某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A .B .C .D .【考点】由实际问题抽象出分式方程.【分析】设原计划每天生产x 个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.【解答】解:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得:=15,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题11.若式子有意义,则实数x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.12.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.13.化简:=1.【考点】分式的加减法.【专题】计算题.【分析】由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.【解答】解:原式==1.故答案为:1.【点评】本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.14.若a+b=6,ab=7,则a2b+ab2的值是42.【考点】因式分解-提公因式法.【分析】直接利用提取公因式分解因式进而求出答案.【解答】解:∵a+b=6,ab=7,∴a2b+ab2=ab(a+b)=7×6=42.故答案为:42.【点评】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.15.如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,则∠C=20°.【考点】全等三角形的判定与性质.【专题】几何图形问题.【分析】在△BAE和△CAD中由∠A=∠A,AD=AE,AB=AC证明△BAE≌△CAD,于是得到∠B=∠C,结合题干条件即可求出∠C度数.【解答】解:在△BAE和△CAD中,,∴△BAE≌△CAD(SAS),∴∠B=∠C,∵∠B=20°,∴∠C=20°,故答案为20.【点评】本题主要考查全等三角形的判定与性质的知识点,解答本题的关键是熟练掌握两三角形全等的判定定理,此题难度一般.三、解答题(第16题每小题18分,共18分)16.(1)分解因式:ax2+2ax﹣3a(2)分解因式:(3x+2)(﹣x6+3x5)+(3x+2)(﹣2x6+x5)+(x+1)(3x6﹣4x5)(3)(+)÷,其中x=2.【考点】分式的化简求值;提公因式法与公式法的综合运用;因式分解-分组分解法;因式分解-十字相乘法等.【分析】(1)先提取公因式,再利用因式分解法把原式进行因式分解即可;(2)直接提取公因式即可;(3)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1);(2)原式=(3x+2)(﹣x6+3x5﹣2x6+x5)+(x+1)(3x6﹣4x5)=(3x+2)(﹣3x6+4x5)+(x+1)(3x6﹣4x5)=﹣(3x6﹣4x5)(3x+2﹣x﹣1)=﹣(3x6﹣4x5)(2x+1);(3)原式=[+]÷=•=,当x=2时,原式==2.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、解方程与解不等式组(第17题每小题12分,18题8分,共20分)17.解方程:(1)+=(2)=+1.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+2(x﹣2)=x+2,去括号得:x+2x﹣4=x+2,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解;(2)方程两边同乘(2x+1),得4=x+2x+1,解得:x=1,经检验x=1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3(1)求证:BN=DN;(2)求△ABC的周长.【考点】三角形中位线定理;等腰三角形的判定与性质.【分析】(1)证明△ABN≌△ADN,即可得出结论;(2)先判断MN是△BDC的中位线,从而得出CD,由(1)可得AD=AB=10,从而计算周长即可.【解答】(1)证明:在△ABN和△ADN中,∵,∴△ABN≌△ADN(ASA),∴BN=DN.(2)解:∵△ABN≌△ADN,∴AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41.【点评】本题考查了三角形的中位线定理及等腰三角形的判定,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.五、解答题(共17分)19.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若A的对应点A2的坐标为(0,4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.【考点】作图-旋转变换;轴对称-最短路线问题;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B以点C为旋转中心旋转180°的对应点A1、B1的位置,然后与点C顺次连接即可;再根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)根据中心对称的性质,连接两对对应顶点,交点即为旋转中心,然后写出坐标即可;(3)根据轴对称确定最短路线问题,找出点A关于x轴的对称点A′的位置,然后连接A′B与x轴的交点即为点P.【解答】解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,旋转中心坐标为(1.5,3);(3)如图所示,点P的坐标为(﹣2,0).【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同.(1)甲、乙两队单独完成此项任务需要多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,根据甲队单独施工45天和乙队单独施工30天的工作量相同建立方程求出其解即可;(2)设甲队再单独施工a天,根据甲队总的工作量不少于乙队的工作量的2倍建立不等式求出其解即可.【解答】解:(1)设乙队单独完成此项任务需要x天,则甲队单独完成此项任务需要(x+10)天,由题意,得,解得:x=20.经检验,x=20是原方程的解,∴x+10=30(天)答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天;(2)设甲队再单独施工a天,由题意,得,解得:a≥3.答:甲队至少再单独施工3天.