5.2.5反比例函数解决实际问题
用反比例函数解决实际问题
反比例函数是一种常见的数学模型,可以用来解决很多实际问题。
以下是一个例子:
假设一辆汽车行驶的距离与其油耗量是一个反比例关系。
也就是说,当汽车行驶的距离增加时,它消耗的油耗将减少,并且当汽车行驶的距离减少时,它消耗的油耗将增加。
如果我们知道汽车在某一段路程中的油耗量(例如每公里消耗的升数),以及这段路程的总长度,我们可以使用反比例函数来求出它的平均油耗量。
具体步骤如下:
1. 定义变量:假设总距离为 D 千米,油耗量为 H 升/公里,平均油耗为 Y 升/百公里
2. 确定反比例函数:根据定义,可得:H = k / Y,其中 k 是一个常数
3. 求解常数 k:当总距离为 D 时,油耗为 H * D 升。
因此,有:H * D = k / Y,即 Y = k / (H * D)
4. 计算平均油耗:将上一步得到的等式中,代入已知的 H 和 D 值,即可求出平均油耗量 Y 的值。
总结:反比例函数可应用于很多实际问题,如物质的浓度与稀释液的体积关系、人口密度与城市面积的关系等。
在实际应用中,需要根据具体情况选择合适的变量和反比例函数形式,以获得所需的信息。
10、用反比例函数解决问题
用反比例函数解决问题要点一、利用反比例函数解决实际问题1.基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.2.一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.要点二、反比例函数在其他学科中的应用1.当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2.当工程总量一定时,做工时间是做工速度的反比例函数;3.在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;电压一定,输出功率是电路中电阻的反比例函数.要点三、反比例函数中的最值问题理论:若0a >,0b >,则a b +³a b =时等号成立)例题:对于函数()10y x x x=+>,当x 取何值时,函数y 的值最小?最小值是多少?0x Q >,12y x x \=+³=,当且仅当1x x =时,等号成立,由1x x=得:1x =或10x =-<(舍去),经检验,1x =是方程1x x =的解,故当x=1时,函数y 的值最小,最小值是2题型一:反比例函数实际问题与图象1.已知矩形的面积为 10,它的长y 与宽x 之间的关系用图象大致可表示为( )A .B .C .D .2.当温度不变时,某气球内的气压(kPa)p 与气体体积2(m )V 成反比例函数关系(其图象如图所示),已知当气球内的气压120kPa p >时,气球将爆炸,为了安全起见,气球内气体体积V 应满足的条件是( )A .不大于24m 5B .大于25m 4C .不小于24m 5D .小于25m 43.伟大的古希腊哲学家、数学家、物理学家阿基米德有句名言:“给我一个支点,我可以撬动地球!”这句名言道出了“标杆原理”的意义和价值.“标杆原理”在实际生产和生活中,有着广泛的运用.比如:小明用撬棍撬动一块大石头,运用的就是“标杆原理”.已知阻力1(N)F 和阻力臂1(m)L 的函数图像如图,若小明想使动力2F 不超过150N ,则动力臂2L 至少需要( )m .A .2B .1C .6D .44.体育课上,甲、乙、丙、丁四位同学进行跑步训练,如图用四个点分别描述四位同学的跑步时间y(分钟)与平均跑步速度x(米/分钟)的关系,其中描述甲、丙两位同学的y与x之间关系的点恰好在同一个反比例函数的图像上,则在这次训练中跑的路程最多的是()A.甲B.乙C.丙D.丁5.某商家设计了一个水箱水位自动报警仪,其电路图如图1所示,其中定值电阻110ΩR=,2R是一个压敏电阻,用绝缘薄膜包好后放在一个硬质凹形绝缘盒中,放入水箱底部,受力面水平,承受水压的面积S为0.012m,压敏电阻2R的阻值随所受液体压力F的变化关系如图2所示(水深h越深,压力F越大),电源电压保持6V不变,当电路中的电流为0.3A时,报警器(电阻不计)开始报警,水的压强随深度变化的关系图象如图3所示(参考公式:UIR =,F pS=,1000Pa1kPa=).则下列说法中不正确的是()A.当水箱未装水(0mh=)时,压强p为0kPaB.当报警器刚好开始报警时,水箱受到的压力F为40NC.当报警器刚好开始报警时,水箱中水的深度h是0.8mD.若想使水深1m时报警,应使定值电阻1R的阻值为12W题型二:利用反比例函数解决实际问题1.如图是某种电子理疗设备工作原理的示意图,其开始工作时的温度是20℃,然后按照一次函数关系一直增加到70℃,这样有利于打通病灶部位的血液循环,在此温度下再沿反比例函数关系缓慢下降至35℃,然后在此基础上又沿着一次函数关系一直将温度升至70℃,再在此温度下沿着反比例函数关系缓慢下降至,35℃如此循环下去.(1)t的值为;:分钟内温度大于或等于50℃时,治疗效果最好,则维持这个温度范围的持(2)如果在0t续时间为分钟.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x (分钟)的变化规律如图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?请说明理由.3.某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()y ℃与时间()h x 之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y 与时间x 之间的函数关系式;(3)若大棚内的温度低于()10℃不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?4.心理学研究发现,一般情况下,在一节45分钟的课中,学生的注意力随学习时间的变化而变化.开始学习时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y、分别为线段,CD为双曲线的一部随时间x (分钟)的变化规律如下图所示(其中AB BC分).(1)求注意力指标数y与时间x (分钟)之间的函数表达式;(2)开始学习后第4分钟时与第35分钟时相比较,何时学生的注意力更集中?(3)某些数学内容的课堂学习大致可分为三个环节:即“教师引导,回顾旧知;自主探索,合作交流;总结归纳,巩固提高”,其中“教师引导,回顾旧知”环节10分钟;重点环节“自主探索,合作交流”这一过程一般需要30分钟才能完成,为了确保效果,要求学习时的注意力指标数不低于40,请问:这样的课堂学习安排是否合理?