排列组合与概率试题含答案
排列组合概率测试题.doc
排列 组合 概率测试题班级 姓名 得分 .一、选择题:1、有6名同学,如果甲必须站在乙的右边,不同站法总数是………………………………………( )(A )6621A (B ) 66A (C )266A (D ) 4425A A 2、3)2||1|(|-+x x 展开式中常数项的值为…………………………………………………………( ) (A )-20 (B )20 (C )-15 (D )-28 3、992除以9的余数为………………………………………………………………………………( ) (A )1 (B )-1 (C )8 (D )04、以一个正三棱柱的顶点为顶点的四面体共有个数为……………………………………………( )(A )6 (B )8 (C )12 (D )305、含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则S T =……( ) (A )51160 (B ) 12815 (C ) 1021120 (D ) 6445 6、把一个圆24等份,过其中任意3个分点做三角形,其中的直角三角形个数为…………………( )(A )2024 (B )264 (C )132 (D )1227、n n n x a x a x a a x x 2222102)1(++++=++ ,如果n a a a a S 2420++++= ,则S=……( )(A )n 2 (B ) n 2+1 (C ))13(21-n (D ) )13(21+n 8、在83)12(xx -的展开式中,常数项为……………………………………………………………( ) (A )-28 (B ) -7 (C )7 (D )289、某人射击命中率为43,他连续射击2次,恰有一次命中的概率为………………………………( ) (A )169 (B )85 (C ) 43 (D )83 10、5件产品中,有3件一等品,2件二等品,从中任取2件,那么以0.7为概率的事件是……( )(A )都不是一等品 (B )恰有1件一等品 (C )至少1件一等品 (D ) 至多1件一等品11、从4台甲型、5台乙型电脑中,任取3台,其中至少要有甲型、乙型各一台的概率为………( )(A )75 (B ) 145 (C ) 65 (D ) 125 12、10颗骰子同时掷出,共掷出5次,则至少有一次全部出现同一个点的概率为………………( )(A )510])65(1[- (B ) 105])65(1[- (C )1-510])61(1[- (D )1-105])61(1[- 二、填空题:13、空间有8个不同的平面,其中有并且只有3个互相平行,其余在无两个平面平行,也无三个平面相交于同一条直线,则这8个平面共有 条交线.14、102)1()1()1(x x x ++++++ 展开式中6x 的系数为 .15、甲乙两人投篮,甲投篮命中率为0.8,乙投篮命中率为0.7,每人投3次,两人恰好都投中两次的概率为 (精确到0.001)16、如果以连续抛掷两次骰子得到的点数m 、n 为点P 的横、纵坐标,那么点P (m 、n )落在圆1622=+y x 内的概率为 .三、解答题:17、若集合A 、B 各有12个元素,A ∩B 中有4个元素,试求同时满足下列条件的集合C 的个数。
职高数学 排列组合二项式概率测试题(含答案)
排列组合二项式概率测试题满分120分 时间 120分钟一、选择题(本题共15个小题,每小题 3分,共45分)1.某段铁路共有5个车站,共准备多少种不同的车票( ).A .10B .20C .15D .322.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( )A .4B .7C .10D .123.将4封不同的信投入3个不同的信箱,则不同的投送方法有多少种( ).A . 43B . 34C . 34C D . 34P4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A .6B .4C .8D .105.某商场有四个大门,若从一个门进入,购买商品后再从另一个门出去,不同的进出方法共有多少种 ( ).A .12B .20C .24D .286.6名学生站成一排,其中甲不能站在排尾的不同排法种数是( ).A.1556P P B .1555P P C .56P D .6565P 2P -7.n N ∈,n <25,则乘积(25-n )(26-n )⋅⋅⋅(39-n )等于( ).A.2539P n n -- B .1539P n - C .1525P n - D . 1439P n -8.从集合A ={2,3,5,7,11}中任取两个数作为对数log a x 的底数和真数,则可以得到不同的对数值为( ).A .20B .30C .40D .609.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种10.在二项式521x -()的展开式中,含2x 的项是( ).A .25x -B .25xC .240x -D .240x11.抛掷两枚硬币,则两枚硬币都正面朝上的概率为( ).A . 12B . 14C . 18D . 3412.甲、乙两人进行射击比赛,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则甲乙二人恰有一人击中目标的概率是( ).A .0.32B .0.44C .0.12D .0.5613.从“舞蹈、相声、小品……”等5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,也不能是“相声”,则不同的演出方案种数是( )A . 48B . 72C . 96D .10814.某人参加一次考试,4道题中解对3道题则为及格,已知他的解题正确率为0.6,则他能及格的概率是( ).A .0.3456B .0.1296C .0.4752D .0.524815.袋中有5个大小相同的球,其中2个红球,3个白球,从袋中任意抽取2个球,抽取的球为不 同颜色的概率是( ).A . 25B . 35C . 715D . 1225二、填空题(本题有15个空,每空2分,共30分)16.已知事件A 在一次试验中不发生的概率为0.2,则事件A 发生的概率为_____.17.在学校举行的演讲比赛中,共有6名选手进入决赛,则选手甲不在第一个也不在最后一个演讲的概率为______.18.从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地不经过乙地到丙地有2条路可走,那么从甲地到丙地有______种走法.19.若43410n n C C C +=,则n =______.20.某铁路客运段上有9个站,那么该线路上共有______种不同的票价. 21.7个座位,3个人去坐,每人坐一个座位,有______种不同的坐法.22.612x (+)展开式中二项式系数最大的项是第______项.23.245n nC -=,则n =_________. 24.在三次独立重复试验中,事件A 至少发生1次的概率为6364.则事件A 在一次试验中发生 的概率为_________.25.抛掷两颗骰子,出现总数之和等于7的概率为_________.26.5个人用抽签的方法分配两张电影票,第二个人抽到电影票的概率是_____. 