【点评】本题是一道工程问题的运用,考查了工作时间×工作效率=工作总量的运用,列分式方程解实际问题的运用,分式方程的解法的运用,解答时验根是学生容易忽略的地方.B卷(共50分)一.填空题21.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.【考点】旋转的性质.【分析】根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.【解答】解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.【点评】此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.22.已知x、y为实数,且方程为(x2+y2)(x2﹣2+y2)=15,则x2+y2=5.【考点】换元法解一元二次方程.【分析】根据换元法,可得一元二次方程,根据解一元二次方程,可得答案.【解答】解:设x2+y2=u,原方程等价于u2﹣2u﹣15=0.解得u=5,u=﹣3(不符合题意,舍),x2+y2=5,故答案为:5.【点评】本题考查了换元法解一元一次方程,利用x2+y2=u得出关于u的一元二次方程是解题关键,注意平方都是非负数.23.已知a,b,c是△ABC的三边,b2+2ab=c2+2ac,则△ABC的形状是等腰三角形.【考点】因式分解的应用.【分析】把给出的式子重新组合,分解因式,分析得出b=c,才能说明这个三角形是等腰三角形.【解答】解:b2+2ab=c2+2ac可变为b2﹣c2=2ac﹣2ab,(b+c)(b﹣c)=2a(c﹣b),因为a,b,c为△ABC的三条边长,所以b,c的关系要么是b>c,要么b<c,当b>c时,b﹣c>0,c﹣b<0,不合题意;当b<c时,b﹣c<0,c﹣b>0,不合题意.那么只有一种可能b=c.所以此三角形是等腰三角形,故答案为:等腰三角形.【点评】此题主要考查了学生对等腰三角形的判定,即两边相等的三角形为等腰三角形,分类讨论思想的应用是解题关键.24.如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是12°.【考点】等腰三角形的性质.【分析】设∠A=x,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP7P8,∠AP8P7,再根据三角形的内角和定理列式进行计算即可得解.【解答】解:设∠A=x,∵AP1=P1P2=P2P3=…=P13P14=P14A,∴∠A=∠AP2P1=∠AP13P14=x,∴∠P2P1P3=∠P13P14P12=2x,∴∠P3P2P4=∠P12P13P11=3x,…,∠P7P6P8=∠P8P9P7=7x,∴∠AP7P8=7x,∠AP8P7=7x,在△AP7P8中,∠A+∠AP7P8+∠AP8P7=180°,即x+7x+7x=180°,解得x=12°,即∠A=12°.故答案为:12°.【点评】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.25.如图,在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=1,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是1+.【考点】轴对称-最短路线问题;含30度角的直角三角形;翻折变换(折叠问题).【专题】几何动点问题.【分析】连接CE,交AD于M,根据折叠和等腰三角形性质得出当P和D重合时,PE+BP的值最小,即可此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE长,代入求出即可.【解答】解:连接CE,交AD于M,∵沿AD折叠C和E重合,∴∠ACD=∠AED=90°,AC=AE,∠CAD=∠EAD,∴AD垂直平分CE,即C和E关于AD对称,CD=DE=1,∴当P和D重合时,PE+BP的值最小,即此时△BPE的周长最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,∵∠DEA=90°,∴∠DEB=90°,∵∠B=60°,DE=1,∴BE=,BD=,即BC=1+,∴△PEB的周长的最小值是BC+BE=1++=1+,故答案为:1+.【点评】本题考查了折叠性质,等腰三角形性质,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.二.解答题(共30分)26.观察下列各式:,,,,,…(1)请猜想出表示上面各式的特点的一般规律,用含x(x表示正整数)的等式表示出来=﹣.(2)请利用上述规律计算:.(x为正整数)(3)请利用上述规律,解方程:.【考点】解分式方程;分式的加减法.【专题】规律型.【分析】(1)观察一系列等式得出一般性规律,写出即可;(2)利用得出的规律化简所求式子计算即可得到结果;(3)利用得出的规律化简方程,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=﹣;(2)原式=1﹣+﹣+﹣+…+﹣+﹣,=1﹣,=;(3)方程变形得:﹣+﹣+﹣=,整理得:﹣=,去分母得:x+1﹣x+2=x﹣2,解得:x=5,检验:将x=5代入原方程得:左边=右边,∴原方程的根为x=5.【点评】此题考查了解分式方程,以及分式的加减法,弄清题中的规律是解本题的关键.27.一节数学课后,老师布置了一道课后练习题:如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于点O,点P、D分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB平分∠ABO,其余条件不变.求证:AP=CD.(3)知识迁移,探索新知若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)【考点】全等三角形的判定与性质.【专题】压轴题.【分析】(1)求出∠3=∠4,∠BOP=∠PED=90°,根据AAS证△BPO≌△PDE即可;(2)求出∠ABP=∠4,求出△ABP≌△CPD,即可得出答案;(3)设OP=CP=x,求出AP=3x,CD=x,即可得出答案.【解答】(1)证明:∵PB=PD,∴∠2=∠PBD,∵AB=BC,∠ABC=90°,∴∠C=45°,∵BO⊥AC,∴∠1=45°,∴∠1=∠C=45°,∵∠3=∠PBC﹣∠1,∠4=∠2﹣∠C,∴∠3=∠4,∵BO⊥AC,DE⊥AC,∴∠BOP=∠PED=90°,在△BPO和△PDE中∴△BPO≌△PDE(AAS);(2)证明:由(1)可得:∠3=∠4,∵BP平分∠ABO,∴∠ABP=∠3,∴∠ABP=∠4,在△ABP和△CPD中∴△ABP≌△CPD(AAS),∴AP=CD.(3)解:CD′与AP′的数量关系是CD′=AP′.