并说明理由.5.如图所示,小明家饮水机中原有水的温度是20,开机通电后,饮水机自动开始加热,此过程中水温y (°C )与开机时间x (分)满足一次函数关系.当加热到100°C 时自动停止加热,随后水温开始下降,此过程中水温y (°C )与开机时间x (分)成反比例关系.当水温降至20°C 时,饮水机又自动开始加热……,不断重复上述程序.根据图中提供的信息,解答下列问题:(1)当05x ££时,求水温y (°C )与开机时间x (分)的函数关系式;(2)求图中t 的值;(3)有一天,小明在上午7:20(水温20°C ),开机通电后去上学,11:33放学回到家时,饮水机内水的温度为多少°C ?并求:在7:2011:33——这段时间里,水温共有几次达到100°C ?6.据医学研究,使用某种抗生素可治疗心肌炎,某一患者按规定剂量服用这种抗生素,已知刚服用该抗生素后,血液中的含药量y(微克)与服用的时间x成正比例药物浓度达到最高后,血液中的含药量y(微克)与服用的时间x成反比例,根据图中所提供的信息,回答下列问题:(1)抗生素服用_______小时时,血液中药物浓度最大,每毫升血液的含药量有____微克;(2)根据图象求出药物浓度达到最高值之后,y与x之间的函数解析式及定义域;(3)求出该患者服用该药物10小时时每毫升血液的含药量y.题型三:最值问题1.阅读与思考任务:(1)填空:已知0x >,只有当x =______时,4x x+有最小值,最小值为______.(2)如图,P 为双曲线()60y x x =>上的一点,过点P 作PC x ⊥轴于点C ,PD y ⊥轴于点D ,求PC PD +的最小值.2.【操作发现】由()20a b -³得,222a b ab +³;如果两个正数a ,b ,即0a >,0b >,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x +的最小值.解:令a x =,4b x =,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时式子有最小值,最小值为4.(1)【问题解决】请根据上面材料回答下列问题:已知0x >,当x 为多少时,代数式9x x +的最小值为;(2)【灵活运用】当2x >时,求12x x +-的最小值;(3)【学以致用】如图,民民同学想做一个菱形风筝,现在有一根长120cm 的竹竿,他准备把它截成两段做成风筝的龙骨即菱形的对角线AC ,BD ,请你帮他设计一下,当AC 为多少cm 时菱形的面积最大,最大值为2cm (直接写出结果).3.由2()0a b -³得,222a b ab +³;如果两个正数a ,b ,即0,0a b >>,则有下面的不等式:a b +³,当且仅当a b =时取到等号.例如:已知0x >,求式子4x x+的最小值.解:令4,a x b x ==,则由a b +³44x x +³=,当且仅当4x x =时,即2x =时,式子有最小值,最小值为4.请根据上面材料回答下列问题:(1)当0x >,式子x +16x的最小值为 ;(2)当0x <,代数式364+x x最大值为多少?并求出此时x 的值;(3)用篱笆围一个面积为32平方米的长方形花园,使这个长方形花园的一边靠墙(墙长20米),问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?4.阅读材料:①对于任意实数a 和b ,都有2()0a b -³,∴2220a ab b -+³,得到222a b ab +³,当且仅当a b =时,等号成立.②任意一个非负实数都可写成一个数的平方的形式.即:如果a ≥0,则2a =.如:22=等.例:①用配方法求代数式2283x x -+的最小值.②已知0a >,求证:12a a+>①解:由题意得:222832(2)5x x x -+=--,∵22(2)0x -³,且当2x =时,22(2)0x -=,∴22(2)55x --³-,∴当2x =时,代数式2283x x -+的最小值为:5-;②证明:∵0a >,∴2122a a +=+>=∴12a a +>12a a =,即请解答下列问题:某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙足够长),另外三边用篱笆围成(如图所示).设垂直于墙的一边长为x 米.(1)若所用的篱笆长为36米,那么:①当花圃的面积为144平方米时,垂直于墙的一边的长为多少米?②设花圃的面积为S 米2,求当垂直于墙的一边的长为多少米时,这个花圃的面积最大?并求出这个最大面积;(2)若要围成面积为200平方米的花圃,需要用的篱笆最少是多少米?题型四:反比例函数综合运用1.如图是4个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~4的整数),函数()0k y x x =>的图象为曲线L ,若曲线L 使得14T T :,这些点分布在它的两侧,每侧各2个点,则k 的取值范围是( )A .812k ££B .812k £<C .812k <£D .812k <<2.如图,矩形ABCD 对角线的交点为O ,点P 在x 轴的正半轴上,DC 平分BDP Ð,PAD V 的面积为6.若双曲线()0k y x x=>经过点D ,交PD 于点Q ,且PQ DQ =,则k 的值为 .3.如图,已知点()1,A a 和点()3,B b 是直线y mx n =+与双曲线(0)k y k x =>的交点,AOB V 的面积为43.(1)求k 的值;(2)设()111,P x y ,()222,P x y 是反比例函数在同一象限上任意不重合的两点,1212y y M x x =+,2112y y N x x =+,判断M ,N的大小,并说明理由.4.已知反比例函数k y x =的图象经过点()A .(1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB .判断点B 是否在此反比例函数的图象上,并说明理由;(3)已知点()6P m +也在此反比例函数的图象上(其中0m <),过P 点作x 轴的垂线,交x 轴于点M .若线段PM 上存在一点Q ,使得OQM V 的面积是12,设Q 点的纵坐标为n ,求29n -+的值.5.如图,矩形ABCD的两边AD,AB的长分别为3,8,边BC落在x轴上,E是DC的中点,连接AE,反比例函数myx=的图象经过点E,与AB交于点F.