2013-2014学年人教版八年级上册第十二章《全等三角形》单元检测题及答案

合集下载

八年级数学上册第12章全等三角形单元试卷含答案(人教版)

八年级数学上册第12章全等三角形单元试卷含答案(人教版)

八年级数学上册第12章全等三角形单元试卷含答案(人教版)全等三角形是几何中全等之一。

查字典数学网小编为大家预备了这篇八年级数学上册第12章全等三角形单元试卷,希望对同窗们有所协助。

八年级数学上册第12章全等三角形单元试卷含答案〔人教版〕一.填空题(每题5分,共40分)1. ΔABC≌ΔDEF,A与D,B与E区分是对应顶点,∠A=52°,∠B=67°,BC =15cm,那么∠F= °,FE = cm2. :如图,∠ABC=∠DEF,AB=DE,要说明ΔABC≌ΔDEF(1) 假定以〝SAS〞为依据,还要添加的条件为(2) 假定以〝ASA〞为依据,还要添加的条件为(3) 假定以〝AAS〞为依据,还要添加的条件为3.如图4,在△ABC中,AB=AC,AD⊥BC于D点,E、F区分为DB、DC的中点,那么图中共有全等三角形________对。

4.如图5,AB∥CD,O为∠CAB、∠ACD的角平分线的交点,OE⊥AC于E,且OE=2,那么两平行线间AB、CD的距离等于5.如图,把△ABC绕C点顺时针旋转35°,失掉△A′B′C,A′B′交AC于点D,那么∠AB′D=6.如图,AB=CD,AD=CB,E、F是DB上两点,且BE=DF,假定∠AEB=100°,∠ADB=30°,那么∠BCF=7.AD是△ABC的边BC上的中线,AB=12,AC=8,那么边BC 的取值范围是,中线AD的取值范围是8.假设两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__ ____ ___二.选择题(每题4分,共24分)9. 在△ABC与△A′B′C′中,∠A=44°15′,∠B=67°12′,∠C′=68°33′,∠A′=44°15′,且AC=A′C′,那么这两个三角形( )A.一定不全等B.一定全等C.不一定全等D.以上都不对10.ΔABC中,AB=10,BC=15,CA=20,点O是ΔABC内角平分线的交点,那么ΔABO、ΔBCO、ΔCAO的面积比是( )A.1:1:1B.1:2:3C.2:3:4D.3:4:511.如图,点E在△ABC的外部,点D在BC边上,DE交AC 于F,假定∠1=∠2=∠3,AC=AE,那么有( )A.△ABD≌△AFDB.△AFE≌△ADCC.△AEF≌△DFCD.△ABC≌△ADE12.如图,AB >AC,点P为ΔABC的角平分线AD上一点,那么以下说法正确的选项是( )A. AB – AC >PB – PCB. AB – AC二、选择题:9、B 10、C 11、D 12、B 13、C 14、B三、证明题:15、略16、衔接AC,证17、先证,再证18、BE=EC,BE⊥EC∵AC=2AB,点D是AC的中点∴AB=AD=CD∵∠EAD=∠EDA=45°∴∠EAB=∠EDC=135° ∵EA=ED ∴△EAB≌△EDC∴∠AEB=∠DEC,EB=EC ∴∠BEC=∠AED=90° ∴BE=EC,BE⊥EC19、(1)AB=AP AB⊥AP(2)BQ=AP BQ⊥AP (证 )(3)同(2)八年级数学上册第12章全等三角形单元试卷到这里就完毕了,希望同窗们的效果可以更上一层楼。

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

人教版八年级上:第12章《全等三角形》全章检测题(含答案)(含答案)

第十二章检测题(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=( C )A.3 B.4 C.7 D.8,第1题图),第2题图),第3题图)2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( B ) A.120°B.125°C.130°D.135°3.如图,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( B )A.SAS B.ASA C.AAS D.SSS4.(2015·六盘水)如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB 的是( D )A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD,第4题图),第5题图),第6题图)5.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( C )A.AB=ED B.AC=EF C.AC∥EF D.BF=DC6.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为( D )A.60°B.62°C.64°D.66°7.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有( A )A.4个B.3个C.2个D.1个,第7题图),第8题图),第9题图) ,第10题图)8.如图,△ABC 的三边AB ,BC ,CA 的长分别为20,30,40,O 是△ABC 三条角平分线的交点,则S △ABO ∶S △BCO ∶S △CAO 等于( C )A .1∶1∶1B .1∶2∶3C .2∶3∶4D .3∶4∶59.如图,在平面直角坐标系中,以点O 为圆心,适当的长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =110.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =AB.其中正确的有( C )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.已知△ABC ≌△DEF ,且△ABC 的周长为12 cm ,面积为6 cm 2,则△DEF 的周长为__12__cm ,面积为__6__cm 2.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是:__AE =AF 或∠EDA =∠FDA 或∠AED =∠AFD __.,第12题图) ,第13题图) ,第14题图) ,第15题图)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B ,D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__13__.14.如图,Rt △ABC 中,∠ACB =90°,BC =2 cm ,CD ⊥AB ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF =5 cm ,则AE =__3__cm .15.如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,CE ,BD 相交于O ,则图中全等的直角三角形有__4__对.16.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=__135__度.,第16题图) ,第17题图),第18题图)17.如图,已知相交直线AB和CD及另一直线MN,如果要在MN上找出与AB,CD 距离相等的点,则这样的点至少有__1__个,最多有__2__个.18.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC =BC,若∠BAC=80°,则∠BOD的度数为__100°__.三、解答题(共66分)19.(7分)(2015·昆明)如图,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.解:由AAS证△ABC≌△DEF可得20.(8分)如图,工人师傅要检查人字梁的∠B和∠C是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA和CA上取BE=CG;②在BC上取BD =CF;③量出DE的长为a m,FG的长为b m.如果a=b,则说明∠B和∠C是相等的,他的这种做法合理吗?为什么?解:合理.理由:由SSS可证△BED≌△CGF,∴∠B=∠C21.(8分)如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F 在AC上,BE=FC,求证:BD=DF.解:先由角平分线的性质得CD=DE,再由SAS证△CDF≌△EDB,得BD=DF22.(10分)如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.解:(1)由ASA 证△AEB ≌△AFC ,∴∠BAE =∠CAF ,∴∠1+∠3=∠2+∠3,∴∠1=∠2(2)∵△AEB ≌△AFC ,∴AE =AF ,AB =AC.由ASA 可证△AEM ≌△AFN ,∴AM =AN ,∴AC -AM =AB -AN ,即CM =BN23.(10分)如图①,点A ,E ,F ,C 在一条直线上,AE =CF ,过点E ,F 分别作ED ⊥AC ,FB ⊥AC ,AB =CD.(1)若BD 与EF 交于点G ,试证明BD 平分EF ; (2)若将△DEC 沿AC 方向移动到图②的位置,其余条件不变,上述结论是否仍然成立?请说明理由.解:(1)先由HL 证Rt △ABF ≌Rt △CDE ,∴BF =DE ,再由AAS 证△GFB ≌△GED ,∴EG =FG ,即BD 平分EF(2)仍然成立,证法同(1)24.(11分)如图,在△ABC 中,∠B =∠C ,AB =10 cm ,BC =8 cm ,D 为AB 的中点,点P 在线段上以3 cm /s 的速度由点B 向点C 运动,同时,点Q 在线段CA 上以相同速度由点C 向点A 运动,一个点到达终点后另一个点也停止运动.当△BPD 与△CQP 全等时,求点P 运动的时间.解:∵D 为AB 的中点,AB =10 cm ,∴BD =AD =5 cm.设点P 运动的时间是x s ,若BD 与CQ 是对应边,则BD =CQ ,∴5=3x ,解得x =53,此时BP =3×53=5 (cm ),CP =8-5=3 (cm ),BP ≠CP ,故舍去;若BD 与CP 是对应边,则BD =CP ,∴5=8-3x ,解得x =1,符合题意.综上,点P 运动的时间是1 s25.(12分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.解:(1)BD=CE,BD⊥CE.证明:延长BD交CE于M,易证△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵∠BME=∠MBC+∠BCM=∠MBC+∠ACB+∠ACE=∠MBC+∠ABD+∠ACB=∠ABC+∠ACB=90°,∴BD⊥CE(2)仍有BD=CE,BD⊥CE,证法同(1)。

人教版八年级上册数学第12章《全等三角形》单元测试(含答案)

人教版八年级上册数学第12章《全等三角形》单元测试(含答案)

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC ≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠A OD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A . a 2B . a 2C . a 2D . a 2【解答】解:过E 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°,∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积,∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。