理由是:设OP=PC=x,则AO=OC=2x=BO,则AP=2x+x=3x,由△OBP≌△EPD,得BO=PE,PE=2x,CE=2x﹣x=x,∵∠E=90°,∠ECD=∠ACB=45°,∴DE=x,由勾股定理得:CD=x,即AP=3x,CD=x,∴CD′与AP′的数量关系是CD′=AP′【点评】本题考查了全等三角形的性质和判定,等腰直角三角形性质,等腰三角形性质等知识点的综合应用,主要考查学生的推理和计算能力.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是①②③④(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC 的中点,连接MD和ME,则MD与ME具有怎样的数量和位置关系?请给出证明过程;●类比探究:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:等腰直角三角形.【考点】四边形综合题.【专题】压轴题.【分析】操作发现:由条件可以通过三角形全等和轴对称的性质,直角三角形的性质就可以得出结论;数学思考:作AB、AC的中点F、G,连接DF,MF,EG,MG,根据三角形的中位线的性质和等腰直角三角形的性质就可以得出四边形AFMG是平行四边形,从而得出△DFM≌△MGE,根据其性质就可以得出结论;类比探究:作AB、AC的中点F、G,连接DF,MF,EG,MG,DF和MG相交于H,根据三角形的中位线的性质可以得出△DFM≌△MGE,由全等三角形的性质就可以得出结论;【解答】解:●操作发现:∵△ADB和△AEC是等腰直角三角形,∴∠ABD=∠DAB=∠ACE=∠EAC=45°,∠ADB=∠AEC=90°在△ADB和△AEC中,,∴△ADB≌△AEC(AAS),∴BD=CE,AD=AE,∵DF⊥AB于点F,EG⊥AC于点G,∴AF=BF=DF=AB,AG=GC=GE=AC.∵AB=AC,∴AF=AG=AB,故①正确;∵M是BC的中点,∴BM=CM.∵AB=AC,∴∠ABC=∠ACB,∴∠ABC+∠ABD=∠ACB+∠ACE,即∠DBM=∠ECM.在△DBM和△ECM中,∴△DBM≌△ECM(SAS),∴MD=ME.故②正确;连接AM,根据前面的证明可以得出将图形1,沿AM对折左右两部分能完全重合,∴整个图形是轴对称图形,故③正确.∵AB=AC,BM=CM,∴AM⊥BC,∴∠AMB=∠AMC=90°,∵∠ADB=90°,∴四边形ADBM四点共圆,∴∠ADM=∠ABM,∵∠AHD=∠BHM,∴∠DAB=∠DMB,故④正确,故答案为:①②③④●数学思考:MD=ME,MD⊥ME.理由:作AB、AC的中点F、G,连接DF,MF,EG,MG,∴AF=AB,AG=AC.∵△ABD和△AEC是等腰直角三角形,∴DF⊥AB,DF=AB,EG⊥AC,EG=AC,∴∠AFD=∠AGE=90°,DF=AF,GE=AG.∵M是BC的中点,∴MF∥AC,MG∥AB,∴四边形AFMG是平行四边形,∴AG=MF,MG=AF,∠AFM=∠AGM.∴MF=GE,DF=MG,∠AFM+∠AFD=∠AGM+∠AGE,∴∠DFM=∠MGE.在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴DM=ME,∠FDM=∠GME.∵MG∥AB,∴∠GMH=∠BHM.∵∠BHM=90°+∠FDM,∴∠BHM=90°+∠GME,∵∠BHM=∠DME+∠GME,∴∠DME+∠GME=90°+∠GME,即∠DME=90°,∴MD⊥ME.∴DM=ME,MD⊥ME;●类比探究:∵点M、F、G分别是BC、AB、AC的中点,∴MF∥AC,MF=AC,MG∥AB,MG=AB,∴四边形MFAG是平行四边形,∴MG=AF,MF=AG.∠AFM=∠AGM∵△ADB和△AEC是等腰直角三角形,∴DF=AF,GE=AG,∠AFD=∠BFD=∠AGE=90°∴MF=EG,DF=MG,∠AFM﹣∠AFD=∠AGM﹣∠AGE,即∠DFM=∠MGE.在△DFM和△MGE中,,∴△DFM≌△MGE(SAS),∴MD=ME,∠MDF=∠EMG.∵MG∥AB,∴∠MHD=∠BFD=90°,∴∠HMD+∠MDF=90°,∴∠HMD+∠EMG=90°,即∠DME=90°,∴△DME为等腰直角三角形.【点评】本题考查了等腰直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的中位线的性质的运用,直角三角形的斜边上的中线的性质的运用,平行四边形的判定及性质的运用,解答时根据三角形的中位线的性质制造全等三角形是解答本题的关键.。
邛崃市八年级数学学科质量监测模拟试题六及参考答案
邛崃市2015年八年级数学学科质量监测模拟试题六数学一、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求.) 1.4的算术平方根是A .2B .2-C .2±D .4 2.下列二次根式中,为最简二次根式的是 A .0.3 B .12 C .15D .7 3.下列运算正确的是A .3710+=B .2(2)4-= C .3273= D .5522=4.以下列各组数为边长,不能构成直角三角形的是A .1,1,2B .2,5 ,6C .3,4 ,5D .5,12,13 5.成都市某一周内每天的最高气温为:8,9,8,10,6,8,6(单位:℃),则这组数据的极差为A .4B .6C .8D .106.在一次函数3y kx =+中,y 随x 的增大而减小,则k 的值可能是A .0B .1C .2D . 12-7.如图,方格纸中每个小方格的边长为1,则正方形ABCD 的面积为 A .8 B .9 C .10 D .11 8.估算193+的值应在A .5和6之间B .6和7之间C .7和8之间D .8和9之间9.下列命题为假.命题..的是 A .在平面内,确定一个物体的位置一般需要两个数据; B .如果两条直线被第三条直线所截,那么内错角相等; C .三角形的一个外角大于任何一个和它不相邻的内角 D .无限不循环小数称为无理数10.在同一平面直角坐标系中,若一次函数2y x =-与21y x =-+的图象交于点M ,则点M 的坐标为A .(1,1)B .(-1,-3)C .(2,0)D .(1,-1)二、填空题(每小题4分,共16分)11.一次函数5y x =+的图象与y 轴的交点坐标为 .12.若一个正数的两个平方根分别为1a +与27a -,则a 的值是 . 13.如图,将长方形ABCD 的长AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,若AB=6,AD=10,则BF = . 14.如果关于x ,y 的方程组125x y x y +=⎧⎨-=⎩的解是二元一次方程21x y k ++=的一个解,则直线3y kx =+不经过第 象限.三、解答题(本大题有6个题,共54分) 15.计算(每小题5分,共10分)(1)118482-+ (2)320451645-++-16.