(1)求AE的长;(2)若2AF AE-=,求反比例函数的表达式;(3)在(2)的条件下,连接矩形ABCD两对边AD与BC的中点M,N,设线段MN与反比例函数图象交于点P,将线段MN沿x轴向右平移n个单位,若MP NP<,直接写出n的取值范围.课后练习1.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:W )是反比例函数关系,它的图象如图所示,则当电阻为6W 时,电流为( )A .3AB .4AC .6AD .8A2.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流()A I .与电阻()R W 成反比例函数的图象,该图象经过点()880,0.25P .根据图象可知,下列说法正确的是( )A .当0.25R <时,880I <B .I 与R 的函数关系式是()2000I R R=>C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<3.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度()C y °与时间()h x 之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y 与时间()024x x ££的函数关系式;(2)若大棚内的温度低于10C °时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化:开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB BC ,分别为线段,BC x ∥轴,CD 为双曲线的一部分),其中AB 段的关系式为220y x =+.(1)点B 坐标为_______;(2)根据图中数据,求出CD 段双曲线的表达式;(3)一道数学竞赛题,需要讲20分钟,为了效果较好,要求学生的注意力指标数最低达到32,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?5.为确保身体健康,自来水最好烧开(加热到100℃)后再饮用.某款家用饮水机,具有加热、保温等功能.现将20℃的自来水加入到饮水机中,先加热到100℃.此后停止加热,水温开始下降,达到设置的饮用温度后开始保温.比如事先设置饮用温度为50℃,则水温下降到50℃后不再改变,此时可以正常饮用.整个过程中,水温()y ℃与通电时间()min x 之间的函数关系如图所示.(1)水温从20℃加热到100℃,需要______min ;请直接写出加热过程中水温y 与通电时间x 之间的函数关系式:______;(2)观察判断:在水温下降过程中,y 与x 的函数关系是______函数,并尝试求该函数的解析式;(3)已知冲泡奶粉的最佳温度在40℃左右,某家庭为了给婴儿冲泡奶粉,将饮用温度设置为40℃.现将20℃的自来水加入到饮水机中,此后开始正常加热.则从加入自来水开始,需要等待多长时间才可以接水冲泡奶粉?6.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为18: 的整数)函数()0k y x x=<的图像为曲线L ,若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的取值范围是( )A .3628k -<<-B .2214k -<<-C .2012k -<<-D .3426k -<<-7.阅读理解:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)若A(m ,y 1),B(m +1,y 2),C(m +3,y 3)三点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值;(2)若实数a ,b ,c 是“和谐三数组”,且满足a >b >c >0,求点(,)c c P a b与原点O 的距离OP 的取值范围.8.如图直角坐标系中,矩形ABCD 的边BC 在x 轴上,点B 、D 的坐标分别为B (1,0),D (3,3).(1)点C 的坐标 ;(2)若反比例函数()0k y k x=¹的图象经过直线AC 上的点E ,且点E 的坐标为(2,m ),求m 的值及反比例函数的解析式;(3)若(2)中的反比例函数的图象与CD 相交于点F ,连接EF ,在直线AB 上找一点P ,使得32PEF CEF S S D D =,求点P 的坐标.9.阅读材料:已知,a b 为非负实数,∵2220a b +-=+-=³,∴a b +³“a b =”时,等号成立.这个结论就是著名的“均值不等式”,“均值不等式”在一类最值问题中有着广泛的应用.例:已知0x >,求函数4y x x =+的最小值.解:令a x =,4b x =,则由a b +³44y x x =+³=.当且仅当4x x=,即2x =时,函数取到最小值,最小值为4.根据以上材料解答下列问题:(1)已知0x >,则当x =______时,函数3y x x=+取到最小值,最小值为______;(2)用篱笆围一个面积为2100m 的矩形花园,则当这个矩形花园的长、宽各为多少时,所用的篱笆最短?最短的篱笆的长度是多少米?(3)已知0x >,则自变量x 取何值时,函数229x y x x =-+取到最大值?最大值为多少?。
反比例函数的实际例子
反比例函数的实际例子
1. 你知道吗,汽车行驶的速度和时间就像是反比例函数一样!比如说,你要去一个地方,路程是固定的吧,如果速度超快,那到达的时间不就很短嘛!反之,要是慢悠悠地开,那花费的时间可就长啦!这多像反比例函数啊,速度和时间此消彼长。
2. 想想看啊,你做一项工作,工作效率和完成时间不也是反比例函数的关系嘛!如果你效率超高,那完成工作不就用时很短嘛,要是磨磨蹭蹭,那得花多少时间呀!这不是明摆着的吗!
3. 哎呀呀,打篮球的时候,投篮的准确率和出手次数也有点反比例函数的味道呢!你要是只求快,疯狂投篮,那准确率可能就下去了呀。
但要是好好瞄准,少投几次,说不定准确率就大大提高了呢!大家想想是不是这么回事呀!
4. 大家有没有发现,给花浇水的量和花存活的时长也类似反比例函数哦!水浇太多,可能花就被淹坏了,可水浇太少,花又会干死,这不是很神奇嘛?
5. 嘿,你们说学习时间和学习效果是不是也是反比例函数呀!一直不停地学,可能效率反而低了,适当地休息调整,那学习效果说不定蹭蹭往上涨呢,这可真有意思!
6. 平时用电的时候,电器功率和用电时间也像反比例函数呢!功率大的电器,用的时间长那电费可就吓人了,如果功率小一点,合理安排使用时间,电费不就少很多嘛!这难道不是很明显嘛!