2013-2014学年人教版八年级上册第十二章全等三角形单元检测题及答案

2013-2014学年人教版八年级上册第十二章全等三角形单元检测题及答案

八年级数学周测----全等三角形检测题姓名 班级 分数一、选择题(每小题3分,共30分)1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C , 下列不正确的等式是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE4. 在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证 △ABC ≌△A B C ''',则补充的这个条件是( ) A .BC =B C '' B .∠A =∠A ' C .AC =A C '' D .∠C =∠C '5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角7.已知:如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A .∠A 与∠D 互为余角B .∠A =∠2C .△ABC ≌△CED D .∠1=∠2 8. 在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F9.如图所示,在△ABC 中,AB =AC ,∠ABC =∠ACB ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌△BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10.下列各组所列的三个条件中,能判定△ABC ≌△DEF 的是( )A .AB=DE ,AC=DF ,∠C=∠FB .AB=DE ,∠A=∠D ,BC=EFC .AC=DF ,∠A=∠D ,BC=EF D .AC=DF ,∠C=∠F ,BC=EF二、填空题(每小题3分,共24分)11. 如果△ABC 和△DEF 这两个三角形全等,点C 和点E ,点B 和点D分别是对应点,则另一组对应点是 , 对应边是 , 对应角是 ,表示这两个三角形全等的式子是 .12. 如图,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 .第3题图第5题图第9题图第7题图第2题图第6题图13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 是 度. 15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,那么点D 到直线AB 的距离是 cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18. 如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC =15 cm ,则△DEB 的周长为 cm .三、解答题(共46分)19.(8分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF =2.1 cm ,FH =1.1 cm ,HM =3.3 cm ,求MN 和HG 的长度.20.(8分)如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC .求证:(1)EC =BF ;(2)EC ⊥BF. .21. (8分)如图所示,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E , BD 、CE 相交于F .求证:AF 平分∠BAC .22(10分)如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC .(1)若连接AM ,则AM 是否平分∠BAD ?请证明你的结论;(2)线段DM 与AM 有怎样的位置关系?请说明理由.23.(7分)如图,ABC ∆中,BC AD ⊥于D ,若AD BD =,CD FD =。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等2.已知:△ABC ≌△DEF ,AB=DE ,∠A=70°,∠E=30°,则∠F 的度数为( )A .80°B .70°C .30°D .100°3.在测量一个小口圆形容器的壁厚时,小明用“X 型转动钳”按如图方法进行测量,其中OA =OD ,OB =OC ,测得AB =5厘米,EF =6厘米,圆形容器的壁厚是( )A .5厘米B .6厘米C .2厘米D .12厘米 4.如图,在ABC 中90B ∠=︒,AD 平分BAC ∠,10BC =和6CD =,则点D 到AC 的距离为( )A .4B .6C .8D .105.如图,在△ABC 中,∠C=90°,AC=BC ,AD 平分∠CAB ,交BC 于点D ,DE ⊥AB 于点E ,且AB=10,则△EDB 的周长是( )A .4B .6C .8D .106.如图,AB BC ⊥于点B ,AE DE ⊥于点E ,AB AE =与ACB ADE ∠=∠和65ACD ∠=︒75BAD ∠=︒ 则BAE ∠的度数为( )A .95︒B .100︒C .105︒D .110︒7.如图,在ABC 中B C ∠=∠,M ,N ,P 分别是边AB ,AC ,BC 上的点,且BM CP =与CN BP = 若44MPN ∠=︒,则A ∠的度数为( )A .44︒B .88︒C .92︒D .136︒8.如图所示 90,,E F B C AE AF ∠=∠=∠=∠= ,结论:①EM FN = ;②CD =DN ;③FAN EAM ∠=∠ ;④ΔACN ≅ΔABM ,其中正确的是有( )A .1个B .2个C .3个D .4个二、填空题:(本题共5小题,每小题3分,共15分.)9.已知△ABC 的两边长分别为AB=2和AC=6,第三边上的中线AD=x ,则x 的取值范围是 .10.如图,点A ,D ,B ,E 在同一条直线上,AD =BE ,AC =EF ,要使△ABC ≌△EDF ,只需添加一个条件,这个条件可以是 .11.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,△ABD 的面积是12cm 2,AB =8cm ,则DF = .12.如图, ABC 的三边 AB BC CA 、、 的长分别为 405060、、 ,其三条角平分线交于点 O ,则 S △ABO :S △BCO :S △CAO = .13.如图, ABC 中 ABC ∠ 、 EAC ∠ 的角平分线 BP 、 AP 交于点P ,延长 BA 和BC 则下列结论中正确的有 .(将所有正确序号填在横线上) ①CP 平分ACF ∠;②2180ABC APC ︒∠+∠=,③2ACB APB ∠=∠;④若PM BE ⊥ PN BC ⊥则AM CN AC +=.三、解答题:(本题共5题,共45分)14.如图,在ABC 中,D 是BC 边上一点DE AC ,CB DE =,ABC E ∠=∠求证:AC BD =.15.如图,在四边形ABCD 中,E 是对角线AC 上一点,连接DE ,AD ∥BC ,AC =AD ,∠CED+∠B =180°.△ADE 与△CAB 全等吗?为什么?16.如图,在五边形ABCDE 中,∠BCD=∠EDC=90°,BC=ED ,AC=AD .(1)求证:△ABC ≌△AED ;(2)当∠B=140°时,求∠BAE 的度数.17.如图,在Rt ABC 中,AC=BC ,∠ACB=90°,BF 平分ABC ∠交AC 于点F ,AE BF ⊥于点E ,AE ,BC 的延长线交于点M .(1)求证:ABE MBE ≌(2)求证:2BF AE =.18.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,E 为AC 边上一点,连接BE 与AD 交于点F ,G 为△ABC 外一点,满足∠ACG =∠ABE ,∠FAG =∠BAC ,连接EG .(1)求证:△ABF ≌△ACG ;(2)求证:BE =CG+EG .参考答案:1.C 2.A 3.D 4.A 5.D 6.B 7.C 8.C9.2<x<410.∠A=∠E11.3cm12.4:5:613.①②③④14.证明:∵DE AC∴C EDB ∠=∠在ABC 和BED 中∴()ASA ABC BED ≅,∴AC BD =15.解:△ADE 与△CAB 全等,理由如下:∵ AD ∥BC∴∠ACB=∠DAE ,∠B+∠DAB=180°∵ ∠CED+∠B =180°∴∠CED=∠DAB∵∠CED=∠EDA+∠DAE ,∠DAB=∠BAC+∠DAE∴∠EDA=∠BAC在△ADE 和△CAB 中{∠ACB =∠DAEAC =AD ∠EDA =∠BAC∴ △ADE ≌△CAB (ASA ).16.(1)证明:∵AC=AD∴∠ACD=∠ADC又∵∠BCD=∠EDC=90°∴∠ACB=∠ADE在△ABC 和△AED 中{BC =ED∠ACB =∠ADE AC =AD∴△ABC ≌△AED (SAS );(2)解:当∠B=140°时,∠E=140°又∵∠BCD=∠EDC=90°∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.17.(1)证明:由题意得AE BF ⊥,即BE AM ⊥∴90AEB MEB ∠=∠=︒∵BF 平分ABC ∠∴ABE MBE ∠=∠在AEB 和MEB 中90AEB MEB BE BEABE MBE ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA AEB MEB ≌;(2)证明:∵9090FBC BFC CAM AFE ∠+∠=︒∠+∠=︒, 由图可得BFC AFE ∠=∠∴FBC CAM ∠=∠在BCF 和ACM 中90ACB ACM BC ACFBC CAM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴()ASA BCF ACM ≌∴BF AM =∵AEB MEB ≌∴AE ME =∴2BF AM AE ME AE ==+=.18.(1)证明:∵∠BAC =∠FAG ,∴∠BAC −∠3=∠FAG −∠3 即 12∠∠=.在ABF 和ACG 中,∵{∠1=∠2AB =AC∠ABF =∠ACG∴ABF ≌ACG (ASA ).(2)证明:∵ABF ≌ACG∴AF AG = BF CG =. ∵AB AC = AD BC ⊥于点D ∴∠1=∠3.∵12∠∠=∴∠2=∠3.在AEF 和AEG 中∵{AF =AG∠3=∠2AE =AE∴AEF ≌AEG (SAS ). ∴EF EG =.∴BE =BF +FE =CG +EG。

八年级数学上册《第十二章 全等三角形》单元检测卷及答案(人教版)

八年级数学上册《第十二章 全等三角形》单元检测卷及答案(人教版)

八年级数学上册《第十二章全等三角形》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点3.如图,在△ABC中∠A=30∘,∠ABC=50∘若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=( )A.20∘B.30∘C.40∘D.50∘4.如图,在△ABC中∠ACB=45∘,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20∘则∠B的度数为( )A.60∘B.65∘C.70∘D.75∘5.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则点D到BC的距离是()A.3 B.4 C.5 D.66.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于()A.40°B.100°C.140°D.144°7.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=5,AD=9,则BE的长是()A.6 B.5 C.4.5 D.48.如图,在△ABC中AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F ∠ADC=∠AEB则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题9.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=5cm,AB=12cm,则△ABD的面积是cm2.11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°∠DAC=16°,则∠DGB= .13.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1. B2. D3. A4. B5.A6.C7.D8.B9.SSS10.3011.AB=AC12.66°13.(1)SAS(2)ASA14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中{AC=CE∠A=∠ECDAB=CD∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。

人教八年级上册第12章《全等三角形》单元检测及答案

人教八年级上册第12章《全等三角形》单元检测及答案

D.带① ②去
8.为了测量河两岸相对点 A,B 的距离,小明先在 AB 的垂线 BF 上取两点 C,D,使 CD=BC,再定出 BF 的垂线
D E,使 A,C,E 在同一条直线上(如图所示),可以证明△EDC≌△ABC,得 ED=AB,因此测得 ED 的长就是 AB 的长,
判定△EDC≌△ABC 的理由是( ).
10、如图(1),∠ABC=∠DBC,请补充一个条件:_________________,使△ABC≌△DBC。 如图(2),∠1=∠2,请补充一个条件:__________________,使△ABC∽△ADE。
11、如图,∠A=∠D,AB=CD,要使△AEC≌△DFB,还需要补充一个条件,这个条件可以是
一、选择题 1、A 2、A 3、D 4、C 5、B 6、D 7、D 8、B 二、填空题 9、①②③⑤
10、AB=DB 或
参考答案
11、答案不唯 一 12、△AED≌△AEC,△ABD≌△ABC,△EBD≌△EBC 13、略 14、8 15、AB∥DE、AB=DE(或平行且相等) 16、150 三、作图题 17、作法:l.作一个等边△ABC 2.作∠A 的平分线 AD,则∠DAB=30° (图略)
12.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,AB=5,CD=2, 则△ABD 的面积是______.
13.在△ABC 中,AC=5,中线 AD=7,则 AB 边的取值范围是__________. 14.如图,相等的线段有__________,理由是____________________________________.
15、如图,线段 AE,BD 交于点 C,且 AC=EC,BC=DC,则 AB 与 DE 的关系是__________。