解方程组(每小题5分,共10分) (1)2 310 y x x y =⎧⎨+=⎩①②(2)2 4 2 3 x y x y +=⎧⎨-=⎩①②17.( 本小题满分7分)在平面直角坐标系xOy 中,△ABC 的位置如图所示. (1)分别写出△ABC 各个顶点的坐标;(2)分别写出顶点A 关于x 轴对称的点A '的坐标和顶点B 关于y 轴对称的点B '的坐标; (3)求线段BC 的长.某校八年级去年6月份开展了家庭月用水量调查活动,并约定:如果6月份的用水量在“选定标准”的20%范围之内都称为“普通用水量”.现随机选出该年级20名学生,将其家庭6月份的用水量(单位:吨)情况进行统计并绘制成如下统计图,请根据统计图信息解决问题: (1)求关于这20个家庭6月份用水量的三个统计量:平均数、中位数和众数;(2)在(1)的基础上,请你选择其中一个统计量.....作为“选定标准”,那么按此“选定标准”这20个家庭中满足“普通用水量”的家庭有多少个?(请直接写出结果,不写计算过程)19.( 本小题满分9分)某商场花了9万元从厂家购买了A型和B型两种型号的电视机共50台,其中A型电视机的进价为每台1500元,B型电视机的进价为每台2500元.(1)若设购买了A型电视机x台,B型电视机y台,请完成下列表格:进价(单位:元/台)购买数量(单位:台)购买费用(单位:元)A型1500 xB型2500 y(2)在(1)的基础上,通过列二元一次方程组求该商场购买A型和B型电视机各多少台?(3)若商场A型电视机的售价为每台1700元,B型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?如图,一次函数y kx b =+的图象与x 轴交于点A (20),,与正比例函数3y x =的图象交于点B (1)a -,.(1)求点B 的坐标及一次函数的表达式;(2)若第一象限内的点C 在正比例函数3y x =的图象上,且OCC 的坐标; (3)在(2)的基础上,连接AC ,求△ABC 的面积.四、解答题(共20分)21.(本小题满分8分)若实数x ,z2(4)0x z -+=,且实数y 的立方根是2. (1)分别求x ,y ,z 的值;(2)若x ,y ,z 是△ABC 的三边长,试判定△ABC 的形状.22.(本小题满分12分)如图,长方形OABC在平面直角坐标系xOy的第一象限内,点A在x轴正半轴上,点C在y轴正半轴上,点D、E分别是OC、BC的中点,∠CDE=30°,点E的坐标为(2,a) .(1)求a的值及直线DE的函数表达式;(2)现将长方形OABC沿直线DE折叠,使顶点C落在坐标平面内的点C′处,过点C′作y轴的平行线分别交x轴和BC于点F、G.①求点C′的坐标;②若点P为直线DE上一动点,连接PC′,当△PC′D为等腰三角形时,求点P的坐标.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】邛崃市2015年八年级数学学科质量监测模拟试题六参考答案一、选择题(每小题3分,共30分)1.A 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.B 10.D 二、填空题(每小题4分,共16分)11.(0,5); 12.2; 13.8; 14.三.三、解答题(本大题有6个题,共54分) 15.(每小题5分,共10分)(1) 解:原式=4+3分 (2)解:原式14+-…3分=4分3…………4分=5分 =2………………………5分16.(每小题5分,共10分)(1)解:把①代入②,得3210x x +=…1分 (2)解:①×2,得248x y += ③…1分∴ 2x =……………2分 ③-①,得 55y =………2分把2x =代入①,得4y =………4分 ∴ 1y =……………………3分∴原方程组的解是2,4.x y =⎧⎨=⎩………5分 将1y =代入①,得 2x =……4分∴原方程组的解是2,1.x y =⎧⎨=⎩……………5分17.(共7分)解:(1)(4,3)A -,(3,0)B ,(2,5)C -…………………3分 (2)A '(4,3)--,B '(3,0)-………………………………5分 (3)由图知:2225550BC =+= …………………………6分∴ BC =7分18.(共8分) 解:(1)平均数为:61821071261822021220⨯+⨯+⨯+⨯+⨯+⨯=(吨)…2分中位数为:1012112+=(吨) ……………………………………………………4分 众数为:10吨………………………………………………………………………6分 (2)选平均数(中位数或众数)作为标准,满足“普通用水量”的家庭有13个(13个或15个). ……………………………………………………………………………………………8分19.(共9分) 解:(1)1500x ,2500y ……………………………………………2分 (2)由题意得,501500250090000x y x y +=⎧⎨+=⎩ 解得,3515x y =⎧⎨=⎩……………5分∴该商场购买A 型电视机35台,购买B 型电视机15台…………………………6分 (3)销售完这50台电视机该商场可获利:(17001500)35(28002500)1511500-⨯+-⨯=(元)…………………………9分20.(共10分)解:(1)∵点B (1)a -,在正比例函数3y x =的图象上 ∴3(1)3a =⨯-=-,∴点B 的坐标为(13)--,……………………2分 ∵一次函数y kx b =+的图象经过点A (20),,B (13)--, ∴203k b k b +=⎧⎨-+=-⎩,∴12k b =⎧⎨=-⎩,∴一次函数的表达式为2y x =-…4分 (2)∵第一象限内的点C 在正比例函数3y x =的图象上∴可设C 点的坐标为(3)c c x x ,,且0c x >……………………………5分如图,过C 作CM ⊥x 轴于点M ,则222OM CM OC +=,且c OM x =,3c CM x = ∵OC22(3)10c c x x +=………………………………………6分 ∵0c x >,∴1c x =,∴33c x =………………………………………7分∴点C 的坐标为(13),…………………………………………………8分 (3)∵点A 的坐标为(20),,B 的坐标为(13)--,,点C 的坐标为(13), ∴112323622ABCOCAOBAS SS=+=⨯⨯+⨯⨯=…………………10分四、解答题(共20分)21.(共8分)解:(1)∵实数x 、z 满足26(4)0x x z -+-+=∴6040x x z -=⎧⎨-+=⎩…………………………………………………………………1分∴610x z =⎧⎨=⎩………………………………………………………………………3分∵实数y 的立方根是2,∴8y =………………………………………………4分(2)∵6x =,8y =,10z =∴236x =,264y =,2100z =……………………………………………………6分∴222x y z +=…………………………………………………………………………7分 ∴△ABC 为直角三角形………………………………………………………………8分22.