我觉得反比例函数在生活中无处不在,只要我们细心观察就能发现很多有趣的例子,它真的很神奇呀!。
《5.2反比例函数》作业设计方案-初中数学青岛版12九年级下册
《反比例函数》作业设计方案(第一课时)一、作业目标通过本作业的设计与实施,旨在使学生能够:1. 掌握反比例函数的概念和性质;2. 学会识别和判断反比例函数图象及其与x轴、y轴的交点;3. 理解反比例函数在生活中的应用,并能够用反比例函数解决实际问题。
二、作业内容本作业内容主要围绕反比例函数的基本概念和性质展开,具体包括:1. 反比例函数的概念:介绍反比例函数的基本形式,如y=k/x(k为常数),并解释其含义。
2. 反比例函数的图象:让学生通过画图工具绘制反比例函数的图象,并理解其与x轴、y轴的交点含义。
3. 反比例函数的性质:让学生通过实例分析,掌握反比例函数的增减性、值域等性质。
4. 反比例函数的应用:选取生活中的实例,如水渠流速与流量的关系等,让学生运用反比例函数进行分析和计算。
三、作业要求1. 独立完成:要求学生独立完成作业,不得抄袭或参考他人答案。
2. 详细解答:对每个问题要有详细的解题步骤和答案解释,尤其是对于反比例函数的应用问题,要结合实际进行分析。
3. 作业格式:要求学生使用规范的数学符号和表达方式,格式整洁,易于理解。
4. 时间安排:本作业需在课堂讲解后的第二周内完成。
四、作业评价教师将对作业进行细致的批改和评价,主要包括以下几点:1. 正确性:评价学生答案的正确性,是否准确掌握了反比例函数的基本概念和性质。
2. 解题思路:评价学生的解题思路是否清晰,是否能够灵活运用所学知识解决实际问题。
3. 表达能力:评价学生的数学表达能力和书写规范性,是否能够使用规范的数学符号和表达方式。
4. 进步程度:对学生的学习进步进行综合评价,鼓励学生在原有基础上不断进步。
五、作业反馈教师将根据批改情况,对每位学生的作业进行反馈,包括以下几点:1. 肯定优点:对学生的优点和进步进行肯定和表扬,激励学生继续努力。
2. 指出不足:针对学生存在的不足和错误,给出具体的建议和指导,帮助学生改正错误。
3. 个性化指导:根据每位学生的实际情况,给出个性化的学习建议和指导,帮助学生更好地掌握所学知识。
2、实际问题与反比例函数汇总
反比例函数实际应用一、知识点详解在中考试题中对反比例函数应用的考查主要有两种形式,一是确定实际问题中的反比例函数解析式,这类问题一般属于跨学科问题,除了要了解一些基本生活常识外还要掌握常见的物理学公式;二是判断实际问题中的函数图象,这类问题一般会综合考查一次函数和二次函数,正确解答这类问题的关键是确定函数关系式,同时注意自变量的取值范围。
二、知识点拨1、实际问题中常见的反比例关系现实世界中有许多含有反比例函数关系和性质的现象,常见的主要有以下几种:(1)面积S 一定,长方形的长a 与宽b 之间的反比例函数关系:a =Sb。
(2)体积V 一定,圆柱体的底面积S 与高d 之间的反比例函数关系:S =Vd ;(3)压力N 一定,压强P 与接触面积S 之间的反比例函数关系:P =NS;(4)质量m 一定,气体压强p 与气体体积V 之间的反比例函数关系:p =mV ;(5)功率P 一定,速度v 与所受阻力F 之间的反比例函数关系:v =PF;(6)路程S 一定,匀速行驶速度v 与时间t 之间的反比例函数关系:v =St ;(7)电压U 一定,电路中电流I 与电阻R 之间的反比例函数关系:I =UR;2、反比例函数模型的建立1. 条件:实际问题中的两个变量在变化过程中,它们的积为定值;2. 过程:(1)用两个不同字母表示变量; (2)确定k 的值; (3)建立函数关系式;(4)利用图象及其性质解决问题。
3、实际问题中反比例函数的特点1. 实际问题中反比例函数自变量的取值是有一定范围的,一般情况取正数,有时取正整数,所以在实际问题中,具体问题需要具体分析其自变量、函数的取值。
2. 实际问题中反比例函数的图象往往是在第一象限中的部分或其中的某一段,这与自变量的取值范围有关。
三、经典例题 能力提升类例1 填空题(1)在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是__________米。
反比例函数实际问题
反比例函数实际问题
我们要解决一个与反比例函数相关的问题。
首先,我们需要理解反比例函数的概念。
反比例函数的一般形式是 y = k/x,其中 k 是常数。
这个函数告诉我们,当 x 增大时,y 会减小,反之亦然。
现在,我们有一个实际问题:
一个工厂生产某种产品,每小时生产量是固定的。
如果工厂工作 h 小时,那么它生产的总产品数量为 y。
假设工厂每小时生产的产品数量为 k,那么y = k × h。
但是,我们知道 y = k/h,这是因为当 h 增大时,y 会减小。
现在,我们要找出当 y = 100 时,h 是多少。
计算结果为:h = 1/100
所以,当 y = 100 时,工厂需要工作 1/100 小时。
§5.2.2 反比例函数的图象与性质(二)