27.4名男同学和3名女同学站成一排照相,则男同学与女同学相间排列的排法种数有_____种.28.从1到100中任取一个数,则这个数既能被2整除,又能被5整除的概率是_______.29.一批产品的次品率为0.1,有放回的抽取3次,则恰好有1次取到次品的概率是_______.30.右表是某个随机变量ξ的概率分布,其中m 的值是_________.三、解答题(本题共7个小题,共45分) 31.用0,1,2,3,4,5可以组成多少个没有重复数字的三位偶数?32. 7个人站成一排照相,(1)若甲不能站在中间,共有多少种不同的排法?(2)若甲必须站在两端,共有多少种不同的排法?(3)若甲乙中间必须间隔一个人,共有多少种不同的排法?33.甲乙两人参加安全知识竞赛,共有10道不同题目,其中选择题7道,判断题3道,甲乙二人依次各抽一题,(1)甲抽到选择题,乙抽到判断题的概率是多 少?(2)甲乙二人抽到不同题型的概率是多少?34.求101x x-()的展开式中的常数项. 35. 7()2x x-的二项展开式中,求(1)第4项;(2)含3x 项的系数. 36.某小组有3名男生和2名女生,任选3个人去参加某项活动,求所选3个人中女生数目ξ的概 率分布.37.一个袋中装有10个形状和大小相同的球,其中8个红球和2个白球,(1)若从中任取1球,求出现白球的概率;(2)若从中有放回地任取1个,连取2次,求出现白球次数ξ的概率分布.排列组合二项式概率测试题答案一、 选择题1—5 B D A B A 6—10 B B A C C 11—15 B B B C B二、填空题16.0.8 17. 2318.14 19.920.36 21.21022.4 23.1024. 34 25. 1626. 2527.144 28. 11029.0.243 30.0.04三、解答题31.个位数字为0有25P 20=个位数字不为0,有11442P P 32=种 故所求没有重复数字共有211544P 2P P 52+=个. 32.(1)1666P P 4320=种 (2)1626C P 1440=种(3) 152552C P P 1200=种33.(1)设A ={甲抽到选择题,乙抽到判断题}()117311109C C 7C C 30P A ==(2)设B ={甲乙二人抽到不同题型}()1111733711109C C C C 7C C 15P A +== 34. 101101C m m m m T xx -+⎛⎫=- ⎪⎝⎭ ()102101C m m m x-=- 令1020m -=,得5m =故,第6项为常数项.()556101C 252T =-=- 35.(1)33443172C T T x x +⎛⎫==- ⎪⎝⎭()333471C 2x x ⎛⎫=- ⎪⎝⎭()43358x x -=⨯-280x =- (2)7172C mm m m T x x -+⎛⎫=- ⎪⎝⎭()77C 2m m m m x x --=-()7272C m m m x -=- 令723m -=,得2m =故第三项为含3x 的项,该项的系数为()2272C 84-= 36.ξ的可能取值为0,1,2.()032335C C 1P 0C 10ξ===;()122335C C 63P 1C 105ξ====,()212335C C 3P 2C 10ξ=== 所以,ξ的概率分布为37.(1)设A ={出现白球},则()21P 105A == (2)ξ的可能取值为0,1,2. 有放回的任取一球,取到白球的概率不变,每次取到白球的概率都是12p =. ()02214160C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()121481C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以,ξ的概率分布为。
数学概率(排列组合)练习题(含答案)
数学概率(排列组合)练习题(含答案)1.学校计划利用周五下午第一、二、三节课举办语文、数学、英语、文综4科的专题讲座,每科一节课,每节至少有一科,且数学、文综不安排在同一节,则不同的安排方法共有.2.从4名男生4名女生中选3位代表,其中至少两名女生的选法有种.3.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答).4.将一个白球,一个红球,三个相同的黄球摆放成一排,则白球与红球不相邻的放法有.5.用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有个(用数字作答).6.某工厂将4名新招聘员工分配至三个不同的车间,每个车间至少分配一名员工,甲、乙两名员工必须分配至同一车间,则不同的分配方法总数为(用数字作答).7.用4种颜色给一个正四面体的4个顶点染色,若同一条棱的两个端点不能用相同的颜色,那么不同的染色方法共有_____________种。
8.数字1,2,3,4,5,6按如图形式随机排列,设第一行的数为N1,其中N2,N3分别表示第二、三行中的最大数,则满足N1<N2<N3的所有排列的个数是________.9. 4名男生和2名女生站成一排照相,要求男生甲不站在最左端,女生乙不站在最右端,有种不同的站法.(用数字作答)10.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种(用数字作答)122名女生中选派4人参加社区服务,如果要求至少有1名女11生,那么不同的选派方案种数为.(用数字作答)13.将7个市三好学生名额分配给5个不同的学校,其中甲、乙两校至少各有两个名额,则不同的分配方案种数有 _________ .xx2x?214.方程C17-C16=C16的解集是________.15.从4名男生、3名女生中任选3人参加一次公益活动,其中男生、女生均不少于1人的组合种数为(用数字作答).16.从4名同学中选出3人,参加一项活动,则不同的选方法有种(用数据作答);17.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________种.18.将6位志愿者分配到甲、已、丙3个志愿者工作站,每个工作站2人,由于志愿者特长不同,A不能去甲工作站,B只能去丙工作站,则不同的分配方法共有__________种.19.现有一大批种子,其中优良种占30℅,从中任取8粒,记X为8粒种子中的优质试卷第1页,总9页。
高中数学选修2-3排列组合问题题目精选(附答案)
高中数学选修2-3排列组合问题题目精选(附答案)1. 某班有20名学生,其中有5名男生和15名女生。
从中选出3名学生组成一个小组,求以下概率:- 小组中至少有1名男生的概率是多少?答案:小组中至少有1名男生的概率为1减去小组全为女生的概率。
全为女生的概率可以用排列组合来计算,即从15名女生中选出3名女生组成小组的概率。
因此,小组中至少有1名男生的概率为1减去(C(15, 3) / C(20, 3))。
2. 有6本不同的数学书和4本不同的物理书。
现从这些书中任选2本,求以下概率:- 所选的两本书中至少有1本是数学书的概率是多少?答案:所选的两本书中至少有1本是数学书的概率等于1减去两本书都是物理书的概率。
两本书都是物理书的概率可以用排列组合来计算,即从4本物理书中选出2本物理书的概率。
因此,所选的两本书中至少有1本是数学书的概率为1减去(C(4, 2) / C(10, 2))。
3. 某公司有8名员工,其中有3名男员工和5名女员工。