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案

人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。

八年级数学上册《第十二章全等三角形》单元检测卷带答案-人教版

八年级数学上册《第十二章全等三角形》单元检测卷带答案-人教版

八年级数学上册《第十二章全等三角形》单元检测卷带答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,点E在AC上,△ABC≌△DAE,BC=3,DE=7,则CE的长为()A.2 B.3 C.4 D.53.如图,在等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件中的一个,不能判定△ABE ≌△ACD的是( )A.AD=AE B.∠DCB=∠EBC C.∠ADC=∠AEB D.BE=CD4.工人师傅常用角尺平分一个任意角,具体做法如下:如图,已知∠AOB是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点C的射线OC便是∠AOB的平分线.在证明△MOC≌△NOC时运用的判定定理是()A.SSS B.SAS C.ASA D.AAS5.如图1,在ΔABC中∠B=80°,∠C=30°若△ABC≌△ADE,∠DAC=32°则∠EAC的度数为()A.18°B.30°C.32°D.38°6.如图,OP平分∠AOB,E为OA上一点OE=4,P到OB的距离是2,则△OPE的面积为()A.2 B.3 C.4 D.87.如图,AD是△ABC的角平分线DE⊥AB于点E,S△ABC=9,DE=2,AB=5则AC的长是()A.2 B.3 C.4 D.58.如图,过边长为a的等边三角形ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,当AP=CQ时,PQ交AC于D,则DE的长为()A.12a B.13a C.23a D.不能确定二、填空题9.如图AB⊥BC,AD⊥DC请你添加一个条件,利用“HL”,证明Rt△ABC≌Rt△ADC.10.如图所示,在四边形ABCD中△ABD≌△CDB,AB=4cm,BD=3.5cm,AD=2cm则CD的长为cm.11.如图,已知△ABC≌△ADE,AD平分∠BAC,∠BAC=80°,则∠CAE=°.12.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=度.13.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP=5若点Q是射线OB上一点,OQ=4则△ODQ的面积是.三、解答题14.如图,直线AD与BC交于点O,OA=OD,OB=OC,求证:△AOB≌△DOC.15.如图,A,D两点在BC所在直线同侧AB⊥AC,BD⊥CD,垂足分别为A,D.AC,BD的交点为E,AB=DC求证:BE=CE.16.如图,已知DE⊥AB垂足为E,DF⊥AC垂足为F,BD=CD,BE=CF.(1)求证:AD平分∠BAC;(2)丁丁同学观察图形后得出结论:AB+AC=2AE,请你帮他写出证明过程.17.如图AB=AC,AD=AE,∠BAC=∠DAE=50°点D在BC的延长线上,连EC.(1)求证:BD=CE;(2)求∠ECD的度数;18.如图AE、BD是△ABM的两条高AE,BD交于点C,且AE=BE.(1)求证:△AME≌△BCE;(2)当BD平分∠ABM时,求证:BC=2AD;(3)求∠MDE的度数.参考答案1.A2.C3.D4.A5.D6.C7.C8.A9.AB=AD或BC=CD10.411.4012.13513.1014.证明:∵直线AD与BC交于点O∴∠AOB=∠COD在△OAB与△ODC中∵OA=OD,∠AOB=∠COD,OB=OC∴△OAB≌△ODC(SAS).15.证明:∵AB⊥AC,BD⊥CD垂足分别为A,D ∴∠A=90°∠D=90°.∴∠A=∠D.在△ABE和△DCE中{∠A=∠D,∠AEB=∠DEC,AB=DC,∴△ABE≌△DCE.∴BE=CE.16.(1)证明:∵DE⊥AB,DF⊥AC ∴∠E=∠DFC=90°在Rt△BED和Rt△CFD中{BD=CDBE=CF∴Rt△BED≌Rt△CFD(HL)∴DE=DF∵DE⊥AB,DF⊥AC∴∠EAD=∠CAD∴AD平分∠BAC;(2)解:∵∠E=∠AFD=90°在Rt△AED和Rt△AFD中{AD=ADDE=DF∴Rt△AED≌Rt△AFD(HL)∴AE=AF∵BE=CF∴AB+AC=AE﹣BE+AF+CF=AE﹣CF+AE+CF=2AE.17.(1)解:∵AB=AC AD=AE∠BAC=∠DAE=50°∴∠ABC=∠ACB=65°∠ADE=∠AED=65°∴∠BAD=∠CAE在△BAD和△CAE中{AB=AC∠BAD=∠CAE AD=AE∴△BAD≌△CAE(SAS)∴BD=CE;(2)解:∵ΔBAD≌ΔCAE∴∠ACE=∠ABC=65°∴∠ECD=180°−∠ACB−∠ACE=50°.18.(1)证明:∵AE、BD是△ABM的高∴∠ADB=∠AEB=∠AEM=90°∵∠ACD=∠ECB∠MAE+∠ADC+∠ACD=180°∠CBE+∠ECB+∠CEB=180°∴∠MAE =∠CBE在△AME 和△BCE 中∴△AME ≌△BCE (ASA ).(2)证明:∵BD 平分∠ABM ,BD 是高 ∴∠ABD =∠MBD ,∠ADB =∠MDB =90° 在△ABD 和△MBD 中{∠ADB =∠MDBBD =BD ∠ABD =∠MBD∴△ABD ≌△MBD (ASA )∴AD =DM =12AM∵△AME ≌△BCE∴AM =BC ,即BC =2AD ;(3)解:过点E 作EF ⊥ED 交BC 于点F∵∠DEF =∠AEB∴∠DEA =∠BEF在△AED 与△BEF 中{∠DEA =∠BEFAE =BE ∠DAE =∠FBE∴△AED ≌△BEF (ASA )∴ED =EF∴∠EDF =∠EFD =45°∵∠BDE =90°∴∠MDE =45°。

人教版数学八年级上册单元测试第十二章全等三角形(含答案)

人教版数学八年级上册单元测试第十二章全等三角形(含答案)

第5题 第十二章《全等三角形》单元测试卷一.选择题(5小题,每小题3分,共15分)1、如图,已知∠1=∠2,欲取得△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、DB=DCD 、AB=AC 2、使两个直角三角形全等的条件是( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条边对应相等 3、如图,∠AOP=∠BOP=15°,PC310 cm16 cm1二、如图:AD=EB , BF=DG , BF ∥DG ,点A 、B 、C 、D 、E 在同一直线上。

求证: AF=EG 。

13、如图所示,AE 是∠BAC 的角平分线,EB ⊥AB 于B ,EC ⊥AC 于C ,D 是AE 上一点,求证:BD=CD 。

第3题第4题 CDBA21EGFE(图6)DC BA.3421DCBA14、如图,BD=CD,BF⊥AC于F,CE⊥AB于E。

求证:点D在∠BAC的角平分线上。

1五、如图,∠AOP=∠BOP,AD⊥OB于D,BC⊥OA于C,AD与BC交于点P。

求证:AP=BP。

四.解答题(4小题,每小题7分,共28分)cm,AB=20cm,1六、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282AC=8cm,求DE的长。

AEFB C17、如图,AE是∠BAC的平分线,AB=AC。

⑴若点D是AE上任意一点,则△ABD≌△ACD;⑵若点D是AE反向延长线上一点,结论还成立吗?试说明你的猜想。

1八、如图,AB=AC,∠BAC=900,BD⊥AE于D,CE⊥AE于E,且BD>CE,求证:BD=EC+ED.1九、已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(而且再也不添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.五.解答题(3小题,每小题9分,共27分)DAB COBACDE20、如图,已知AC ∥BD 、EA 、EB 别离平分∠CAB 和△DBA ,CD 过点E ,则AB 与AC+BD•相等吗?请说明理由.2一、如图14,画一个两条直角边相等的Rt △ABC ,并过斜边BC 上一点D 作射线AD ,再别离过B 、C 作射线AD 的垂线BE 和CF ,垂足别离为E 、F ,量出BE 、CF 、EF 的长,•改变D 的位置,再重复上面的操作,你是不是发觉BE 、CF 、EF 的长度之间有某种关系?能说清其中的奥妙吗?2二、如图,已知∠MON 的边OM 上有两点A 、B ,边ON 上有两点C 、D ,且AB =CD ,P 为∠MON 的平分线上一点.问:(1)△ABP 与△PCD 是不是全等?请说明理由. (2)△ABP 与△PCD 的面积是不是相等?请说明理由.4题图PMCBAD CA EF图14DCABE。

人教版数学八年级上册 第十二章 全等三角形单元测试(含答案)

人教版数学八年级上册 第十二章  全等三角形单元测试(含答案)

人教版数学八年级上册第十二章全等三角形一、单选题(每题3分,共30分)1.已知△ABC≌△DEF,则下列说法错误的是()A.∠A=∠D B.AC=DF C.AB=EF D.∠B=∠E2.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.60°C.46°D.50°4.根据下列已知条件,能画出唯一△ABC的是( )A.AB=3,BC=4,AC=8B.∠A=100°,∠B=45°,AB=5C.AB=3,BC=5,∠A=75°D.∠C=90°,∠A=30°,∠B=60°5.如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=24°,∠CDB′=96°,则∠C′的度数为()A.24 °B.36 °C.45 °D.60 °6.如图,为了促进当地旅游发展,某地要在三条公路旁边的平地上修建一个游客中心,要使这个游客中心到三条公路的距离相等,游客中心可以选择的位置有()种A.一B.二C.三D.四7.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB是因为图中的两个三角形△COD≌△C′O′D′,那么判定这两个三角形全等的依据是( )A.SAS B.SSS C.ASA D.AAS8.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,AB=10,S△ABD=20,则CD的长为( )A.3B.4C.5D.69.如图,有两个长度相同的滑梯靠在一面竖直墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若DF=6m,DE=8m,AD=4m,则BF等于()A.10m B.12m C.16m D.18m10.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两角的角平分线BE和CD,BE、CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC,其中正确的结论有( )A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图,若AB=DE,BE=CF,要证△ABF≌△DEC需补充一个条件.(任填一个).12.如图,亮亮书上的三角形被墨迹污染了一部分,借助剩余的图形,他很快就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是.13.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x +y = .14.如图,已知AB=AC,D为∠BAC的角平分线上的一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上的两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上的三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第5个图形中有全等三角形的对数是.15.已知:点A的坐标为(1,−1),点B的坐标为(1,5),点C的坐标为(4,3),如果要使△ABD与△ABC全等,且C、D不重合,那么点D的坐标是.16.如图,已知O是△ABC的两条角平分线BO,CO的交点,过点O作OD⊥BC于点D,且OD=3,若△ABC的周长是24,则△ABC的面积是.17.在△ABC中,已知AB=6,AC=5,AD是BC边上的中线,则AD取值范围是.18.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F.将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,则∠BFC的大小是.三、解答题(共46分)19.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.20.如图,△ABC的一个顶点A在△DEC的边DE上,AB交CD于点F,且AC=EC,∠1=∠2=∠3.试说明AB与DE的大小关系.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的长.22.如图,CA=CB,CD=CE,∠ACB=∠DCE,AD,BE交于点H,连接CH.求证:(1)△ACD≌△BCE;(2)HC平分∠AHE.23.已知,如图,AD∥BC,AE平分∠BAD,点E是CD的中点.(1)求证:AB=AD+BC(2)求证:AE⊥BE参考答案:1.C2.B3.D4.B5.B6.D7.B8.B9.D10.C11.AF=DC(答案不唯一)12.ASA13.1114.1515.(4,1)或(−2,3)或(−2,1)16.3617.0.5<AD<5.518.96°19.∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中{∠A=∠FCE∠ADE=∠FDE=FE∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB−AD=6−4=2.20.∵∠1=∠2,∠AFD=∠BFC,∴∠B=∠D,又∵∠2=∠3,∴∠2+∠ACD=∠3+∠ACD,即∠BCA=∠DCE,在△ABC和△EDC中,{∠B=∠D∠BCA=∠DCEAB=ED∴△ABC≌△EDC (AAS),∴AB=ED.21.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°∴∠A+∠DCA=90°,∵∠ACB=∠DCA+∠BCE=90°,∴∠A=∠BCE,在△ACD和△CBE中,{∠ADC=∠E∠A=∠BCE,AC=BC∴△ACD≌△CBE(AAS);(2)由(1)得:△ACD≌△CBE,∴CE=AD=12,BE=CD=5,∴DE=CE﹣CD=12﹣5=7.22.(1)证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS)(2)证明:如图:过点C作CM⊥AD于点M,CN⊥BE于点N∵△ACD≌△BCE∴∠CAM =∠CBN ,在△ACM 和△BCN 中,{∠CAM =∠CBN,∠AMC =∠BNC =90°,AC =BC,∴△ACM≌△BCN ,∴CM =CN又CM ⊥AH ,CN ⊥HE ,∴HC 平分∠AHE23.解:如图:延长AE 交BC 的延长线于点F ,∵AE 平分∠BAD∴∠BAF =∠DAE∵E 是DC 中点∴DE=CE∵AD ∥BC∴∠DAE =∠F∴∠BAF =∠F∴AB=BF又∵在△FCE 和△ADE 中,{∠DAE =∠F∠DEA =∠CEF DE =CE∴△FCE≌△ADE,∴AD=CF∴AB=BF=BC+CF=BC+AD 即AB=AD+BC。