§5.2.2 反比例函数的图象与性质(二)【教学重点与难点】教学重点:(1)探索并掌握反比例函数的主要性质.(2)通过画反比例函数的图象,培养学生的动手能力和观察、分析、解决问题的能力.教学难点:(1)逐步提高从函数图象中获取信息的能力.(2)结合反比例函数图象,探索并掌握反比例函数的主要性质.(3)以探索反比例函数的性质为载体,进一步渗透分类的数学思想.【学情分析】本节课是反比例函数的图象与性质的第二课时,在前一节课,学生已亲身经历了反比例函数图象的探索过程,并动手实践操作,明确了比例系数K 的性质对图象两个分支位置的影响.函数的性质蕴涵于概念和图象之中,对反比例函数性质的探索是对其概念和图象内在规定性的认识.教学中,可引导学生在了解函数三种表示方法的基础上,通过观察、分析函数的图象,自主地对反比例函数的主要性质作出直观描述.由于反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的空间.通过对反比例函数(k>0和k<0)图象的全面观察和比较,发现反比例函数自身的规律,结合语言表述,在相互交流中发展从图象中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的主要性质.【教学目标】1、体会函数的三种表示方法的相互转换,对函数进行认识上的整合.2、逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.3、在探究反比例函数性质的活动中,渗透类比、分类的思想.【教学方法】在教学上主要采用了探索发现和启发式教学方法,并结合电脑演示,激励学生积极参与,在知识的发生、发展中渗透类比、化归的数学思想,学生通过观察、发现、猜想、验证、应用等一系列探究活动,层层推进,环环相扣,体现数学的严密性于系统性.初三的学生,已具有了一定的分析能力和逻辑推理能力,因此,在教学中更应体现学生的主体地位,让学生动手动脑,培养他们自主探索、勇于实践的能力.通过合作交流,激发学生的学习兴趣,提高学习效率,在知识的迁移中进行创造性学习,达到传授知识与培养学生能力融为一体的目的.【教学过程】一、观察联想、探究新知(设计说明:通过观察三个具体的反比例函数图象,归纳概括k>0时反比例函数图象的共同特征,探索反比例函数的主要性质.教学时应鼓励学生用自己的语言进行表述与交流,在交流中发展从图象中获取信息的能力.问题是思维的出发点,本环节所设计的三个问题,可激起学生强烈的好奇心和求知欲.) 观察反比例函数xy x y x y 6,4,2===的图象,你能发现它们的共同特征吗?x y 4=(2)图1探索:(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x 值的增大,y 的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x 轴相交吗?可能与y 轴相交吗?为什么?学生观察,同桌交流,大胆发言,发表见解.(教学说明:(1)函数图象分别位于第一、三象限.(2)y 的值随着x 值的增大而减小.为了揭示这一变化规律,可以引导学生分别在每一象限的图象上任意取两点A (x 1,y 1),B (x 2,y 2),观察当x 2>x 1时,y 1与y 2的关系.当然,可以根据学生的兴趣,可以让学生采用代数证明方式进行推理:当k>0,x 2>x 1时,0)11(1212<-=-x x k y y ,即y 2<y 1.(3)不可能与x 轴相交,也不可能与y 轴相交.这一结论既可以通过观察图象得出,也可以通过分析函数表达式得出.实际上,因为x ≠0,所以图象与y 轴不可能有交点:因为不论x 取何实数值,y 的值永不为0(因为k ≠0),所以图象与x 轴也不可能有交点.此外,当x 的值越来越接近于0时,︱y ︱的值将逐渐变得很大;反之,当︱x ︱的值变得非常大时,y 的值将逐渐接近于0.这说明,图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y轴相交.)二、自主探究、领悟规律(设计说明:设计此环节的目的是归纳概括k<0时反比例函数图象的共同特征.教学时,可引导学生类比前面k>0时所讨论过的问题进行思考.此外,这里分k>0和k<0两种情况,渗透了分类的思想.)议一议考察当k =-2,-4,-6时,反比例函数x k y =的图象,它们有哪些共同特征? 学生通过相互交流、补充和修正. 反比例函数的性质:反比例函数xk y =的图象,当k>0时,在每个象限内,y 的值随x 值的增大而减小;当k<0时,在每一象限内,y 的值随x 值的增大而增大。
反比例函数在实际生活中的应用
.
2、完成某项任务可获得500元报酬,考虑由x人完
成这项任务,试写出人均报酬y(元)与人数x(人)
之间的函数关系式
y
500
x
.
3、某住宅小区要种植一个面积为1000的矩形草坪,
草坪的长y随宽x的变化而变化
y
1积为168平方千米,人
均占有的土地面积ss随 全1n68市总人口n的变化而 变化;______________________
人教版九年级数学下册
1、能运用反比例函数的概念和性质解决实 际问题。 2、能够把实际问题转化为反比例函数这一 数学模型,从而解决问题。
1、京沈高速公路全长658km,汽车沿京沈高速公
路从沈阳驶往北京,则汽车行完全程所需时间t(h)
与行驶的平均速度v(km/h)之间的函数关系式为
t
658
(2)由于遇到紧急情况,船上的货物必须在不超过5 日内卸完,那么平均每天至少要卸多少吨货物?
分析:(1)根据装货速度×装货时间=货物的总量, 可以求出轮船装载货物的的总量;
(2)再根据卸货速度=货物总量÷卸货时间, 得到v与t的函数式。
解:(1)设轮船上的货物总量为k吨,则根据已
知条件有
k=30×8=240
(5)已知排水管的最大排水量为每时12m3,那么最少 多长时间可将满池水全部排空?
解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可 将满池水全部排空.
本节课的学习,你有什么收获?
能把实际问题,通过分析,转化为数学 模型--反比例函数
实际 问题
建立数学模型 运用数学知识解决
反比例 函数
d S
即储存室的底面积S是其深度d的反比例函数.