请问,从这8名员工中选出4名员工组成一个小组,使得小组中至少有1名男员工的概率是多少?答案:小组中至少有1名男员工的概率等于1减去小组全为女员工的概率。
全为女员工的概率可以用排列组合来计算,即从5名女员工中选出4名女员工组成小组的概率。
因此,小组中至少有1名男员工的概率为1减去(C(5, 4) / C(8, 4))。
4. 一批音乐CD包含5张古典音乐CD和7张摇滚音乐CD。
现从这批CD中随机选取3张,求以下概率:- 所选的3张CD中至少有2张是摇滚音乐CD的概率是多少?答案:所选的3张CD中至少有2张是摇滚音乐CD的概率等于1减去3张CD都是古典音乐CD的概率。
3张CD都是古典音乐CD的概率可以用排列组合来计算,即从5张古典音乐CD中选出3张古典音乐CD的概率。
因此,所选的3张CD中至少有2张是摇滚音乐CD的概率为1减去(C(5, 3) / C(12, 3))。
5. 一位学生参加了5项体育比赛,他能获得的奖牌有金牌、银牌和铜牌。
数学模块2-3排列组合概率测试含答案
.故选:D.
∴Eξ= (a+b+c);
设 t= (a+b+c),则 Dξ= [(a-t)2+(b-t)2+(c-t)2]
= [a2+b2+c2-2(a+b+c)t+3t2]= [a2+b2+c2-6t+3t2];
随机变量 η 取值为
的概率都是 ,
∴Eη= ( + + )= (a+b+c),
Dη= [
则 P(A)= = ,P(AB)=
=,
∴在第一次抽到次品的条件下,第二次抽到次品的概率 P(A|B)=
= = .故选 A.
11.【答案】D 解:∵E(X)= ,∴由随机变量 X 的分布列的性质得:
,解得 x= ,y= ,
∴D(X)=(1- )2×0.5+(2- )2× +(3- )2× = 12.【答案】B 解:随机变量 ξ 取值为 a,b,c 的概率都是 ,
=
第 4 页,共 9 页
故选 C. 9.【答案】C 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为 , , ,
∴此密码不能译出的概率(1- )(1- )(1- )= ,
故此密码能译出的概率 P=1- = , 故选:C 10.【答案】A 解:设第一次抽到次品为事件 A,第二次抽到次品为事件 B,
)
A. −4
B. −3
C. 2
D. 3
5. 设有编号为 1,2,3,4,5 的五个茶杯和编号为 1,2,3,4,5 的五个杯盖,将五个杯盖盖在五个茶杯
上,至少有两个杯盖和茶杯的编号相同的盖法有( )
A. 30 种
(完整版)排列组合概率练习题(含答案)
排列与组合练习题1.如图,三行三列的方阵中有9个数(1,2,3;1,2,3)ij a i j ==,从中任取三个数,则至少有两个数位于同行或同列的概率是(A )37 (B )47 (C )114 (D )1314 答案:D解析:若取出3个数,任意两个不同行也不同列,则只有6种取法;而从9个数中任意取3个的方法是39C .所以39613114C -=. 2.同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则四张贺年卡不同的分配方式有(A )6种 (B )9种 (C )11种 (D )13种答案:B解析:设四人分别是甲、乙、丙、丁,他们写的卡片分别为,,,a b c d ,则甲有三种拿卡片的方法,甲可以拿,,b c d 之一.当甲拿b 卡片时,其余三人有三种拿法,分别为,,badc bcda bdac .类似地,当甲拿c 或d 时,其余三人各有三种拿法.故共有9种拿法.3.在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴上有3个点,将x 轴正半轴上这5个点和y 轴正半轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有(A )30个 (B )20个 (C )35个 (D )15个答案:A解析:设想x 轴上任意两个点和y 轴上任意两个点可以构成一个四边形,则这个四边形唯一的对角线交点,即在第一象限,适合题意.而这样的四边形共有302325=⋅C C 个,于是最多有30个交点.推广1:.在平面直角坐标系中,x 轴正半轴上有m 个点,y 轴正半轴上有n 个点,将x 轴正半轴上这m 个点和y 轴正半轴上这n 个点连成15条线段,这15条线段在第一象限内的交点最多有22m n C C ⋅个变式题:一个圆周上共有12个点,由这些点所连的弦最多有__个交点.答案:412C4.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是(A )15 (B )25 (C )35 (D ) 45答案:B111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭解析:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P . 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13 (B )12 (C )23 (D )34答案:A解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为p=3193=. 6.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则(|)P B A =A .18B .14C .25D .12答案:B 解析:2()5P A =,1()10P AB =,()1(|)()4P AB P B A P A ==. 7.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为A .12 B .35 C .23 D .34 答案:D解析:由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率11132224P =+⋅=.所以选D . 8.如图,用K 、A 1、A 2三类不同的元件连成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为KA 2A 1A .0.960B .0.864C .0.720D .0.576答案:B解析:系统正常工作概率为120.90.8(10.8)0.90.80.80.864C ⨯⨯⨯-+⨯⨯=,所以选B.9.甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是(A )136 (B )19 (C )536 (D )16 答案:D解析:各自独立地从1到6号景点中任选4个进行游览有1111111166554433C C C C C C C C 种,且等可能,最后一小时他们同在一个景点有11111116554433C C C C C C C 种,则最后一小时他们同在一个景点的概率是11111116554433111111116655443316C C C C C C C p C C C C C C C C ==,故选D . 10.在集合{}1,2,3,4,5中任取一个偶数a 和一个奇数b 构成以原点为起点的向量(,)a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形.