人教版八年级上数学第12章全等三角形单元测试含答案

人教版八年级上数学第12章全等三角形单元测试含答案

第12章全等三角形单元测试一、选择题(每小题4分,共32分)1.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等2. 如果两个三角形全等,则不正确的是()A.它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等3.在⊿ABC和⊿A′B′C′中,AB=A′B′,∠A=∠A′,若证⊿ABC≌⊿A′B′C′还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B′B. ∠C=∠C′C. BC=B′C′D. AC=A′C′4.P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定(4题)(5题)(7题)5.如图,从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个6.. 下列说法中不正确的是()A.全等三角形的对应高相等B.全等三角形的面积相等C.全等三角形的周长相等D.周长相等的两个三角形全等7.如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰58.如图所示,在Rt△ABC中,AD是斜边上的高,∠ABC的平分线分别交AD、AC于点F、E,EG⊥BC于G,下列结论正确的是()AB CED GFA .∠C=∠ABC B.BA=BG C .AE=CE D. AF=FD 二、填空题(每小题4分,共24分)9.如图,Rt △ABC 中,直角边是 ,斜边是 。

10.如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 (只要写一个条件).(10题) (11题) (12题)11.如图,把△ABC 绕C 点顺时针旋转35°,得到△A’B’C , A’B’交AC 于点D , 若 ∠A’DC=90°,则∠A= °.12.如图,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有_____对.13.如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带 去。

人教版数学八年级上册 第12章 全等三角形 单元检测(含答案解析)

人教版数学八年级上册 第12章 全等三角形 单元检测(含答案解析)

全等三角形单元检测一.选择题(共12小题)1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C2.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个3.下列各组的两个图形属于全等图形的是()A.B.C.D.4.如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BE B.AC=DE C.∠A=∠D D.∠ACB=∠DEB5.如图,点A,E,F,D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有()A.1对B.2对C.3对D.4对6.如图:①AB=AD.②∠B=∠D,③∠BAC=∠DAC,④BC=DC,以上4等式中的2个等式不能作为依据来证明△ABC≌△ADC的是()A.①,②B.①,③C.①,④D.②,③7.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:58.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤39.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD11.如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC ≌△DEF的共有()A.1组B.2组C.3组D.4组12.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是()A.m+n>b+c B.m+n<b+c C.m+n=b+c D.无法确定二.填空题(共6小题)13.如图所示的方格中,∠1+∠2+∠3=度.14.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.15.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.16.如图,AC=DC,BC=EC,请你添加一个适当的条件:,使得△ABC≌△DEC.17.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.18.如图,BC∥EF,AC∥DF,添加一个条件,使得△ABC≌△DEF.三.解答题(共8小题)19.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE 交CD于点F.求证:DE=BF.20.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.21.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?22.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.23.已知△ABC中,∠ABC=∠ACB,点D,E分别为边AB、AC的中点,求证:BE=CD.24.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.26.已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.参考答案一.选择题(共12小题)1.【解答】解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.2.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.3.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选D.4.【解答】解:A、添加BC=BE,可根据SAS判定△ABC≌△DBE,故正确;B、添加AC=DE,SSA不能判定△ABC≌△DBE,故错误;C、添加∠A=∠D,可根据ASA判定△ABC≌△DBE,故正确;D、添加∠ACB=∠DEB,可根据ASA判定△ABC≌△DBE,故正确.故选B.5.【解答】解:∵AE=DF,∴AE+EF=DF+EF,∴AF=DE,∵AB∥CD,∴∠A=∠D,在△BAF和△CDE中,,∴△BAF≌△CDE(SAS),在△BAE和△CDF中,,∴△BAE≌△CDF(SAS),∴BE=CF,∠AEB=∠DFC,∴∠BEF=∠CFE,在△BEF和△CFE中,,∴△BEF≌△CFE(SAS),即全等三角形有3对,故选C.6.【解答】解:A、由AB=AD,∠B=∠D,虽然AC=AC,但是SSA不能判定△ABC≌△ADC,故A 选项符合题意;B、由①AB=AD,③∠BAC=∠DAC,又AC=AC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、由①AB=AD,④BC=DC,又AC=AC,根据SSS,能判定△ABC≌△ADC,故C选项不符合题意;D、由②∠B=∠D,③∠BAC=∠DAC,又AC=AC,根据AAS,能判定△ABC≌△ADC,故D选项不符合题意;故选:A.7.【解答】解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.8.【解答】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.9.【解答】解:如图取CD的中点F,连接BF延长BF交AD的延长线于G,作FH⊥AB于H,EK⊥AB于K.作BT⊥AD于T.∵BC∥AG,∴∠BCF=∠FDG,∵∠BFC=∠DFG,FC=DF,∴△BCF≌△GDF,∴BC=DG,BF=FG,∵AB=BC+AD,AG=AD+DG=AD+BC,∴AB=AG,∵BF=FG,∴BF⊥AF,∠ABF=∠G=∠CBF,∵FH⊥BA,FC⊥BC,∴FH=FC,易证△FBC≌△FBH,△FAH≌△FAD,∴BC=BH,AD=AH,由题意AD=DC=4,设BC=TD=BH=x,在Rt△ABT中,∵AB2=BT2+AT2,∴(x+4)2=42+(4﹣x)2,∴x=1,∴BC=BH=TD=1,AB=5,设AK=EK=y,DE=z,∵AE2=AK2+EK2=AD2+DE2,BE2=BK2+KE2=BC2+EC2,∴42+z2=2y2①,(5﹣y)2+y2=12+(4﹣z)2②由②得到25﹣10y+2y2=5﹣8z+z2③,①代入③可得z=④④代入①可得y=(负根已经舍弃),∴S△ABE=×5×=,故选D.10.【解答】解:A、添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B、添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D、添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意;故选:D.11.【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.12.【解答】解:在BA的延长线上取点E,使AE=AC,连接EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.故选A.13.【解答】解:如图,根据网格结构可知,在△ABC与△ADE中,,∴△ABC≌△ADE(SSS),∴∠1=∠DAE,∴∠1+∠3=∠DAE+∠3=90°,又∵AD=DF,AD⊥DF,∴△ADF是等腰直角三角形,∴∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故答案为:135.14.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.15.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.在△ABC与△DEC中,,∴△ABC≌△DEC.故答案为:AB=DE.本题答案不唯一.17.【解答】解:添加∠A=∠D.理由如下:∵FB=CE,∴BC=EF.又∵AC∥DF,∴∠ACB=∠DFE.∴在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).故答案是:∠A=∠D.18.【解答】解:∵BC∥EF,∴∠ABC=∠E,∵AC∥DF,∴∠A=∠EDF,∵在△ABC和△DEF中,,∴△ABC≌△DEF,同理,BC=EF或AC=DF也可证△ABC≌△DEF.故答案为AB=DE或BC=EF或AC=DF或AD=BE(只需添加一个即可).19.【解答】证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.20.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.21.【解答】(1)解:∵△BAD≌△ACE,∴BD=AE,AD=CE,∴BD=AE=AD+DE=CE+DE,即BD=DE+CE.(2)解:△ABD满足∠ADB=90°时,BD∥CE,理由是:∵△BAD≌△ACE,∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),∴∠BDE=180°﹣90°=90°=∠E,∴BD∥CE.∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.23.【解答】证明:∵∠ABC=∠ACB,∴AB=AC,∵点D、E分别是AB、AC的中点.∴AD=AE,在△ABE与△ACD中,,∴△ABE≌△ACD,∴BE=CD.24.【解答】解:(1)证明:∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE=∠C=69°.25.【解答】解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS),∴AC=CD;(2)∵∠ACD=90°,AC=CD,∴∠2=∠D=45°,∵AE=AC,∴∠4=∠6=67.5°,∴∠DEC=180°﹣∠6=112.5°.26.【解答】证明:(1)①如图1,∵AB⊥AD,AE⊥AC,∴∠BAD=90°,∠CAE=90°,∴∠1=∠2,在△ABC和△ADE中,∵∴△ABC≌△ADE(SAS);②如图1,∵△ABC≌△ADE,∴∠AEC=∠3,在Rt△ACE中,∠ACE+∠AEC=90°,∴∠BCE=90°,∵AH⊥CD,AE=AC,∴CH=HE,∵∠AHE=∠BCE=90°,∴BC∥FH,∴==1,∴BF=EF;(2)结论仍然成立,理由是:如图2所示,过E作MN∥AH,交BA、CD延长线于M、N,∵∠CAE=90°,∠BAD=90°,∴∠1+∠2=90°,∠1+∠CAD=90°,∴∠2=∠CAD,∵MN∥AH,∴∠3=∠HAE,∵∠ACH+∠CAH=90°,∠CAH+∠HAE=90°,∴∠ACH=∠HAE,∴∠3=∠ACH,在△MAE和△DAC中,∵∴△MAE≌△DAC(ASA),∴AM=AD,∵AB=AD,∴AB=AM,∵AF∥ME,∴==1,∴BF=EF.。