反比例函数教案(优秀8篇)
反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。
2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。
教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。
二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
反比例函数教案(优秀6篇)
反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
反比例函数的图象与性质教案范文
反比例函数的图象与性质教案范文第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾正比例函数的定义,提出反比例函数的概念。
通过实际例子,让学生理解反比例函数的意义。
1.2 反比例函数的表达式介绍反比例函数的一般形式y = k/x (k 为常数,k ≠0)。
解释反比例函数中x 和y 的关系,强调它们成反比例关系。
第二章:反比例函数的图象2.1 反比例函数图象的形状引导学生观察反比例函数图象的特点,如双曲线形状。
解释反比例函数图象的渐近线及其意义。
2.2 反比例函数图象的截距分析反比例函数图象在x 轴和y 轴上的截距。
引导学生理解反比例函数图象与坐标轴的交点。
第三章:反比例函数的性质3.1 反比例函数的单调性探讨反比例函数在不同区间的单调性,即在每个象限内的增减性。
通过实例和图形,解释反比例函数单调性的原因。
3.2 反比例函数的奇偶性证明反比例函数是奇函数,即f(-x) = -f(x)。
引导学生理解奇函数性质在反比例函数上的体现。
第四章:反比例函数的渐近线4.1 反比例函数的渐近线方程推导反比例函数的渐近线方程y = x 和y = -x。
解释渐近线在反比例函数图象中的位置和意义。
4.2 反比例函数图象与渐近线的关系分析反比例函数图象与渐近线的交点及其性质。
通过实例,让学生理解反比例函数图象在渐近线附近的特征。
第五章:反比例函数的应用5.1 反比例函数在实际问题中的应用提供实际问题,让学生利用反比例函数解决问题。
引导学生将反比例函数的应用与现实生活联系起来。
5.2 反比例函数的综合练习设计综合练习题,涵盖反比例函数的定义、图象、性质和应用。
引导学生通过练习题加深对反比例函数的理解和运用能力。
第六章:反比例函数的斜率6.1 反比例函数的斜率概念解释在反比例函数图象上任意两点的斜率公式。
引导学生理解斜率在反比例函数图象上的变化规律。
6.2 反比例函数斜率的计算提供具体例子,演示如何计算反比例函数图象上点的斜率。
反比例函数的图像和性质j教案
教案:反比例函数的图像和性质第一章:反比例函数的定义与表达式1.1 反比例函数的定义引导学生回顾函数的概念,强调函数的输入输出关系。
引入反比例函数的定义:若函数f(x) 的定义域为D,值域为R,且对于D 中的任意元素x,都有f(x) ×x = k(k 为常数),则函数f(x) 为反比例函数。
1.2 反比例函数的表达式解释反比例函数的一般形式:f(x) = k/x(k ≠0)。
强调反比例函数的参数k 的作用,k 决定了函数图形的形状和位置。
第二章:反比例函数的图像2.1 反比例函数图像的性质引导学生观察反比例函数图像的一般形状,如双曲线。
解释反比例函数图像的渐近线,即y = 0 和x = 0。
强调反比例函数图像在第一象限和第三象限是对称的。
2.2 参数k 对图像的影响分析不同参数k 对反比例函数图像形状的影响,如k > 0 和k < 0。
引导学生通过实际例子绘制反比例函数图像,观察参数k 对图像的影响。
第三章:反比例函数的性质3.1 反比例函数的单调性引导学生分析反比例函数在各个象限的单调性,如在第一象限和第三象限单调递减。
解释反比例函数在不同象限的单调性变化。
3.2 反比例函数的奇偶性证明反比例函数的奇偶性,即f(-x) = -f(x)。
引导学生通过实际例子观察反比例函数的奇偶性。
第四章:反比例函数的应用4.1 反比例函数在实际问题中的应用提供实际问题,如在物理学中反比例函数的应用,引导学生运用反比例函数解决问题。
强调反比例函数在实际问题中的重要性。
4.2 反比例函数图像的绘制与应用引导学生使用图形计算器或绘图软件绘制反比例函数图像。
提供实际问题,如确定反比例函数图像与坐标轴的交点,引导学生运用反比例函数图像解决问题。
回顾本章内容,强调反比例函数的关键概念和性质。
5.2 复习反比例函数的性质和应用提供复习问题,巩固学生对反比例函数性质的理解。
提供实际问题,引导学生运用反比例函数解决实际问题。
考点3:用反比例函数解决实际问题
考点3:用反比例函数解决实际问题一、考点讲解:1、反比例函数的应用注意事项:、反比例函数的应用注意事项: ⑴ 反比例函数在现实世界中普遍存在,在应用反比例函数知识,解决实际问题时,要注意将实际问题转化成数学问题;将实际问题转化成数学问题;⑵ 针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
针对一系列相关数据探究函数自变量与因变量近似满足的函数关系。
⑶ 列出函数关系式后,要注意自变量的取值范围.列出函数关系式后,要注意自变量的取值范围.二、经典考题剖析:【考题3-1】为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后y 与x 成反比例(如图1-5-16所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,请根据题中提供的信息,解答下列问题:毫克,请根据题中提供的信息,解答下列问题:⑴药物燃烧时,y 关于x 的函数关系式为_______,自变量x 的取值范围是_________;药物燃烧后y 关于x 的函数关系式为___________.⑵研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室;分钟后,学生才能回到教室;⑶研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病毒,那么此次消毒有效吗?为什么?么此次消毒有效吗?为什么? 解:348;08;;304y x x y x =<£=⑵;此次消毒有效,此次消毒有效,因为把x=3分别代入34y x =和 48y x=中,可求得可求得 x=4和x=16,而 16—4=12>10,即空气中含药量不低于气中含药量不低于 3毫克/米3的持续时间为12分钟,大于10分钟的有效消毒时间.分钟的有效消毒时间.点拨:这是一道正比例与反比例函数的综合应用题,由题意设药物燃烧时,燃烧后y 与x的关系分别为y=k 1x ,2k y x =.因为x=8时,y=6.所以将其代入y=k 1x ,2k y x =中,可得k 1=34 ,k 2 =48.故应填348;08;(8);4y x x y x x =<£=> 由y=1.6代入48y x =得x=30.所以从消毒开始,至少需要过30分钟,学生才能回到教室。
反比例函数的应用举例及实际意义
反比例函数的应用举例及实际意义反比例函数的应用举例及实际意义2023年,反比例函数已经成为了不可缺少的数学工具之一。