记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则m n =( ) (A )415 (B )13 (C )25 (D )23答案:B解析:基本事件:26(2,1),(2,3),(2,5),(4,1),(4,5),(4,3)23515n C ==⨯=从选取个,.其中面积为2的平行四边形的个数(2,3)(4,5);(2,1)(4,3);(2,1)(4,1);其中面积为4的平行四边形的为(2,3)(2,5);(2,1)(2,3); m=3+2=5故51153m n ==. 11.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13C .12D .23答案:C解析:显然ABE ∆面积为矩形ABCD 面积的一半,故选C .12.在204(3)x y +展开式中,系数为有理数的项共有 项.答案:6解析:二项式展开式的通项公式为20204412020(3)(3)(020)r r r r r r r r T C x y C x y r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项.13.集合{1,2,3,4,5,6,7,8,9,10}M =,从集合M 中取出4个元素构成集合P ,并且集合P 中任意两个元素,x y 满足||2x y -≥,则这样的集合P 的个数为____.答案:35解析:其实就是从1到10这十个自然数中取出不相邻的四个数,共有多少方法的问题.因此这样的集合P 共有4735C =个.14.在一个正六边形的六个区域栽种观赏植物,如右图所示,要求同一块中种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,则有___种栽种方案.答案:732解析:共分三类:(1)A 、C 、E 三块种同一种植物;(2)A 、B 、C 三块种两种植物(三块中有两块种相同植物,而与另一块所种植物不同);(3)A 、B 、C 三块种三种不同的植物.将三类相加得732.15.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)X 表示该地的100位车主中,甲、乙两种保险都不购买的车主数,求X 的期望()E X .解:(I )设A 表示事件“购买甲种保险”,B 表示购买乙种保险. ()A B A A B =并且A 与A B 是互斥事件,所以()()()0.50.30.8P A B P A P A B =+=+=答:该地1位车主至少购买甲、乙两种保险中的1种的概率为0.8. (II )由(I )得任意1位车主两种保险都不购买的概率为()10.80.2p p A B ==-=. 又(3,0.2)XB ,所以()20E X =.所以X 的期望()20E X =.。
排列组合概率统计(答案)
排列组合二项式定理概率统计(理科适用)1.某学校为了迎接市春季运动会,从5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为() A.85B.86 C.91 D.90解析:由题意,可分三类考虑:(1)男生甲入选,女生乙不入选:C13C24+C23C14+C33=31;(2)男生甲不入选,女生乙入选:C14C23+C24C13+C34=34;(3)男生甲入选,女生乙入选:C23+C14C13+C24=21,∴共有入选方法种数为31+34+21=86.答案:B2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种解析:将标号为1,2的卡片放入1个信封,有C13=3种方法,将剩下的4张卡片放入剩下的2个信封中,有C22·C24=6种方法,共有C13C24·C22=3×6=18种.答案:B3.从5张100元,3张200元,2张300元的运动会门票中任选3张,则选取的3张中至少有2张价格相同的不同的选法共有()A.70种B.80种C.90种D.100种解析:基本事件的总数是C310,在三种价格的门票中各自选取1张的方法数是C15C13C12,故其对立事件“选取的3张中至少有2张价格相同”的不同的选法共有C310-C15C13C12=90种.答案:C4.2012年春节放假安排:农历除夕至正月初六放假,共7天.某单位安排7位员工值班,每人值班1天,每天安排1人.若甲不在除夕值班,乙不在正月初一值班,而且丙和甲在相邻的两天值班,则不同的安排方案共有()A.1 440种B.1 360种C.1 282种D.1 128种解析:采取对丙和甲进行捆绑的方法:如果不考虑“乙不在正月初一值班”,则安排方案有:A66·A22=1 440种,如果“乙在正月初一值班”,则安排方案有:C11·A14·A22·A44=192种,若“甲在除夕值班”,则“丙在初一值班”,则安排方案有:A55=120种.则不同的安排方案共有1 440-192-120=1 128(种).答案:D5.霓虹灯的一个部位由7个小灯泡并排组成,每个灯泡均可以亮出红色或黄色,现设计每次变换只闪亮其中的三个灯泡,且相邻的两个灯泡不同时亮,则一共可以呈现出不同的变换形式的种数为()A.20 B.30 C.50 D.80解析:按照三个灯泡同色、三个灯泡两红一黄、三个灯泡一红两黄将问题分为三类:第一类:三个灯泡同色时,可以呈现出不同的变换形式的种数为C35×2=20种;第二类:三个灯泡两红一黄时,可以呈现出不同的变换形式的种数为C35×C23=30种;第三类:三个灯泡一红两黄时,可以呈现出不同的变换形式的种数为C35×C23=30种.故呈现出满足条件的不同的变换形式的种数为20+30+30=80.答案:D二、填空题6.(2012·本溪模拟)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1,2,3号参加团体比赛,则入选的3名队员中至少有1名老队员,且1、2号中至少有1名新队员的排法有________种.(以数字作答)解析:①只有1名老队员的排法有C12·C23·A33=36种.②有2名老队员的排法有C22·C13·C12·A22=12种;所以共48种.答案:487.(2012·北京模拟)三个人坐在一排八个座位上,若每个人的两边都要有空位,则不同的坐法种数为________.解析:法一:根据题意,两端的座位要空着中间六个座位坐三个人,再空三个座位,这三个座位之间产生四个空,可以认为是坐后产生的空,故共有A34=24种.法二:让人占座位之间的空,因有五个座位,它们之间四个空,人去插空,共有A34=24种.答案:24三、解答题8.将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他盒子中球的颜色齐全的不同放法共有多少种?解:先选1空盒:C14,将4白、5黑、6红分别放入其余三个盒中,每盒1个,剩1个白球有3种放法,剩2个黑球有3+C23=6种放法,剩3个红球有3+1+A23=10种放法,由分步乘法原理,得C14×6×3×10=720种.9.某中学高三年级共有12个班级,在即将进行的月考中,拟安排12个班主任老师监考数学,每班1人,要求有且只有8个班级是自己的班主任老师监考,则不同的监考安排方案共有多少种?解:先从12个班主任中任意选出8个到自己的班级监考,有C812种安排方案,设余下的班主任为A、B、C、D,自己的班级分别为1、2、3、4,安排班主任A有三种方法,假定安排在2班监考,再安排班主任B有三种方法,假定安排在3班监考,再安排班主任C、D有一种方法,因此安排余下的4个班主任共有9种方法,所以安排方案共有C812·9=4 455种.10.