人教版八年级数学上《第12章全等三角形》单元测试题(含答案)

人教版八年级数学上《第12章全等三角形》单元测试题(含答案)

2/5
16. 如图 7,AB=CD, AD=BC, O 为 BD 中点,过 O 点作直线与 DA、 BC 延长线交于 E、F,F若
ADB 60 ,EO=10,则∠ DBC=
, FO= .
D
C
O
A
B
三、解答题
E
17. 如图 , 在△ ABC中,CD 是 AB 边上的高线 ,BE 平分∠ ABC,交 CD于点 E,BC=5,DE=2. 求△ BCE
AB= AC, ∠ BAD=∠ CAE, AD= AE, ∴△ ABD≌△ ACE. 21.证明: (1) ∵ AD是∠ BAC的平分线, DE⊥ AB, DC⊥ AC, ∴ DE=DC. 又∵ BD= DF, ∴ Rt △CDF≌ Rt△ EDB(HL). ∴ CF=EB. (2) 由 (1) 可知 DE= DC,又∵ AD= AD, ∴ Rt △ADC≌ Rt△ ADE. ∴ AC=AE.
3/5
20.如图, AD⊥ AE,AB⊥ AC,AD= AE,AB= AC.求证:△ ABD≌△ ACE.
21.如图所示,在△ ABC中,∠ C= 90°, AD是∠ BAC的平分线, DE⊥AB交 AB于点 E,点 F 在 AC上, BD= DF. 求证: (1)CF = EB;(2)AB = AF+ 2EB.
答案 CCACB CCADD 11.95 ° 12.35 ° 13. 4 ∶ 3 14. 8 cm 或 5 cm 15. 27 16. 60 ° ,10 17. 解 作 EF⊥ BC于 F,
∵ BE平分∠ ABC,ED⊥ AB,EF⊥ BC,
4/5
∴ EF=DE=2.
∴ S△ = BCE BC·EF= ×5×2=5. 18.(1) 证明 ∵ DC⊥ BC,DE⊥ AB,DE=DC,∴点 D 在∠ ABC的平分线上 . ∴ BD平分∠ ABC.

人教版八年级上册《第十二章全等三角形》单元检测卷含答案

人教版八年级上册《第十二章全等三角形》单元检测卷含答案

第十二章 全等三角形 单元测试卷得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.如图,△ACB ≌△A ′CB ′,∠ACA ′=30°,则∠BCB′的度数为(B )A .20°B .30°C .35°D .40°(第1题图) (第2题图) (第3题图)2.(2016·怀化)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是(B )A .PC =PDB .∠CPD =∠DOPC .∠CPO =∠DPOD .OC =OD3.(2016·永州)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB =AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD(D )A .∠B =∠C B .AD =AE C .BD =CE D .BE =CD4.如图,∠B =∠D =90°,BC =CD ,∠1=40°,则∠2=(B )A .40°B .50°C .60°D .75°(第4题图) (第6题图) (第7题图)5.下列说法不正确的是(D )A .全等三角形的对应边上的中线相等B .全等三角形的对应边上的高相等C .全等三角形的对应角的角平分线相等D .有两边对应相等的两个等腰三角形全等6.如图,点A ,D ,C ,E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =6,则CD 的长为(A )A .2B .4C .4.5D .37.如图所示,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是(A )A .50°B .60°C 70°D .100°8.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是(B )A .15B .30C .45D .60(第8题图) (第9题图) (第10题图)9.如图,在四边形ABCD 中,AB =CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S,则满足此条件的点P(D)△PCDA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论中:①BD=CE;②∠ACE+∠DBC =45°;③BD⊥CE;④∠BAE+∠DAC=180°.正确的个数是(D)A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.如图,△ABC≌△BAD,若AB=6,AC=4,BC=5,则△BAD的周长为15.(第11题图)(第12题图)(第13题图) (第14题图) 12.如图,△ABC中,∠C=90°,AD平分∠BAC交BC于点D.已知BD∶CD=3∶2,点D 到AB的距离是6,则BC的长是15.13.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“HL”.14.如图,AD=AB,∠C=∠E,∠CDE=55°,则∠ABE=125°.15.如图所示,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=3,则△ABC的面积是30.(第15题图)(第16题图)(第17题图)(第18题图) 16.如图,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B 的坐标为(-4,-1).17.(2016·南京)如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中正确的是①②③.(填序号) 18.(2016·抚顺)如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB,BC上沿A→B→C运动,当OP=CD时,点P的坐标为(2,4)或(4,2).三、解答题(共66分)19.(8分)如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线.一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.解:此时轮船没有偏离航线.理由:由题意知:OA =OB ,OP =OP ,PA =PB ,∴△OAP ≌△OBP(SSS ),∴∠AOP =∠BOP.∴此时轮船没有偏离航线20.(8分)(2016·岳阳)如图,在长方形ABCD 中,点E 在边AB 上,点F 在边BC 上,且BE =CF ,EF ⊥DF ,求证:BF =CD.证明:∵四边形ABCD 是长方形,∴∠B =∠C =90°,∵EF ⊥DF ,∴∠EFD =90°,∴∠EFB +∠CFD =90°,∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD ,在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD(ASA ),∴BF =CD 21.(8分)在数学实践课上,老师在黑板上画出如图的图形,(其中点B ,F ,C ,E 在同一条直线上).并写出四个条件:①AB =DE ,②∠1=∠2.③BF =EC ,④∠B =∠E ,交流中老师让同学们从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题.(1)请你写出所有的真命题;(2)选一个给予证明.你选择的题设:______;结论:______.(均填写序号)解:(1)情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:① (2)选择的题设:①③④,结论:②(答案不唯一).理由:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS ),∴∠1=∠2 22.(10分)(2016·南充)已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,∠1=∠2.(1)求证:BD =CE ;(2)求证:∠M =∠N.(1)证明:在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE (2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)得:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中, ⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 23.(10分)(2016·河北)如图,点B ,F ,C ,E 在直线l 上(点F ,点C 之间不能直接测量),点A ,D 在l 异侧,测得AB =DE ,AC =DF ,BF =EC.(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵BF =CE ,∴BF +FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF24.(10分)如图,已知△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,点F 在AC 上,且BD =FD ,求证:AE -BE =AF.证明:∵AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,∠C =90°,∴DC =DE ,在Rt △ACD 和Rt △AED 中,⎩⎨⎧DC =DE ,AC =AC ,∴Rt △ACD ≌Rt △AED(HL ),同理可得Rt △FCD 和Rt △BED ,∴AC =AE ,CF =BE ,∴AE -BE =AF25.(12分)(2016·达州)△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想:如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为__垂直__;②BC ,CD ,CF 之间的数量关系为__BC =CD +CF__.(将结论直接写在横线上)(2)数学思考:如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.解:(1)①垂直 ②BC =CF +CD (2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC.∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△FAC 中,⎩⎨⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△FAC ,∴∠ABD =∠ACF ,∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°.∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC.∵CD =DB +BC ,DB =CF ,∴CD =CF +BC参考答案1.B 2.B 3.D 4.B 5.D 6.A 7.A 8.B 9.D 10.D 11.15 12.15 13.HL 14.125° 15.3016.(-4,-1) 17.①②③18.(2,4)或(4,2)19.解:此时轮船没有偏离航线.理由:由题意知:OA =OB ,OP =OP ,PA =PB ,∴△OAP ≌△OBP(SSS ),∴∠AOP =∠BOP.∴此时轮船没有偏离航线20.证明:∵四边形ABCD 是长方形,∴∠B =∠C =90°,∵EF ⊥DF ,∴∠EFD =90°,∴∠EFB +∠CFD =90°,∵∠EFB +∠BEF =90°,∴∠BEF =∠CFD ,在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD(ASA ),∴BF =CD 21.解:(1)情况一:题设:①②④;结论:③;情况二:题设①③④;结论:②;情况三:题设②③④;结论:① (2)选择的题设:①③④,结论:②(答案不唯一).理由:∵BF =EC ,∴BF +CF =EC +CF ,即BC =EF ,在△ABC 和△DEF中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS ),∴∠1=∠2 22.(1)证明:在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE (2)证明:∵∠1=∠2,∴∠1+∠DAE =∠2+∠DAE ,即∠BAN =∠CAM ,由(1)得:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中,⎩⎨⎧∠C =∠B ,AC =AB ,∠CAM =∠BAN ,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 23.(1)证明:∵BF =CE ,∴BF+FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB ∥DE ,AC ∥DF.理由:∵△ABC ≌△DEF ,∴∠ABC =∠DEF ,∠ACB =∠DFE ,∴AB ∥DE ,AC ∥DF 24.证明:∵AD 平分∠BAC 交BC 于D ,DE ⊥AB 于E ,∠C =90°,∴DC =DE ,在Rt △ACD 和Rt △AED 中,⎩⎨⎧DC =DE ,AC =AC ,∴Rt △ACD ≌Rt △AED(HL ),同理可得Rt △FCD 和Rt △BED ,∴AC =AE ,CF =BE ,∴AE -BE =AF25.解:(1)①垂直 ②BC =CF +CD (2)CF ⊥BC 成立;BC =CD +CF 不成立,CD =CF +BC.∵正方形ADEF 中,AD =AF ,∵∠BAC =∠DAF =90°,∴∠BAD =∠CAF ,在△DAB 与△FAC中,⎩⎨⎧AD =AF ,∠BAD =∠CAF ,AB =AC ,∴△DAB ≌△FAC ,∴∠ABD =∠ACF ,∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°.∴∠ABD =180°-45°=135°,∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC.∵CD =DB +BC ,DB =CF ,∴CD =CF +BC。