(共12分)解:(1)∵点E 的坐标为(2,a ),∴CE =2………………………………1分 ∵在Rt △CDE 中,∠DCE =90°,∠CDE =30°∴DE =2CE=4,∴CD=224223-=………………………………………2分 ∵点D 为OC 的中点,∴CO=2 CD =43,DO= CD =23∴a=43…………………………………………………………………………3分 ∴点D 的坐标为(0,23),点E 的坐标为(2,43) 设直线DE 的表达式为y =kx +b (k ≠0),将D (0,23),E (2,43)分别代入,得 ⎩⎪⎨⎪⎧b =23,2k +b =43………………………4分解得⎩⎪⎨⎪⎧k =3,b =23. ∴直线DE 的函数表达式为y =3x +23.……………5分(2)①由折叠可知, C ′E=CE=2,∠C ′ED =∠CED =90°-30°=60°………6分 ∴∠C ′EG =180°-60°-60°=60°,∴∠E C ′G =90°-60°=30° ∴在Rt △C ′G E 中, EG =12C ′E=1∴C ′G =22213-=……………………………………………………………………………7分 ∴CG=2+1=3,C ′F =43-3=33∴C ′的坐标为 (3,33)…………………………………………………………………………8分(3)P 点在直线DE 上,分以下三种情况:①PC ′=PD ,此时∠PC ′D =∠PDC ′=30°,易得C ′P ∥x 轴,∴P 点的纵坐标为33.把y =33代入直线DE 表达式x =1,∴P 1(1,39分 ②C ′P =C ′D ,此时∠C ′PD =∠C ′DP =30°,又∵∠DC ′G =120°,∴P 在射线C ′G 上,∴P 点横坐标为3,把x =3代入直线DE 表达式10分③DP =DC ′,由 D (0,23),C ′(3,33),易得此时 DC ′过P 作PM ⊥y 轴于点M ,则PM 2+DM 2=DP 2∵点P 在直线上,∴可设P 点坐标为(p p x +∴222p p x ++=,解得p x =3).………………………………………………………12分 综上, P 1(1,33).。
2015年初中学业水平模拟数学试题附答案
2015年初中学业水平模拟数学试题一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.化简23)a (的结果为( ▲ ) A .5aB .6aC .8aD .9a2. 今年五一假期,我市某风景区接待游客约为103000人,这一数据用科学记数法表示为( ▲ ) A .10.3×104 B .1.03×104 C .1.03×105 D .1.03×106 3.下列水平放置的四个几何体中,主视图与其它三个不相同的是( ▲ )A .B .C .D .4. 我校10名学生今年二月份参加社会实践活动的时间分别为3,3,6,4,3,7,5,7,4,9(单位:小时),则这组数据的中位数为( ▲ ) A .5B .4.5C .3D .75. 若分式21x x -+无意义,则x 的值为( ▲ ) A .0B .1C .1-D .26. 如图,小聪把一块含有60°角的直角三角板的两个顶点放在 直尺的对边上,并测得∠1=23°,则∠2的度数是( ▲ ) A .23° B .27° C .30° D .37° 7.若实数,,a b c 在数轴上对应点的位置如图所示, 则下列不等式不成立的是( ▲ ) A .b a >C .+0a b < 8. 用半径为5cm 积等于( ▲ )A .210cm π 9. 小颖画了一个函数1ax=的解是( A .x =1 B 10. 如图,ABC ∠=若点P 到AC 边上的个数为( A .0 B 二、填空题(本题有11. 点P (1,3)-第6题图12. 正八边形的每个外角的度数为 ▲ .13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是41,那么袋子中共有球 ▲ 个.14. 请写出一个当0x >时,y 随着x 的增大而增大的反比例函数的解析式 ▲ .15. 一个边长为8cm 的等边三角形ABC 与⊙O 等高,如图放置,⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长为 ▲ cm .,B 3,…,,…,P n ,n 分,第2418.先化简,再求值:211(1+)x x x-÷其中1x =19. 已知:如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,E 是CD 中点,连结OE .过点C 作CF ∥BD 交线段O E 的延长线于点F ,连结DF . (1)求证:△ODE ≌△FCE ;(2)试判断四边形ODFC 是什么四边形,并说明理由.20. 为推进阳光体育活动的开展,某学校决定开设以下体育课外活动项目:A .排球;B .乒乓球;C .篮球; D .羽毛球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题: (1)这次被调查的学生共有 ▲ 人; (2)请你将条形统计图补充完整;(3)求喜欢排球人数所占扇形圆心角的大小;(4)若甲、乙、丙、丁四位同学都喜欢乒乓球运动,现从这四名同学中任选两名进行对抗练习,求恰好选中乙、丙两位同学的概率(用树状图或列表法解答).21. 为迎接“六一”,某儿童玩具店计划购进一批甲、乙两种玩具,已知2件甲种玩具的进价与1件乙种玩具的进价的和为90元,3件甲种玩具的进价与2件乙种玩具的进价的和为160 元. (1)求甲乙两种玩具每件进价各多少元?(2)如果该玩具店准备购进甲乙两种玩具共20件,总进价不超过...700元,且不低于...600元,问有几种进货方案,哪种进货方案总进价最低?图1图2第20题图随机抽取的学生喜欢体育课外活动项目的人数扇形统计图随机抽取的学生喜欢体育课外 活动项目的人数条形统计图第19题图22. 如图,一扇窗户垂直打开,即OM ⊥OP ,AC 是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP 上滑动,将窗户OM 按图示方向向内旋转35°到达ON 位置,此时,点A 、C 的对应位置分别是点B 、D .测量出∠ODB 为25°,点D 到点O 的距离为30cm . (1)求B 点到OP 的距离; (2)求滑动支架的长.(结果精确到1cm .参考数据:sin 25°≈0.4,cos 25°≈0.9,tan 25°≈0.5,sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)23. 