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中:(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙二人至少有一人参加,有多少种选法?(4)医疗队中至少有一名内科医生和一名外科医生,有几种选法?解:(1)只需从其他18人中选3人即可,共有C318=816种;(2)只需从其他18人中选5人即可,共有C518=8 568种;(3)分两类:甲、乙中有一人参加;甲、乙都参加.共有C12C418+C318=6 936种;(4)法一:(直接法):至少一名内科一名外科的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656种.法二:(间接法):由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656种.1.甲:A1、A2是互斥事件;乙:A1、A2是对立事件.那么()A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件 解析:由互斥、对立事件的含义知选B 答案:B2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]的概率为0.5,那么该同学的身高超过175 cm 的概率为( )A .0.2B .0.3C .0.7D .0.8解析:因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3.答案:B3.(2012·皖南八校联考)某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )A.115B.35C.815D.1415解析: 记4听合格的饮料分别为A 1、A 2、A 3、A 4,2听不合格的饮料分别为B 1、B 2,则从中随机抽取2听有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种不同取法,而至少有一听不合格饮料有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共9种,故所求概率为P =915=35.答案:B4.先后两次抛掷一枚骰子,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为( )A.16B.15C.13D.25解析:由题意可知,在得到点数之和不大于6的条件下,先后出现的点数中有3的概率为55+4+3+2+1=13.答案:C5.(2012·合肥模拟)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,A =30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a 、b ,则满足条件的三角形有两个解的概率是( )A.16B.13C.12D.34解析:要使△ABC 有两个解,需满足的条件是⎩⎪⎨⎪⎧a >b sin A ,b >a 因为A =30°,所以⎩⎪⎨⎪⎧b <2a ,b >a满足此条件的a ,b 的值有b =3,a =2;b =4,a =3;b =5,a =3;b =5,a =4;b =6,a =4;b =6,a =5,共6种情况,所以满足条件的三角形有两个解的概率是636=16.答案:A 二、填空题6.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为________.答案:357.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:P =1-0.2×0.25=0.95. 答案:0.95 三、解答题8.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.(1)求检验次数为3的概率; (2)求检验次数为5的概率.解:(1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A ,则检验次数为3的概率为P (A )=C 12C 15C 27·1C 15=221.(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B ,记“在5次检验中,没有检到次品”为事件C ,则检验次数为5的概率为P =P (B )+P (C )=C 12C 35C 47·1C 13+C 55C 57=521.9.已知向量a =(x 、y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码.(1)求满足a·b =-1的概率; (2)求满足a·b >0的概率.解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、…、(6,5)、(6,6),共36个.用A 表示事件“a·b =-1”,即x -2y =-1,则A 包含的基本事件有(1,1)、(3,2)、(5,3),共3个,P (A )=336=112.(2)a·b >0,即x -2y >0,在(1)中的36个基本事件中,满足x -2y >0的事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.10.某次会议有6名代表参加,A 、B 两名代表来自甲单位,C 、D 两名代表来自乙单位,E 、F 两名代表来自丙单位,现随机选出两名代表发言,问:(1)代表A 被选中的概率是多少?(2)选出的两名代表“恰有1名来自乙单位或2名都来自丙单位”的概率是多少? 解:(1)从这6名代表中随机选出2名,共有15种不同的选法,分别为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).其中代表A 被选中的选法有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),共5种,则代表A 被选中的概率为515=13.(2)法一:随机选出的2名代表“恰有1名来自乙单位或2名都来自丙单位”的结果有9种,分别是 (A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ).则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为915=35.法二:随机选出的2名代表“恰有1名来自乙单位”的结果有8种,概率为815;随机选出的2名代表“都来自丙单位”的结果有1种,概率为115.则“恰有1名来自乙单位或2名都来自丙单位”这一事件的概率为815+115=35.1.下列4个表格中,可以作为离散型随机变量分布列的一个是( ) A.B.C.D.解析:利用离散型随机变量的分布列的性质检验即可. 答案:C2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是( )A .ξ=4B .ξ=5C .ξ=6D .ξ≤5解析:由条件知“放回5个红球”事件对应的ξ为6. 答案:C3.