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章 全等三角形》单元测试卷及答案-人教版

八年级数学上册《第十二章全等三角形》单元测试卷及答案-人教版学校:___________班级:___________姓名:___________考号:___________知识梳理1、全等三角形的概念(1)能够完全重合的两个三角形叫做全等三角形。

(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2、全等三角形的性质(1)全等三角形的对应边相等;全等三角形的对应角相等。

3、三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

提升练习一、选择题1.如图△ABC≌△ADE,点D在BC上,下列结论中不一定成立的是()A.∠E=∠C B.BC=DE C.∠BAD=∠CAE D.AB=BD2.如图,B,D分别是位于线段AC两侧的点,连接AB,AD,CB,CD,则下列条件中,与AB=AD相结合无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.以上都无法判定3.如图,已知△ABC≌△DCB,∠A=80°,∠ACB=40°则∠ABD的度数为()A.20°B.25°C.30°D.40°4.如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③5.如图,在3×3的正方形网格中,∠1+∠2等于()A.60°B.75°C.90°D.105°6.如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3则AF的长为()A.3 B.3.5 C.2.5 D.27.如图在Rt△ABC中∠C=90°,若BC=20,AD平分∠BAC交BC于点D,且BD:CD=3:2则点D到线段AB的距离DE的长为()A.4 B.8 C.10 D.128.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于().A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5二、填空题9.如图,△ABC≌△ADE,AB=8,AC=5,BC=6,则CD= .10.如图,在ΔABC中D、E分别是AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数是.11.如图,CA平分∠DCB,CB=CD,DA的延长线交BC于点E,若∠EAC=46°,则∠BAE的度数为.12.如图,在△ABC中,点D在AB边上,E是AC边的中点CF∥AB,CF与DE的延长线交于点F,若AB=4,CF=3,则BD的长为.13.如图,在Rt△ABC中∠C=90°,AD是△ABC的角平分线,如果AB=6,CD=2那么S△ABD=.三、解答题14.如图,点A,B,C,D在同一直线上,AE=BF,EC=FD,AB=CD求证:△EAC≌△FBD.15.已知,如图AB=AE,AB∥DE,∠ACB=∠D求证:△ABC≌△EAD.16.如图,已知△ABC,D是AB延长线上一点BD=CB,DE∥BC,DE=BA连接BE,求证:BE=CA.17.如图,在四边形ABDC中∠D=∠B=90°,O为BD上的一点,且AO平分∠BAC,CO平分∠ACD.求证:(1)OA⊥OC.(2)AB+CD=AC.18.如图,在Rt△ABC中∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.D2.C3.A4.C5.C6.D7.B8.C9.310.30°11.88°12.113.614.证明:∵AB =CD∴AB +BC =CD +BC即 AC =BD在 △EAC 和 △FBD 中{AE =BF EC =FD AC =BD∴△EAC ≌△FBD(SSS) .15.证明:∵AB ∥DE∴∠CAB =∠E在△ABC 和△EAD 中,{∠ACB =∠D∠CAB =∠EAB =AE∴△ABC ≌△EAD(AAS).16.证明:∵DE ∥BC∴∠BDE =∠ABC在△EDB 和△ABC 中{BD=CB∠BDE=∠ABCDE=BA∴△EDB≌△ABC(SAS)∴BE=CA.17.(1)证明:∵∠D=∠B=90°∴∠B+∠D=180°∴AB∥CD∴∠BAC+∠DCA=180°∵AO平分∠BAC,CO平分∠ACD∴∠OAC=∠OAB=12∠BAC∠ACO=∠DCO=12∠ACD∴∠OAC+∠ACO=12∠BAC+12∠ACD=90°∴∠AOC=180°−90°=90°∴OA⊥OC;(2)证明:过点O作OE⊥AC于点E,如图所示:∵∠D=∠B=90°∴OB⊥AB OD⊥CD∵AO平分∠BAC,CO平分∠ACD∴OB=OE OD=OE∵OA=OA OC=OC∴Rt△OAB≌Rt△OAE(HL)Rt△OCE≌Rt△OCD(HL)∴AB=AE CD=CE∴AB+CD=AE+CE=AC18.(1)解:∵∠BAC=90°∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF ∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。

人教版数学八年级上册 第十二章全等三角形单元检测题含答案解析

人教版数学八年级上册 第十二章全等三角形单元检测题含答案解析

《全等三角形》单元检测题一、单选题1.下列命题:①有两个角和第三个角的平分线对应相等的两个三角形全等;②有两条边和第三条边上的中线对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等.其中正确的是()A.①②B.②③C.①③D.①②③2.在△ABC和△DEF中,∠A=50°,∠B=70°,AB=3cm,∠D=50°,∠E=70°,EF=3cm.则△ABC与△DEF()A.一定全等B.不一定全等C.一定不全等D.不确定3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115B.120C.125D.1305.某同学不小心把一块玻璃打碎了,变成了如图所示的三块,现在要到玻璃店配一块完全一样的玻璃,那么应带哪块去才能配好()A.①B.②C.③D.任意一块6.如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有()A.2对B.3对C.4对D.5对7.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为()A.2B.3C.D.8.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.BC∥EF C.∠A=∠EDF D.AD=CF9.下列条件中能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF10.如图,,,,要根据“HL”证明△≌△,则还需要添加一个条件是A.B.C.D.11.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等12.如图,于D,于P,且,则△与△全等的理由是A.SSS B.ASA C.SSA D.HL13.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以二、填空题14.如图所示,,可使用“HL”判定△与△全等,则应添加一个条件是______.15.如图所示,△是将长方形纸牌ABCD沿着BD折叠得到的,图中包括实线、虚线在内共有全等三角形______对16.如图,,于点D,于点E,BE与CD相交于点O,图中有______对全等的直角三角形.17.如图,已知△≌△,点B,E,C,F在同一条直线上,若,,则______.三、解答题18.如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD.(1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.19.已知:如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:AO=BO,CO=DO.20.如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,∠B=∠D,AD∥BC.(1)AD与BC相等吗?请说明理由;(2)BE与DF平行吗?请说明理由.21.如图,在△ABC中,AB=AC,∠1=∠2,则△ABD与△ACD全等吗?证明你的判断.参考答案1.A【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的三个命题依次判定,即可解答..【详解】①正确.可以用AAS或者ASA判定两个三角形全等;②正确.如图,分别延长AD,A′D′到E,E′,使得AD=DE,A′D′=D′E′,∴△ADC≌△EDB,∴BE=AC,同理:B′E′=A′C′,∴BE=B′E′,AE=A′E′,∴△ABE≌△A′B′E′,∴∠BAE=∠B′A′E′,∠E=∠E′,∴∠CAD=∠C′A′D′,∴∠BAC=∠B′A′C′,∴△BAC≌△B′A′C′.③不正确.因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等了.故选A.【点睛】本题主要考查全等三角形的判定方法,要求学生能对常用的判定方法熟练掌握并能进行灵活运用.解决命题②时,可以用“倍长中线法”.2.C【解析】【分析】由已知条件可知,有两组对应角相等,则只要这两组对应角的夹边相等或这两组对应角其中一角的对边相等即可推出两三角形全等.由此即可解答.【详解】在△ABC和△DEF中,∠A=50°,∠B=70°,∠D=50°,∠E=70°,当AB=DE时,△ABC≌△DEF,但本题是EF=AB,不符合全等三角形的判定条件,所以两三角形一定不全等.故选C.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.3.B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选:B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.C【解析】分析:根据全等三角形的判定和性质得出△ABC与△AED全等,进而得出∠B=∠E,利用多边形的内角和解答即可.