从自然科学到社会科学,从经济学到医学,都有着广泛的应用。
反比例函数的实际意义不仅在于解决目前面临的许多问题,同时也为未来的科学研究带来了巨大的潜力和发展空间。
接下来,本文将通过实例阐述反比例函数的应用及其实际意义。
1. 反比例函数在自然科学中的应用反比例函数在自然科学中有着广泛的应用,尤其是在物理学和化学领域。
例如,牛顿第二定律是运动学中的重要概念,它指出运动对象的加速度与所受的力成反比例关系。
这个定律可以表示为:F = ma其中,F是物体所受的力,m是物体的质量,a是物体的加速度。
由此可以得出,加速度与质量成反比例关系。
因此,反比例函数可以用来描述牛顿第二定律的关系。
在化学领域中,反比例函数也有着重要的应用。
例如,当溶液浓度变化时,反应速率的变化可以通过反比例函数来描述。
这种反应速率与浓度的反比例关系被称为“速率方程”,它是现代化学研究的重要基础概念之一。
2. 反比例函数在社会科学中的应用反比例函数在社会科学中的应用也非常广泛。
在经济学中,经济学家常用反比例函数来描述价格弹性和需求弹性。
例如,当商品价格下降时,价格弹性和需求弹性成反比例关系,即价格弹性愈大,需求弹性愈小。
此外,在管理学、市场营销、社会学和心理学领域,反比例函数也有着广泛的应用。
例如,管理学中的知名学者Fayol提出了“建立权力原则”,其中包括“管理单位的规模越大,管理层级的数量就越多,这种数量与管理效率呈反比例关系”。
这一原则指导了现代企业的组织架构和管理模式,成为企业管理领域的重要标志。
3. 反比例函数在医学中的应用反比例函数在医学中也有着重要的应用。
例如,药物代谢速率与药物浓度成反比例关系,这在药物的临床应用中非常重要。
当药物的浓度达到一定水平时,药物的代谢速率就会降低,这意味着需要调整剂量以保持药物在安全范围内的有效浓度。
反比例函数的应用举例及实际意义
反比例函数的应用举例及实际意义
1.比例电阻器:在电流和电阻之间存在反比例关系。
当电阻增加时,电流减小;当电阻减小时,电流增加。
因此,比例电阻器可以调整电流的大小。
这在电子设备中非常常见,比如调节音量的旋钮。
2.速度和时间之间的关系:在很多情况下,物体的速度与所花费的时间成反比例关系。
例如,在旅行中,当你以较高的速度行驶时,你所需要的时间就会减少。
这在规划旅行路线、预计到达时间等方面非常有用。
3.燃料消耗和行驶里程:汽车的燃料消耗和行驶里程之间存在反比例关系。
当你以较高的速度行驶时,燃料消耗会增加,行驶里程会减少。
这对于驾驶员来说是很重要的信息,可以帮助他们规划加油站的位置和充分利用燃料。
4.水槽的排水时间:在一个水槽中,水的排水速度与排水时间成反比例关系。
当排水速度增加时,排水时间就会减少。
这对于设计水池和浇灌系统是重要的,可以帮助决定排水口的位置和大小。
5.人口增长和资源消耗:人口增长和资源消耗之间存在反比例关系。
当人口增长速度减慢时,资源消耗会相对减少。
这对于人口政策的制定和可持续发展非常重要,可以帮助平衡资源分配和环境保护。
6.投资回报率:投资回报率与投资额之间存在反比例关系。
当投资额增加时,投资回报率会减少。
这对于投资者来说是重要信息,可以帮助他们判断投资的风险和潜在收益。
以上仅是反比例函数应用的一些例子,实际上反比例函数在许多领域中都有应用。
通过理解反比例函数的实际意义,我们可以更好地理解和解决实际问题,并做出更明智的决策。
反比例函数的实际问题解决方法
反比例函数的实际问题解决方法
反比例函数在数学中有很多应用。
在实际生活中,我们也可以通过解决反比例函数的问题来解决许多实际问题。
什么是反比例函数?
反比例函数是指,当一个变量的值增加时,另一个变量的值会相应地减少,两个变量之间呈反比例关系。
反比例函数的一般形式为y=k/x,其中k是常数。
实际问题解决方法
反比例函数可以用来解决很多实际的问题,例如:
1. 计算两个变量间的关系
如果我们知道两个变量之间的反比例关系,我们可以使用反比例函数来计算它们之间的关系。
2. 解决比例问题
当我们需要解决一个比例问题时,我们可以将一个变量表示为另一个变量的反比例函数。
3. 分析实际数据
在一些实际问题中,我们需要分析数据并找出其中的规律。
如果数据呈反比例关系,我们可以使用反比例函数来分析数据。
结论
反比例函数是解决实际问题的有效工具。
无论是在数学领域还是在生活中,掌握反比例函数的应用都是非常有用的。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。
掌握反比例函数的定义和性质。
1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。
反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。
引导学生通过观察实际例子,发现反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。
理解反比例函数图像的特点。
2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。
双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。
2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。
让学生通过分析反比例函数图像,理解反比例函数的性质。
第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。
能够应用反比例函数的性质解决实际问题。
3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
设计练习题,让学生应用反比例函数的性质解决实际问题。
第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。
能够运用反比例函数的知识进行综合分析。
4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。
4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。
设计练习题,让学生运用反比例函数的知识进行综合分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)根据工艺要求,当材料温度低于15℃时,必须停止操作,那么从开始加热到停止操作,共经历了多少时间?
2、(2010广东湛江)病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含量达到归大值为4毫克。已知服药后,2小时前每毫升血液中的含量y(毫克)与时间x(小时)成正比例;2小时后y与x成反比例(如图所示)。根据以上信息解答下列问题:
3.某班班长带了50元钱去买钢笔,所购买的钢笔的数量m(个)与钢笔的单价n(元/个)之间的函数关系式为__________.
4.甲、乙两地间的高速公路的长为200km,一辆汽车从甲地去乙地,汽车在途中的平均速度为v(km/h),到达时所用的时间为t(h),那么t是v的__________函数,t与v之间的函数关系式是__________.