离散型随机变量X 的概率分布规律为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为( )A.23B.34C.45D.56解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1 ∴a =54. 故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.(2012·福州模拟)一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A.1220B.2755C.27220D.2125解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是( ) A .P (ξ=3) B .P (ξ≥2) C .P (ξ≤3)D .P (ξ=2)解析:由超几何分布知P (ξ=2)=(n -m )A 2mA 3n 答案:D 二、填空题6.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=______. 解析:∵a ,b ,c 成等差数列,∴2b =a +c . 又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23 23三、解答题8.(2012·扬州模拟)口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.解:(1)由P (X =2)=730知C 13C 1n +3×C 1nC 1n +2=730, ∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4 且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为9.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列. 解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13. 3次试验选择了同一套方案且都试验成功的概率 P =P (A 1·A 1·A 1+A 2·A 2·A 2)=⎝⎛⎭⎫133+⎝⎛⎭⎫133=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23), P (X =k )=C k 3⎝⎛⎭⎫133-k ⎝⎛⎭⎫23k,k =0,1,2,3. X 的分布列为10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2, 依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立, 所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16. (2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16, P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512. 所以ξ的分布列为:1.若随机变量X 的分布列如下表,则E (X )等于( )A.118B.19C.209D.920解析:由分布列的性质可得2x +3x +7x +2x +3x +x =1,∴x =118.∴E (X )=0×2x +1×3x+2×7x +3×2x +4×3x +5x =40x =209.答案:C2.(2012·潍坊模拟)设X 为随机变量,X ~B ⎝⎛⎭⎫n ,13,若随机变量X 的数学期望E (X )=2,则P (X =2)等于( )A.1316B.4243C.13243D.80243解析:∵X ~B ⎝⎛⎭⎫n ,13,∴E (X )=n3=2.∴n =6. ∴P (X =2)=C 26⎝⎛⎭⎫132⎝⎛⎭⎫234=80243. 答案:D3.已知随机变量X ~B (6,22),则P (-2≤X ≤5.5)=( )A.78B.18C.6364D.3132解析:依题意,P (-2≤X ≤5.5)=P (X =0,1,2,3,4,5)=1-P (X =6)=1-C 66×(22)6=78. 答案:A4.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧.其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,若随机变量X =|a -b |的取值,则X 的数学期望E (X )=( )A.89B.35C.25D.13解析:对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,X 的可能取值有0,1,2.P (X =0)=6×7126=13,P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=89.答案:A5.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,a 、b 、c ∈(0,1),且无其他得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为( )A.148B.124C.112D.16解析:依题意得3a +2b +0×c =1,∵a >0,b >0,∴3a +2b ≥26ab ,即26ab ≤1,∴ab ≤124.当且仅当3a =2b 即a =25,b =35时等式成立.答案:B 二、填空题6.某射手射击所得环数ξ的分布列如下:已知ξ的期望E (ξ)=8.9,则y 的值为________.解析:依题意得⎩⎪⎨⎪⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎪⎨⎪⎧x +y =0.6,7x +10y =5.4,由此解得y =0.4. 答案:0.47.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量X 表示选出的志愿者中女生的人数,则数学期望E (X )=________(结果用最简分数表示).解析:首先X ∈{0,1,2}.∵P (X =0)=C 25C 27=1021,P (X =1)=C 12C 15C 27=1021,P (X =2)=C 22C 27=121.∴E (X )=0×1021+1×1021+2×121=1221=47.答案:47三、解答题8.某品牌汽车的4S 店,对最近100位采用分期付款的购车者进行了统计,统计结果如下表所示:已知分3期付款的频率为0.2,且4S 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款其利润为1.5万元;分4期或5期付款,其利润为2万元.用η表示经销一辆汽车的利润.(1)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有1位采用分3期付款”的概率P (A );(2)求η的分布列及其数学期望E (η).解:(1)由题意可知“购买该品牌汽车的3位顾客中有1位采用分3期付款”的概率为0.2,所以P (A )=0.83+C 13×0.2×(1-0.2)2=0.896.(2)由a100=0.2得a =20, ∵40+20+a +10+b =100,∴b =10. 