详解:∵三角形ACD为正三角形,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,∵AB=DE,BC=AE,∴△ABC≌△DEA,∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故选:C.点睛:此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.5.A【解析】【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【详解】只第①块玻璃中包含两角及这两角的夹边,符合ASA.故选A.【点睛】本题主要考查三角形全等的判定,要求学生能对常用的判定方法熟练掌握并能进行灵活运用.解决本题主要看这3块玻璃中哪个包含的条件符合某个判定即选哪块.6.C【解析】分析:首先根据OA=OB,∠AOD=∠BOC,OC=OD,证明△AOD≌△BOC,然后依次证明△AEC≌△BED、△OCE≌△ODE、△OEB≌△OEA.详解:∵OA=OB,OC=OD,又∠AOB=∠BOA,∴△AOD≌△BOC,∠A=∠B,又AC+OC=BD+OD,∴AC=BD,∴△AEC≌△BED,进一步可得△OCE≌△ODE、△OEB≌△OEA,共4对.故选C.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时,从已知开始结合全等的判定方法由易到难逐个找寻,要不重不漏.7.B【解析】试题分析:如图,延长FD到G,使DG=BE,连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,∵CB=CD,∠CBE=∠CDG,BE=DG,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,∵GC=EC,∠GCF=∠ECF,CF=CF,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===,故选A.考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.8.D【解析】【分析】根据全等三角形的判定方法依次判断即可解答.【详解】选项A,根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF;选项B,由BC∥EF,可得∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF;选项C,根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF;选项D,由AD=CF,可得AD+DC=CF+DC,即AC=DF,再由AB=DE,BC=EF,根据SSS 即可判定△ABC≌△DEF.故选D.【点睛】本题考查了全等三角形的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A选项中根据AB=DE,BC=EF,∠A=∠D 不能判定两个三角形全等,故A错;B选项三个角相等,不能判定两个三角形全等,故B错;C选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C错;D选项中根据“AAS”可判定两个三角形全等,故选D;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.10.D【解析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【详解】条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.11.C【解析】【分析】画出图形,逐项分析即可得;A、题目已知条件不能证明△ACD与△CDB的形状相同;B、又AC≠BC,所以△ACD与△CDB的周长不等;C、如图,在直角△ABC中,∠ACB=90°,CD是斜边AB上的中线,CE是AB上的高,根据直角三角形的性质可以推CD=AD=BD,再根据三角形的面积公式可以得到S△ACD=S△CBD;D、此题可根据直角三角形的性质结合全等三角形的判定方法进行判断.【详解】如图,A、显然△ACD与△CDB的形状不同,故A不正确;B、∵AC≠BC,∴△ACD与△CDB的周长不等,故B不正确;C、在直角△ABC中,∠ACB=90°,CD是斜边AB上的中线,CE是AB上的高,根据直角三角形中斜边上的中线等于斜边的一半知,CD=AD=BD,∴S△ACD=AD•CE=BD•CE=S△CBD,故C正确;D、由于AD=CD=BD,所以∠A=∠DCA,∠B=∠DCB,显然∠A、∠B不一定相等,因此两个三角形不全等,故D错误,故选C.【点睛】本题考查了直角三角形斜边上的中线,利用了三角形的面积公式和直角三角形的性质:斜边上的中线等于斜边的一半.【解析】【分析】根据直角三角形全等的判别方法HL可证△AOD≌△AOP.【详解】∵OD⊥AB,OP⊥AC,∴△ADO和△APO是直角三角形,又∵OD=OP,AO=AO,∴Rt△AOD≌△Rt△AOP(HL),故选D.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题的关键.13.B【解析】【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】因为两个三角形全等,所以∠1=62°,故选B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.14.【解析】【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC=BD或AC=AD.【详解】条件是AC=AD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=AD.【点睛】本题考查了直角三角形全等的判定,知道“HL”即为斜边及一直角边对应相等的两直角三角形全等是解题的关键.15.4【解析】【分析】共有四对,分别是△ABD≌△CDB,△ABD≌△C'DB,△DCB≌△C'DB,△AOB≌△C'OD.【详解】∵四边形ABCD是长方形,∴∠A=∠C=90°,AB=CD,AD=BC,∴△ABD≌△CDB (HL) ,∵△BDC是将长方形纸牌ABCD沿着BD折叠得到的,∴BC'=AD,BD=BD,∠C'=∠A,∴△ABD≌△C'DB (HL) ,同理△DCB≌△C'DB,∵∠A=∠C',∠AOB=∠C'OD,AB=C'D,∴△AOB≌△C'OD (AAS) ,所以共有四对全等三角形.故答案为:4.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.3【解析】【分析】由条件可先证明Rt△ABE≌△Rt△ACD,可得AD=AE,可证明Rt△AOD≌Rt△AOE,可得OD=OE,进一步可证明Rt△BOD≌Rt△COE,可求得答案.【详解】,,,在△和△△中,,△≌△△,,在△和△中,,△≌△,,在△和△中,,△≌△,全等的直角三角形共有3对,故答案为:3.【点睛】本题考查了全等三角形的判定和性质,熟练掌握判定直角三角形全等的方法是解题的关键,即SSS、SAS、ASA、AAS和HL.17.7【解析】【分析】根据全等三角形对应边相等可得BC=EF,然后根据BF=BE+EF计算即可得解.【详解】∵△ABC≌△DEF,∴BC=EF=5,∴BF=BE+EF=2+5=7,故答案为:7.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键. 18.(1)证明见解析;(2)3.【解析】【分析】(1)易由,可证△ABD≌△CFD(AAS);(2)由△ABD≌△CFD,得BD=DF,所以BD=BC﹣CD=2,所以AF=AD﹣DF=5﹣2.【详解】(1)证明:∵AD⊥BC,CE⊥AB,∴∠ADB=∠CDF=∠CEB=90°,∴∠BAD+∠B=∠FCD+∠B=90°,∴∠BAD=∠OCD,在△ABD和CFD中,,∴△ABD≌△CFD(AAS),(2)∵△ABD≌△CFD,∴BD=DF,∵BC=7,AD=DC=5,∴BD=BC﹣CD=2,∴AF=AD﹣DF=5﹣2=3.【点睛】本题考核知识点:全等三角形. 解题关键点:运用全等三角形的判定和性质.19.证明见解析【解析】【分析】根据HL证明Rt△ACB≌Rt△ADB,得∠ABC=∠BAD,根据等角对等边,得OA=OB,所以,由AD﹣OA=BC﹣OB,得OD=OC.【详解】证明:∵∠C=∠D=90°,∴△ACB和△ADB为直角三角形,在Rt△ACB和Rt△ADB中,,∴Rt△ACB≌Rt△ADB,∴∠ABC=∠BAD,∴OA=OB,∵AD=BC,∴AD﹣OA=BC﹣OB,即OD=OC.【点睛】本题考核知识点:全等三角形,等腰三角形. 解题关键点:运用全等三角形的性质和等腰三角形性质证明线段相等. 20.(1)AD=BC,理由见解析;(2)DF∥EB,理由见解析.【解析】【分析】(1)先证明△AFD≌△CEB,然后依据全等三角形的性质进行证明即可;(2)依据全等三角形的性质得到∠BEC=∠EFD,最后依据平行线的判定定理进行证明即可.【详解】(1)AD=BC,理由如下:∵AE=CF,∴AF=EC.∵AD∥BC,∴∠DAF=∠BCE.在△AFD和△CEB中,∴△AFD≌△CEB.∴AD=BC.(2)DF∥EB,理由如下:∵△AFD≌△CEB,∴∠BEC=∠EFD,∴DF∥EB.【点睛】本题主要考查的是全等三角形的性质和判定,找出△AFD≌△CEB的条件是解题的关键.21.全等,见解析.【解析】【分析】全等,因为∠1=∠2,所以△DBC为等腰三角形,则BD=CD,又因为AB=AC,AD=AD,通过“边边边”即可证得两个三角形全等.【详解】解:△ABD与△ACD全等,∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS).【点睛】本题考查全等三角形的证明,方法不唯一,可以通过证明三条边对应相等来证明,也可以通过两边及夹角对应相等来证明.。