定义:如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.(1)请根据定义判断下列命题的真假(请在真命题后的括号内打“√”,假命题后的括号内打“╳”)①等腰直角三角形一定不存在匀称中线. ( ) ②如果直角三角形是匀称三角形,那么匀称中线一定是较长直角边上的中线.( )(2)已知:如图1,在Rt ABC ∆中,090C AC BC ∠=>,, 若ABC ∆是“匀称三角形”,求::BC AC AB的值; (3)拓展应用:如图2,ABC ∆是⊙O 的内接三角形,AB AC >,045BAC ∠=, 将ABC ∆ 绕点A 逆时针旋转045得ADE ∆,点B 的对应点为D ,连接CD 交⊙O 于M, 连接AM. ①请根据题意用实线在图2中补全图形; ②若ADC ∆是“匀称三角形”, 求tan AMC ∠的值.24. 如图,二次函数22y x x c =++的图象与x 轴交于点A 和点B (1,0),以AB 为边在x 轴上方作正方形ABCD ,动点P 从点A 出发,以每秒2个单位长度的速度沿x 轴的正方向匀速运动,同时动点Q 从点C 出发,以每秒1个单位长度的速度沿CB 匀速运动,当点Q 到达终点B 时,点P 停止运动,设图1图2第23题图第22题图MM AAB OPP DCCE运动时间为秒.连接DP,过点P作DP的垂线与y轴交于点E.(1)求点A的坐标;(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,并求出这个运动过恰好落在抛物线的对称轴上,若存在,请数学参考答案及评分标准二、填空题(本题有6小题,每小题5分,共30分) 11.二 12. 450 13. 12 14. 1y x =-等(答案不唯一,满足(0)ky k x=<均可) 15. 6 16. 284n n +三、解答题(本题有8小题,第17~19题每题8分,第20、21、22、每题10分,第23题12分,第24题14分,共80分)17.解:原式=6431++- …………………………………………………………………4分=12. ………………………………………………………………………8分 18.解:原式=1(1)(1)x xx x x +⋅-+ …………………………………………………………4分 =11x - . …………………………………………………………………6分当1x =+. ……………………………………………………8分 19. 证明:(1)∵CF ∥BD ,∴∠DOE =∠CFE , ………………………………………………………………1分 ∵E 是CD 中点, ∴CE =DE , …………………………………………………………………………2分 在△ODE 和△FCE 中,,∴△ODE ≌△FCE (ASA ); …………………………………………………………4分 (2)菱形. ……………………………………………………………………………5分 理由如下: ∵△ODE ≌△FCE , ∴OD =FC , ……………………………………………………………………………6分 ∵CF ∥BD , ∴四边形ODFC 是平行四边形, ………………………………………………………7分 在矩形ABCD 中,OC =OD , ∴四边形ODFC 是菱形. ……………………………………………………………8分20. 解:(1)200 ………………………………………………………………………2分 (2)C 项目对应人数为60(图略) …………………………………………………4分(3)002036036200⨯= …………………………………………………………………6分 (4)画树状图如下:,或列表如下:………………………………………8分共有12种等可能的情况,恰好选中乙、丙两位同学的有2种,则P(选中乙、丙)=21126=. …………………………………………………………………………………10分 21. 解:(1)设甲、乙两种玩具每件进价分别为x 元、y 元,由题意,得32160290x y x y +=⎧⎨+=⎩, ………………………………………………………………………2分 解得:2050x y =⎧⎨=⎩. ………………………………………………………………………3分答:甲、乙两种玩具每件进价分别为20元、50元. ………………………………4分 (2)设总进价为W 元,购进甲玩具a 件,由题意得2050(20)100030W a a a =+-=-. …………………………………………………5分 由6002050(20)700a a ≤+-≤,解得40103a ≤≤. ………………………………7分∵ a 为整数,∴ 10,11,12,13a =. …………………………………………………………………8分 由一次函数100030W a =-可知,300k =-<,W 随a 增大而减小.∴当13a =时,W 取得最小值. ………………………………………………………9分 答:有4种进货方案,其中购进甲玩具13件,乙玩具7件的方案总进价最低. ……10分22. 解:(1)在Rt △BOE 中,OE =0tan 55BE, ………………1分在Rt △BDE 中,DE =0tan 25BE,……………………………2分 则0tan 55BE +0tan 25BE =30, ……………………………… 4分 解得BE ≈11cm . ………………………………………5分故B 点到OP 的距离大约为11cm ;………………………………………………………6分(2)在Rt △BDE 中,BD =0sin 25BE≈28cm . …………………………………………………8分 AC=BD ≈28cm . …………………………………………………………………9分 故滑动支架的长28cm . …………………………………………………………………10分 23. 解:(1)①√;②√. ……………………………………………………………2分 (2)∵090C ∠=,AC BC >,由(1)可知ABC ∆的匀称中线是AC 边上的中线,设D 为AC 中点,则BD 为匀称中线.设2AC a =,则CD a =,2BD a =.=, ……………………4分 ∴AB ==,……………………………5分 ∴BC………………………………6分 (3)①如图;……………………………………………8分 ②∵ABC ∆绕点A 逆时针旋转450得ADE ∆, ∴045,DAE BAC AD AB ∠=∠==. ∴090,DAC AD AC ∠=>. ∵ADC∆是匀称三角形,∴2AD AC =:,即2AB AC =:. ………………9分 过点C 作CH AB ⊥于H ,则090AHC BHC ∠=∠=.设AC =,则AH CH ===.∴2BH k =.∴5623646tan +=-==∠BH CH B . (分母不化简不扣分) …11分 在⊙O 中,由AMC B ∠=∠24. 解:(1)把B (1,0)代入 由2230x x +-=得1x =∴点A 的坐标为(-3,0…(2). 