记分期付款的期数为ξ,依题意得: P (ξ=1)=40100=0.4,P (ξ=2)=20100=0.2,P (ξ=3)=20100=0.2,P (ξ=4)=10100=0.1,P (ξ=5)=10100=0.1.由题意知η的可能取值为:1,1.5,2(单位:万元). P (η=1)=P (ξ=1)=0.4,P (η=1.5)=P (ξ=2)+P (ξ=3)=0.4; P (η=2)=P (ξ=4)+P (ξ=5)=0.1+0.1=0.2. ∴η的分布列为:∴η的数学期望E (η)=1×0.4+1.5×0.4+2×0.2=1.4(万元).9.(2012·广州调研)某商店储存的50个灯泡中,甲厂生产的灯泡占60%,乙厂生产的灯泡占40%,甲厂生产的灯泡的一等品率是90%,乙厂生产的灯泡的一等品率是80%.(1)若从这50个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这50个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ,求E (ξ)的值.解:(1)法一:设事件A 表示“甲厂生产的灯泡”,事件B 表示“灯泡为一等品”,依题意有P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.法二:该商店储存的50个灯泡中,甲厂生产的灯泡有50×60%=30个,乙厂生产的灯泡有50×40%=20个,其中是甲厂生产的一等品有30×90%=27个,故从这50个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率为2750=0.54.(2)依题意,ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225,∴ξ的分布列为∴E (ξ)=0×2531 225+1×6211 225+2×3511 225=1.08.10.(2012·冀州模拟)今天你低碳了吗?近来,国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量.例如:家居用电的碳排放量(千克)=耗电度数×0.785,汽车的碳排放量(千克)=油耗公升数×0.785等.某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”.这二族人数占各自小区总人数的比例P 数据如下:(1)如果甲、乙来自A 小区,丙、丁来自B 小区,求这4人中恰有2人是低碳族的概率; (2)A 小区经过大力宣传,每周非低碳族中有20%的人加入到低碳族的行列.如果2周后随机地从A 小区中任选25人,记ξ表示25个人中低碳族人数,求E (ξ).解:(1)记这4人中恰好有2人是低碳族为事件A , P (A )=12×12×15×15+4×12×12×45×15+12×12×45×45=33100.(2)设A 小区有a 人,2周后非低碳族的概率P =a ×12×(1-15)2a =825,2周后低碳族的概率P =1-825=1725, 依题意ξ~B (25,1725),所以E (ξ)=25×1725=17.1.二项式6)12(xx -的展开式中的常数项是( ) A .20 B .-20 C .160D .-160解析:二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝⎛⎭⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 答案:D 2.若二项式nxx )2(2+的展开式中所有项的系数之和为243,则展开式中x -4的系数是( )A .80B .40C .20D .10解析:令x =1,则3n =243,解得n =5.二项展开式的通项公式是T r +1=C r 5x5-r ·2r ·x -2r=2r ·C r 5·x 5-3r ,由5-3r =-4,得r =3.故展开式中x -4的系数是23C 35=80.答案:A3.(1-x )8展开式中不含x 4项的系数的和为( ) A .-1 B .0 C .1D .2解析:二项式(1-x )8各项系数和为(1-1)8=0,二项式(1-x )8展开式的通项公式为(-1)r ·C r 8·2rx ,当r =8时,可得x 4项的系数为(-1)8·C 88=1,由此可得二项式(1-x )8展开式中不含x 4项的系数的和为0-1=-1.答案:A4.若nxx )2(+的展开式中的第5项为常数,则n =( ) A .8 B .10 C .12D .15解析:∵T 4+1=C 4n (x )n -4⎝⎛⎭⎫2x 4=C 4n 24122n x -为常数,∴n -122=0,n =12. 答案:C5.若(x +y )9按x 的降幂排列的展开式中,第二项不大于第三项,且x +y =1,xy <0,则x 的取值范围是( )A .(-∞,15)B .[45,+∞)C .(-∞,-45]D .(1,+∞)解析:二项式(x +y )9的展开式的通项是T r +1=C r 9·x 9-r ·y r 依题意有 ⎩⎪⎨⎪⎧C 19·x 9-1·y ≤C 29·x 9-2·y 2,x +y =1,xy <0.由此得⎩⎪⎨⎪⎧x 8·(1-x )-4x 7·(1-x )2≤0x (1-x )<0,由此解得x >1,即x 的取值范围是(1,+∞). 答案:D 二、填空题6.设二项式6)(xa x -(a >0)的展开式中x 3的系数为A ,常数项为B .若B =4A ,则a 的值是________.解析:对于T r +1=C r 6x 6-r 12ra x ⎛⎫- ⎪ ⎪⎝⎭=C r 6(-a )r 362rx -,B =C 46(-a )4,A =C 26(-a )2.∵B =4A ,a >0,∴a =2. 答案:27.(1+x )3(1+1x )3的展开式中1x的系数是________.解析:利用二项式定理得(1+x )3⎝⎛⎭⎫1+1x 3的展开式的各项为C r 3x r ·C n 3x -n =C r 3C n 3x r -n,令r -n =-1,故可得展开式中含1x 项的是C 03·C 13x +C 13·C 23x +C 23·C 33x =15x,即(1+x )3⎝⎛⎭⎫1+1x 3的展开式中1x 的系数是15. 答案:15。
高考复习排列组合与概率试题含答案
一、选择题(每题5分,计60分)1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A )A 、1/15B 、1/120C 、1/90D 、1/302、甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为(C )A 、1/20B 、15/16C 、3/5D 、19/203、一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMATICIAN ”一词的概率为(D )A 、!824B 、!848C 、!1324D 、!1348 4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B )A 、颜色全相同B 、颜色不全相同C 、颜色全不同D 、颜色无红色5、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为(C )A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)36.20XX 年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。