八年级数学上册《第十二章 全等三角形》单元测试卷附答案-人教版

八年级数学上册《第十二章 全等三角形》单元测试卷附答案-人教版

八年级数学上册《第十二章全等三角形》单元测试卷附答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题1.观察下列图案,其中与如图全等的是()A.B.C.D.2.如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=13,则BE的长为()A.4 B.5 C.6.5 D.83.如图∠BAD=∠CAD,添加一个条件不能判断△ABD≅△ACD的是()A.BD=CD B.AB=AC C.∠B=∠C D.∠ADB=∠ADC 4.如图,小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是()A.SAS B.ASA C.SSS D.AAS5.如图△ABC≌△DEC,点E在AB边上,∠ACD=40°,则∠B的度数为()A.40°B.65°C.70°D.80°6.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长不可能是()A.4 B.5 C.6 D.77.如图,Rt△ABC中∠A=90°,BP平分∠ABC交AC于点P,若PA=4cm,BC=13cm则△BCP的面积是()A.52cm2B.13cm2C.45cm2D.26cm28.如图,△ABC的三边AB、BC、CA长分别是30、40、50,∠ABC和∠ACB的角平分线交于O,则S△ABO:S△BCO:S△CAO等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:5二、填空题9.如图△PAC≌△PBD,若∠A=40°,∠BPD=20°则∠PCD的度数为.10.如图AC=DB,AO=DO,CD=300m,则A、B两点间的距离为m.11.如图,点C在BE上∠B=∠E=∠ACF,AC=CF,AB=4,EF=6,则BE的长为.12.如图,已知:△ABC中∠C=90°,AC=40,BD平分∠ABC交AC于D,AD:DC=5:3,则D点到AB的距离是.13.如图所示,点O是△ABC内一点,BO平分∠ABC,OD⊥BC于点D,连接OA,若OD=5,AB=20,则△AOB的面积是.三、解答题14.如图,点P在∠AOB的平分线上OA=OB,求证:AP=BP.15.如图,D是AB上一点,DF交AC于点E,DE=EF,FC∥AB求证:AE=CE.16.如图,点B,F,C,E在同一条直线上,点A,D在直线BC的异侧,AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)若∠BFD=130°,求∠ACB的度数.17.如图AD,BC相交于点O,且AB∥CD,OA=OD.(1)求证:OB=OC;(2)若在直线AD上截取AE=DF,求证:BE∥CF.18.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.1.B2.B3.A4.B5.C6.D7.D8.D9.60°10.30011.1012.1513.5014.证明:∵OP平分∠AOB ∴∠AOP=∠BOP在△AOP和△BOP中{OA=OB∠AOP=∠BOP OP=OP∴△AOP≌△BOP(SAS)∴AP=BP.15.证明:∵FC∥AB∴∠A=∠FCE,∠ADE=∠F 在ΔADE与ΔCFE中:∵{∠A=∠FCE∠ADE=∠FDE=EF∴ΔADE≅ΔCFE(AAS)∴AE=CE.16.(1)证明:∵BF=EC ∴BF+FC=EC+FC在△ABC 和△DEF 中{AB =DE AC =DF BC =EF∴△ABC ≌△DEF (SSS )(2)解:∵∠BFD =130°,∠BFD+∠DFE =180° ∴∠DFE =50°由(1)知,△ABC ≌△DEF∴∠ACB =∠DFE∴∠ACB =50°.17.(1)证明:∵AB ∥CD∴∠OAB =∠ODC .∵OA =OD ,∠AOB =∠DOC∴△OAB ≌△ODC(ASA).∴OB =OC ;(2)证明:∵OA =OD ,AE =DF∴OA +AE =OD +DF即OE =OF .∵∠EOB =∠FOC ,且在(1)中,有OB =OC ∴△BOE ≌△COF(SAS)∴∠E =∠F .∴BE ∥CF .18.(1)证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ∴DE =DC在Rt △CDF 和Rt △EDB 中{BD =DF DC =DE∴Rt △CDF ≌Rt △EDB (HL ).∴CF =EB ;(2)证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC在Rt△ADC与Rt△ADE中{CD=DEAD=AD∴Rt△ADC≌Rt△ADE(HL)∴AC=AE∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章 全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是( )A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等 2. 如图所示,分别表示△ABC 的三边长,则下面与△一定全等的三角形是( )A BC D 3.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B =∠C , 下列不正确的等式是( )A .AB =AC B.∠BAE =∠CAD C.BE =DC D.AD =DE 4. 在△ABC 和△A B C '''中,AB =A B '',∠B =∠B ',补充条件后仍不一定能保证 △ABC ≌△A B C ''',则补充的这个条件是( )A .BC =BC '' B .∠A =∠A ' C .AC =A C ''D .∠C =∠C '5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( )A.△ACE ≌△BCD B.△BGC ≌△AFC C.△DCG ≌△ECF D.△ADB ≌△CEA6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角7.已知:如图所示,AC =CD ,∠B =∠E =90°,AC ⊥CD ,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A =∠2 C .△ABC ≌△CED D .∠1=∠2 8. 在△和△FED 中,已知∠C =∠D ,∠B =∠E ,要判定这两个三角形全等,还需要条件( )A.AB =EDB.AB =FDC.AC =FDD.∠A =∠F第3题图 第5题图第7题图第2题图第6题图9.如图所示,在△ABC 中,AB =AC ,∠ABC 、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E .某同学分析图形后得出以下结论:①△BCD ≌△CBE ;②△BAD ≌ △BCD ;③△BDA ≌△CEA ;④△BOE ≌△COD ;⑤△ACE ≌△BCE ,上述结论一定正确的是( ) A.①②③ B.②③④ C.①③⑤ D.①③④10. 如图所示,在△中,>,∥=,点在边上,连接,则添加下列哪一个条件后,仍无法判定△与△全等( )A.∥B.C.∠=∠D.∠=∠二、填空题(每小题3分,共24分)11. 如果△ABC 和△DEF 这两个三角形全等,点C 和点E ,点B 和点D分别是对应点,则另一组对应点是 ,对应边是 , 对应角是 ,表示这两个三角形全等的式子是 .12. 如图,在△ABC 中,AB =8,AC =6,则BC 边上的中线AD 的取值范围是 . 13. 如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3= .14.如图所示,已知等边△ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 是 度. 15.如图所示,AB =AC ,AD =AE ,∠BAC =∠DAE ,∠1=25°,∠2=30°,则∠3= . 16.如图所示,在△ABC 中,∠C =90°,AD 平分∠CAB ,BC =8 cm ,BD =5 cm ,那么点D 到直线AB 的距离是 cm.17.如图所示,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 .18. 如图所示,已知在△ABC 中,∠A =90°,AB =AC ,CD 平分∠ACB ,DE ⊥BC 于E ,若BC = 15 cm ,则△DEB 的周长为 cm .第9题图第14题图第16题图第17题图第10题图第13题图第15题图三、解答题(共46分)19.(6分)如图,已知△≌△是对应角.(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.20.(8分)如图所示,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.21.(6分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.第20题图第19题图第21题图22. (8分) 如图所示,在△ABC 中,∠C =90°, AD 是 ∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD =DF . 求证:(1)CF =EB .(2)AB =AF +2EB .23. (9分)如图所示,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 相交于F .求证:AF 平分∠BAC .24. (9分) 已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点. (1)直线BF 垂直于直线CE 于点F ,交CD 于点G (如图①),求证:AE =CG ; (2)直线AH 垂直于直线CE ,垂足为点 H ,交CD 的延长线于点M (如图②),找出图中与BE 相等的线段,并证明.第24题图第22题图 第23题图第十二章全等三角形检测题参考答案1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错.2. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等.故选B.3. D 解析:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析:∵△ABC和△CDE都是等边三角形,∴BC=AC,CE=CD,∠BCA=∠ECD=60°,∴∠BCA+∠ACD=∠ECD+∠ACD,即∠BCD=∠ACE,∴在△BCD和△ACE中,∴△BCD≌△ACE(SAS),故A成立.∵△BCD≌△ACE,∴∠DBC=∠CAE.∵∠BCA=∠ECD=60°,∴∠ACD=60°.在△BGC和△AFC中,∴△BGC≌△AFC,故B成立.∵△BCD≌△ACE,∴∠CDB=∠CEA,在△DCG和△ECF中,∴△DCG≌△ECF,故C成立.6. B 解析:∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选B.7. D 解析:∵AC⊥CD,∴∠1+∠2=90°,∵∠B=90°,∴∠1+∠A=90°,∴∠A=∠2.在△ABC和△CED中,∴△ABC≌△CED,故B、C选项正确.∵∠2+∠D=90°,∴∠A+∠D=90°,故A选项正确.∵AC⊥CD,∴∠ACD=90°,∠1+∠2=90°,故D选项错误.故选D.8. C 解析:因为∠C=∠D,∠B=∠E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有△ABC≌△FED.9. D 解析:∵AB=AC,∴∠ABC=∠ACB.∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE.∴①△BCD≌△CBE(ASA);由①可得CE=BD, BE=CD,∴③△BDA≌△CEA(SAS);又∠EOB=∠DOC,所以④△BOE≌△COD(AAS).故选D.10. C 解析:A.∵∥,∴∠=∠.∵∥∴∠=∠.∵,∴△≌△,故本选项可以证出全等;B.∵=,∠=∠,∴△≌△,故本选项可以证出全等;C.由∠=∠证不出△≌△,故本选项不可以证出全等;D.∵∠=∠,∠=∠,,∴△≌△,故本选项可以证出全等.故选C.11. 点A与点F AB与FD,BC与DE,AC与FE ∠A=∠F,∠C=∠E,∠B=∠D△ABC≌△FDE解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角.12.△△△13. 135° 解析:观察图形可知:△ABC ≌△BDE , ∴ ∠1=∠DBE .又∵ ∠DBE +∠3=90°,∴ ∠1+∠3=90°.∵ ∠2=45°,∴ ∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°. 14. 60 解析:∵ △ABC 是等边三角形, ∴ ∠ABD =∠C ,AB =BC .∵ BD =CE , ∴ △ABD ≌△BCE ,∴ ∠BAD =∠CBE .∵ ∠ABE +∠EBC =60°,∴ ∠ABE +∠BAD =60°, ∴ ∠APE =∠ABE +∠BAD =60°.15. 55° 解析:在△ABD 与△ACE 中,∵ ∠1+∠CAD =∠CAE +∠CAD ,∴ ∠1=∠CAE . 又∵ AB =AC ,AD =AE ,∴ △ABD ≌△ACE (SAS ).∴ ∠2=∠ABD .∵ ∠3=∠1+∠ABD =∠1+∠2,∠1=25°,∠2=30°, ∴ ∠3=55°.16. 3 解析:由∠C =90°,AD 平分∠CAB ,作DE ⊥AB 于E , 所以D 点到直线AB 的距离是DE 的长. 由角平分线的性质可知DE =DC .又BC =8 cm ,BD =5 cm ,所以DE =DC =3 cm . 所以点D 到直线AB 的距离是3 cm .17. 31.5 解析:作OE ⊥AC ,OF ⊥AB ,垂足分别为E 、F ,连接OA , ∵ OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC , ∴ OD =OE =OF . ∴=×OD ×BC +×OE ×AC +×OF ×AB=×OD ×(BC +AC +AB )=×3×21=31.5.第16题答图第17题答图18. 15 解析:因为CD平分∠ACB,∠A=90°,DE⊥BC,所以∠ACD=∠ECD,CD=CD,∠DAC=∠DEC,所以△ADC≌△EDC,所以AD=DE, AC=EC,所以△DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以△DEB 的周长=AB+BE=AC+BE=EC+BE=BC=15(cm).19.分析:(1)根据△≌△是对应角可得到两个三角形中对应相等的三条边和三个角;(2)根据(1)中的相等关系即可得的长度.解:(1)因为△≌△是对应角,所以.因为GH是公共边,所以.(2)因为 2.1 cm,所以=2.1 cm.因为 3.3 cm,所以.20.分析:由△ABC≌△ADE,可得∠DAE=∠BAC=(∠EAB-∠CAD),根据三角形外角性质可得∠DFB=∠FAB+∠B.因为∠FAB=∠FAC+∠CAB,即可求得∠DFB的度数;根据三角形外角性质可得∠DGB=∠DFB -∠D,即可得∠DGB的度数.解:∵△ABC≌△ADE,∴∠DAE=∠BAC=(∠EAB-∠CAD)=.∴∠DFB=∠FAB+∠B=∠FAC+∠CAB+∠B=10°+55°+25°=90°,∠DGB=∠DFB-∠D=90°-25°=65°.21.分析:首先根据角间的关系推出再根据边角边定理,证明△≌△.最后根据全等三角形的性质定理,得知.根据角的转换可求出.证明:(1)因为,所以.又因为在△与△中,,,,AE AB EAC BAF AC AF =⎧⎪∠=∠⎨⎪=⎩所以△≌△. 所以.(2)因为△△,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D 到AB 的距离=点D 到AC 的距离,即CD =DE .再根据Rt △CDF ≌Rt △EDB ,得CF =EB .(2)利用角平分线性质证明△ADC ≌△ADE ,∴ AC =AE ,再将线段AB 进行转化. 证明:(1)∵ AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC ,∴ DE =DC . 又∵ BD =DF ,∴ Rt △CDF ≌Rt △EDB (HL ), ∴ CF =EB .(2)∵ AD 是∠BAC 的平分线,DE ⊥AB ,DC ⊥AC , ∴ △ADC ≌△ADE ,∴ AC =AE ,∴ AB =AE +BE =AC +EB =AF +CF +EB =AF +2EB .23. 证明:∵ DB ⊥AC ,CE ⊥AB ,∴ ∠AEC =∠ADB =90°. ∴ 在△ACE 与△ABD 中,∴ △ACE ≌△ABD (AAS ), ∴ AD =AE .∴ 在Rt △AEF 与Rt △ADF 中,⎩⎨⎧==,,AF AF AD AE∴ Rt △AEF ≌Rt △ADF (HL ),∴ ∠EAF =∠DAF ,∴ AF 平分∠BAC .24. 解:⑴因为直线BF 垂直于CE 于点F ,所以∠CFB =90°, 所以∠ECB +∠CBF =90°.又因为∠ACE +∠ECB =90°,所以∠ACE =∠CBF . 因为AC =BC , ∠ACB =90°,所以∠A =∠CBA =45°. 又因为点D 是AB 的中点,所以∠DCB =45°.因为∠ACE =∠CBF ,∠DCB =∠A ,AC =BC ,所以△CAE ≌△BCG ,所以AE =CG . (2)BE =CM .证明:∵ ∠ACB =90°,∴ ∠ACH +∠BCF =90°.∵ CH ⊥AM ,即∠CHA =90°,∴ ∠ACH +∠CAH =90°,∴ ∠BCF =∠CAH . ∵ CD 为等腰直角三角形斜边上的中线,∴ CD =AD .∴ ∠ACD =45°. △CAM 与△BCE 中,BC =CA ,∠BCF =∠CAH ,∠CBE =∠ACM , ∴ △CAM ≌△BCE ,∴ BE =CM .。

相关文档
最新文档