如图(2), 由正方形ABCD 由DP PE ⊥证得DAP ∆∽ ∴AD APOP OE =设OE y = ∴13(32)()24y t t t =-⋅=--∵=-10,a <∴当304t t ⎛=< ⎝属于即点P 位于AO 的中点时,线段OE 的长有最大值916(3)①如图①,当302t <<DP DC PE CQ∴=.又ADP ∆∽∴AD DC OP CQ=.即4432t t =-经检验:1t =②如图②,当2723≤<t∴AD DCOP CQ=.即4423t t=-,解得3t=.经检验:3t=是原方程的解.③如图③,当742t<≤时,DPE∆∽QCD∆,DP QCPE CD∴=同理得DP ADPE OP=.∴AD QCOP CD=.即4234tt=-,解得1t=,2t=2t).综上所述,1t=或3…………………………(求出了一个的值给2分,两个的值给4分,三个的值给(4)存在t=………………………………………理由如下:如图由DCQ∆沿DQ翻折得'DC Q∆,则DCQ∆≌'DC Q∆∴'CDQ C DQ∠=∠,'4DC DC==.设抛物线的对称轴交DC于G,则DG=2.在'Rt DC G∆中,∵∴'060C DG∠=.∴00160302CDQ∠=⨯=.∴CQ=,即t=. ………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
邛崃市2015年八年级数学学科质量监测模拟试题六数学一、选择题(每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求.) 1.4的算术平方根是A .2B .2-C .2±D .4 2.下列二次根式中,为最简二次根式的是 A .0.3 B .12 C .15D .7 3.下列运算正确的是A .3710+=B .2(2)4-= C .3273= D .5522=4.以下列各组数为边长,不能构成直角三角形的是A .1,1,2B .2,5 ,6C .3,4 ,5D .5,12,13 5.成都市某一周内每天的最高气温为:8,9,8,10,6,8,6(单位:℃),则这组数据的极差为A .4B .6C .8D .106.在一次函数3y kx =+中,y 随x 的增大而减小,则k 的值可能是A .0B .1C .2D . 12-7.如图,方格纸中每个小方格的边长为1,则正方形ABCD 的面积为 A .8 B .9 C .10 D .11 8.估算193+的值应在A .5和6之间B .6和7之间C .7和8之间D .8和9之间9.下列命题为假.命题..的是 A .在平面内,确定一个物体的位置一般需要两个数据; B .如果两条直线被第三条直线所截,那么内错角相等; C .三角形的一个外角大于任何一个和它不相邻的内角 D .无限不循环小数称为无理数10.在同一平面直角坐标系中,若一次函数2y x =-与21y x =-+的图象交于点M ,则点M 的坐标为A .(1,1)B .(-1,-3)C .(2,0)D .(1,-1)二、填空题(每小题4分,共16分)11.一次函数5y x =+的图象与y 轴的交点坐标为 .12.若一个正数的两个平方根分别为1a +与27a -,则a 的值是 . 13.如图,将长方形ABCD 的长AD 沿折痕AE 折叠,使点D 落在BC 上的F 处,若AB=6,AD=10,则BF = . 14.如果关于x ,y 的方程组125x y x y +=⎧⎨-=⎩的解是二元一次方程21x y k ++=的一个解,则直线3y kx =+不经过第 象限.三、解答题(本大题有6个题,共54分) 15.计算(每小题5分,共10分)(1)118482-+ (2)320451645-++-16.解方程组(每小题5分,共10分) (1)2 310 y x x y =⎧⎨+=⎩①②(2)2 4 2 3 x y x y +=⎧⎨-=⎩①②17.( 本小题满分7分)在平面直角坐标系xOy 中,△ABC 的位置如图所示. (1)分别写出△ABC 各个顶点的坐标;(2)分别写出顶点A 关于x 轴对称的点A '的坐标和顶点B 关于y 轴对称的点B '的坐标; (3)求线段BC 的长.某校八年级去年6月份开展了家庭月用水量调查活动,并约定:如果6月份的用水量在“选定标准”的20%范围之内都称为“普通用水量”.现随机选出该年级20名学生,将其家庭6月份的用水量(单位:吨)情况进行统计并绘制成如下统计图,请根据统计图信息解决问题: (1)求关于这20个家庭6月份用水量的三个统计量:平均数、中位数和众数;(2)在(1)的基础上,请你选择其中一个统计量.....作为“选定标准”,那么按此“选定标准”这20个家庭中满足“普通用水量”的家庭有多少个?(请直接写出结果,不写计算过程)19.( 本小题满分9分)某商场花了9万元从厂家购买了A型和B型两种型号的电视机共50台,其中A型电视机的进价为每台1500元,B型电视机的进价为每台2500元.(1)若设购买了A型电视机x台,B型电视机y台,请完成下列表格:进价(单位:元/台)购买数量(单位:台)购买费用(单位:元)A型1500 xB型2500 y(2)在(1)的基础上,通过列二元一次方程组求该商场购买A型和B型电视机各多少台?(3)若商场A型电视机的售价为每台1700元,B型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?如图,一次函数y kx b =+的图象与x 轴交于点A (20),,与正比例函数3y x =的图象交于点B (1)a -,.(1)求点B 的坐标及一次函数的表达式;(2)若第一象限内的点C 在正比例函数3y x =的图象上,且OC =10,求点C 的坐标; (3)在(2)的基础上,连接AC ,求△ABC 的面积.四、解答题(共20分)21.(本小题满分8分)若实数x ,z 满足26(4)0x x z -+-+=,且实数y 的立方根是2. (1)分别求x ,y ,z 的值;(2)若x ,y ,z 是△ABC 的三边长,试判定△ABC 的形状.OxCyBA22.(本小题满分12分)如图,长方形OABC在平面直角坐标系xOy的第一象限内,点A在x轴正半轴上,点C在y轴正半轴上,点D、E分别是OC、BC的中点,∠CDE=30°,点E的坐标为(2,a) .(1)求a的值及直线DE的函数表达式;(2)现将长方形OABC沿直线DE折叠,使顶点C落在坐标平面内的点C′处,过点C′作y轴的平行线分别交x轴和BC于点F、G.①求点C′的坐标;②若点P为直线DE上一动点,连接PC′,当△PC′D为等腰三角形时,求点P的坐标.【说明:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.】邛崃市2015年八年级数学学科质量监测模拟试题六参考答案一、选择题(每小题3分,共30分)1.A 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.B 10.D 二、填空题(每小题4分,共16分)11.