解:(1)设其为一次函数y=kx+b,将x=2.5,y=7.2和x=3,y=6代入,
得,解得.
所以一次函数的关系式为y=-2.4x+13.2.
把x=4,y=4.5代入此函数关系式,左边≠右边,
所以其不是一次函数.
设其为反比例函数,关系式为y=(k≠0).当x=2.5时,y=7.2,可得7.2=,所以k=18,所以反比例函数的关系式y=.
评析:要确定哪种函数表示数据的变化规律,必须先由其中的几个数据求出关系式,再验证剩下的数据,如果都符合,才能确定答案.
【模拟试题】(答题时间:60分钟)
一.选择题
1.下列问题中两个变量之间的关系不是反比例函数的是()
A.小宇参加200m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系
B.长方形的面积为30cm2,它的两条邻边的长ycm与xcm之间的关系
(2)按照这种变化规律,若2009年已投入技改资金5万元.①预计生产成本每件比2008年降低多少万元?②若打算在2009年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)?
分析:分别设其为一次函数、反比例函数,通过给出的数据确定函数关系式,然后将其余数据代入验证.
C.压力为500N时,压强p(Pa)与受力面积S(m2)之间的关系
D.一个容积为30L的容器中,所盛水的体积V(L)与水深h之间的关系
2.下列函数关系中,属于反比例函数关系的是()
A.x∶y=7中的y与xB.人的身高h和年龄
C.速度为常量时,匀速直线运动的距离s和所需时间
D.圆柱的侧面积一定时,它的底面周长l和高h
(2)利用数学公式建立反比例函数的关系式.例如当面积一定时长方形的长与宽就是反比例关系;当体积一定时,长方体的底面积与高成反比例.
(3)利用问题情境中给出的数量关系建立反比例函数关系.
2.实际问题中的函数图象应注意的问题
反比例函数的自变量的取值是可以取负数的,但是很多实际问题中的自变量的取值只能取正数,因此画实际问题的反比例函数图象一定要注意取值范围.
3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图像大致是()
4.某农场的粮食总产量为1500吨,设该农场人数为x人,平均每人占有粮食数为y吨,则y与x之间的函数图象大致是()
*5.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是()
【典型例题】
例1.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度р(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是()
A.5kg/m3B.2kg/m3C.100kg/m3D,1kg/m3
例2.太阳能热水器已走进千家万户,有一容量为180L的太阳能热水器,设其工作时间为ymin,每分钟的排水量为xL.
二.填空题
1.小丽要在电脑上输入一篇文章,如果她每分钟输入30个字,那么需要30min才能输完;如果她每分钟输入45个字,那么需要__________min就可以输完;若设小丽每分钟输入的字数为x个,而整篇文章输完所用的时间为ymin,那么y与x之间的函数关系式是__________.
2.某水泥厂现有水泥1000t,平均每天售出xt,这批水泥能卖y天,则y与x之间的函数关系式为__________.
(1)写出y与x之间的函数表达式;
(2)若热水器可连续工作的最长时间为1h,求自变量的取值范围;
(3)若每分钟排放热水4 L,则热水器不间断工作的时间为多少?
例3.某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺垫若干块木板,构筑成一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?如果人和木板对湿地的压力合计600N,那么
(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?
例4.某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请你根据题中所提供的信息,解答下列问题.
验证:当x=3时,y==6,符合反比例函数.
同时可验证:x=4时,y=4.5;x=4.5时,y=4成立.
所以可用反比例函数y=表示其变化规律.
(2)①当x=5万元时,y==3.6,4-3.6=0.4(万元),所以生产成本每件比2008年降低0.4万元.②当y=3.2时,3.2=,所以x=5.625.因为5.625-5=0.625≈0.63(万元),所以还约需投入0.63万元.
例5.某厂从2005年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:
年度
2005
2006
2007
2008
投入技改资金x(万元)
2.5
3
4
4.5
产品成本y(万元/件)
7.2
6
4.5
4
(1)请你认真分析表中数据,从所学习过的一次函数、反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式;
(1)药物燃烧时y关于x的函数关系式为__________,自变量x的取值范围是__________,药物燃烧后y与x的函数关系式为__________.
(2)研究表明,当空气中每立方米的含药量低于1.6mg时学生方可进教室,那么从消毒开始,至少多少分钟后学生才能回到教室?
(3)研究表明,当空气中每立方米的含药量不低于3m那么此次消毒是否有效?为什么?
5.2.5反比例函数解决实际问题专题训练
一.教学内容:
能根据实际问题建立反比例函数的模型,并作出图象,会利用图象解答实际问题,尤其是在实际问题中确定自变量取值范围和增减性问题.
二.知识要点:
1.根据实际情境建立反比例函数关系式
(1)利用物理学公式建立函数关系式.物理学中的许多公式是反映物理之间比例关系的,例如P=(P表示压强,F表示压力,S表示受力面积),等等.
(1).求当 时,y与x的函数关系式;
(2).求当 时,y与x的函数关系式;
(3).若每毫升血液中的含量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?
3、(2010江苏泰州)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该厂决定从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).
⑴分别求该化工厂治污期间及治污改造工程完工后y与x之间对应的函数关系式.
⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平?
⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?
5.三角形的面积为12cm2,如果它的一边为acm,这边上的高为bcm,那么a是b的__________,a写成b的函数关系式是__________.
6.当圆柱的体积V一定时,它的底面积S与高h之间的函数解析式为__________.
三.解答题
1、制作一种产品,需先将材料加热,达到60℃后,再进行操作,据了解,该材料加热时,温度y℃与时间x(min)成一次函数关系;停止加热进行操作时,温度y℃与时间x(min)成反比例关系,如图所示,已知该材料在操作加工前的温度为15℃,加热5min后温度达到60℃。