(0,5); 12.2; 13.8; 14.三.三、解答题(本大题有6个题,共54分) 15.(每小题5分,共10分) (1) 解:原式=2324222-⨯+…3分 (2)解:原式=20451455-+-…3分 =322222-+……4分 =493-+…………4分 =32……………………5分 =2………………………5分16.(每小题5分,共10分)(1)解:把①代入②,得3210x x +=…1分 (2)解:①×2,得248x y += ③…1分∴ 2x =……………2分 ③-①,得 55y =………2分把2x =代入①,得4y =………4分 ∴ 1y =……………………3分∴原方程组的解是2,4.x y =⎧⎨=⎩………5分 将1y =代入①,得 2x =……4分∴原方程组的解是2,1.x y =⎧⎨=⎩……………5分17.(共7分)解:(1)(4,3)A -,(3,0)B ,(2,5)C -…………………3分 (2)A '(4,3)--,B '(3,0)-………………………………5分 (3)由图知:2225550BC =+= …………………………6分 ∴ 52BC =………………………………………………7分18.(共8分) 解:(1)平均数为:61821071261822021220⨯+⨯+⨯+⨯+⨯+⨯=(吨)…2分中位数为:1012112+=(吨) ……………………………………………………4分 众数为:10吨………………………………………………………………………6分 (2)选平均数(中位数或众数)作为标准,满足“普通用水量”的家庭有13个(13个或15个). ……………………………………………………………………………………………8分19.(共9分) 解:(1)1500x ,2500y ……………………………………………2分 (2)由题意得,501500250090000x y x y +=⎧⎨+=⎩ 解得,3515x y =⎧⎨=⎩……………5分∴该商场购买A 型电视机35台,购买B 型电视机15台…………………………6分 (3)销售完这50台电视机该商场可获利:(17001500)35(28002500)1511500-⨯+-⨯=(元)…………………………9分20.(共10分)解:(1)∵点B (1)a -,在正比例函数3y x =的图象上 ∴3(1)3a =⨯-=-,∴点B 的坐标为(13)--,……………………2分∵一次函数y kx b =+的图象经过点A (20),,B (13)--,∴203k b k b +=⎧⎨-+=-⎩,∴12k b =⎧⎨=-⎩,∴一次函数的表达式为2y x =-…4分 (2)∵第一象限内的点C 在正比例函数3y x =的图象上∴可设C 点的坐标为(3)c c x x ,,且0c x >……………………………5分如图,过C 作CM ⊥x 轴于点M ,则222OM CM OC +=,且c OM x =,3c CM x = ∵OC =10,∴22(3)10c c x x +=………………………………………6分 ∵0c x >,∴1c x =,∴33c x =………………………………………7分∴点C 的坐标为(13),…………………………………………………8分 (3)∵点A 的坐标为(20),,B 的坐标为(13)--,,点C 的坐标为(13), ∴112323622ABCOCAOBAS SS=+=⨯⨯+⨯⨯=…………………10分四、解答题(共20分)O xM CyBA21.(共8分)解:(1)∵实数x 、z 满足26(4)0x x z -+-+=∴6040x x z -=⎧⎨-+=⎩…………………………………………………………………1分∴610x z =⎧⎨=⎩………………………………………………………………………3分∵实数y 的立方根是2,∴8y =………………………………………………4分(2)∵6x =,8y =,10z =∴236x =,264y =,2100z =……………………………………………………6分∴222x y z +=…………………………………………………………………………7分 ∴△ABC 为直角三角形………………………………………………………………8分22.(共12分)解:(1)∵点E 的坐标为(2,a ),∴CE =2………………………………1分 ∵在Rt △CDE 中,∠DCE =90°,∠CDE =30°∴DE =2CE=4,∴CD=224223-=………………………………………2分 ∵点D 为OC 的中点,∴CO=2 CD =43,DO= CD =23∴a=43…………………………………………………………………………3分 ∴点D 的坐标为(0,23),点E 的坐标为(2,43) 设直线DE 的表达式为y =kx +b (k ≠0),将D (0,23),E (2,43)分别代入,得 ⎩⎪⎨⎪⎧b =23,2k +b =43………………………4分解得⎩⎪⎨⎪⎧k =3,b =23. ∴直线DE 的函数表达式为y =3x +23.……………5分(2)①由折叠可知, C ′E=CE=2,∠C ′ED =∠CED =90°-30°=60°………6分 ∴∠C ′EG =180°-60°-60°=60°,∴∠E C ′G =90°-60°=30° ∴在Rt △C ′G E 中, EG =12C ′E=1∴C ′G =22213-=……………………………………………………………………………7分 ∴CG=2+1=3,C ′F =43-3=33∴C ′的坐标为 (3,33)…………………………………………………………………………8分 (3)P 点在直线DE 上,分以下三种情况:①PC ′=PD ,此时∠PC ′D =∠PDC ′=30°,易得C ′P ∥x 轴,∴P 点的纵坐标为33. 把y =33代入直线DE 表达式y =3x +23,可求得x =1,∴P 1(1,33)………………………………………………………………………………………9分 ②C ′P =C ′D ,此时∠C ′PD =∠C ′DP =30°,又∵∠DC ′G =120°,∴P 在射线C ′G 上, ∴P 点横坐标为3,把x =3代入直线DE 表达式y =3x +23,可求得y =53,∴P 2(3,53)………………………………………………………………………………………10分 ③DP =DC ′,由 D (0,23),C ′(3,33),易得此时 DC ′=23, ∴DP =2 3 过P 作PM ⊥y 轴于点M ,则PM 2+DM 2=DP 2∵点P 在直线y =3x +23上,∴可设P 点坐标为(,323)p p x x + ∴222(32323)(23)p p x x ++-=,解得3p x =±∴P 3(3,23+3),P 4(-3,23-3).………………………………………………………12分 综上, P 1(1,33),P 2(3,53),P 3(3,23+3),P 4(-3,23-3).。