假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是( C )(A ) 0.102 (B ) 0.132(C ) 0.748 (D ) 0.9827.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是( D )(A ) 0.128 (B ) 31(C ) 0.104 (D ) 0.3848. 从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率BA.小B.大C.相等D.大小不能确定9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为( D )()A 1101416C C C ()1101416C C C B + ()1161416C C C C ()1161416C C C D + 10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B )()111A ()91B ()152C ()154D 11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为( D ) ()()()31091014100C A ()101B ()()3109101C ()4100390110C C C D 12.某人有9把钥匙,其中一把是开办公室门的,现随机取一把,取后不放回,则第5次能打开办公室门的概率为( A )()91A ()()()49859159C B ()95C ()5944A A D 二、填空题(每题5分,计20分)13.两名战士在一次射击比赛中,甲得1分,2分,3分的概率分别是0.2,0.3,0.5,乙得1分,2分,3分的概率分别是0.1,0.6,0.3,那么两名战士哪一位得胜的希望较大_____战士甲________.14.有两组问题,其中第一组中有数学题6个,物理题4个;第二组中有数学题4个,物理题6个。
高中数学概率统计排列组合有答案
排列组合一、一、 选择题选择题1.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有名女生的选法共有 ( A )A .36种B .30种C .42种D .60种 2.将5名大学生分配到3个乡镇去任职,每个乡镇至少一名,不同的分配方案有( B )种 .A 240 .B 150 .C 60 .D 1803.甲、乙、丙、丁、戌5人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为(人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为( C )A .72种B .54种C .36种D .24种 4.某班要从6名同学中选出4人参加校运动会的4×100m 接力比赛,其中甲、乙两名运动员必须入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有(入选,而且甲、乙两人中必须有一个人跑最后一棒,则不同的安排方法共有( B )A .24种B .72种C .144种D .360种 5.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是(三位数的个数是( B )A .36 B .48 C .52 D .54 6.某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为(法种数为( C )A .12B .16C .24D .327.(7.(某小组有某小组有4人,负责从周一至周五的班级值日,每天只安排一人,每人至少一天,则安排方法共有C A .480种 B B..300种 C C..240种 D D..120 8.8.从从5男4女中选4位代表,其中至少有2位男生,且至少有1位女生,分别到四个不同的工厂调查,不同的分派方法有12. D A .100种 B B..400种 C C..480种 D D..2400种9、(江苏省启东中学高三综合测试三)有七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙、丙两位学要站在一起,则不同的站法有并且乙、丙两位学要站在一起,则不同的站法有A .240种B .192种C .96种D .48种 答案:B 10、将A、B、C、D四个球放入编号为1,2,3,4的三个盒子中,每个盒子中至少放一个球且A、B两个球不能放在同一盒子中,则不同的放法有且A、B两个球不能放在同一盒子中,则不同的放法有 ( )A.15;A.15; B.18;B.18; C.30;C.30; D.36;D.36; 11、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A 、56个B 、57个C 、58个D 、60个本题主要考查简单的排列及其变形. 解析:万位为3的共计A44=24个均满足;个均满足;万位为2,千位为3,4,5的除去23145外都满足,共3×3×A33A33-1=17个;个; 万位为4,千位为1,2,3的除去43521外都满足,共3×3×A33A33-1=17个;个;以上共计24+17+17=58个 答案:C 12、(北京市东城区2008年高三综合练习二)某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有广告不能连续播放,则不同的播放方式有( ) A .120种 B .48种C .36种D .18种答案:C 13、(北京市宣武区2008年高三综合练习一)编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是(的五个座位,其中有且只有两个的编号与座位号一致的坐法是( ) A 10种 B 20种 C 30种 D 60种 答案:B 14、(北京市宣武区2008年高三综合练习二)从1到10这是个数中,任意选取4个数,其中第二大的数是7的情况共有的情况共有 ( )A 18种 B 30种 C 45种 D 84种 答案:C 15、(福建省莆田一中2007~2008学年上学期期末考试卷)为迎接2008年北京奥运会,某校举行奥运知识竞赛,有6支代表队参赛,每队2名同学,12名参赛同学中有4人获奖,且这4人来自3人不同的代表队,则不同获奖情况种数共有(人不同的代表队,则不同获奖情况种数共有( ) A .412CB .1312121236C C C C CC .12121336C C C CD .221312121136A C C C C C答案:C 16、(甘肃省河西五市2008年高三第一次联考)某次文艺汇演,要将A 、B 、C 、D 、E 、F 这六个不同节目编排成节目单,如下表:节目编排成节目单,如下表:序号序号 1 2 3 4 5 6 节目节目如果A 、B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有号位置,那么节目单上不同的排序方式有 ( )A 192种B 144种C 96种D 72种答案:B 17、(河南省濮阳市2008年高三摸底考试)设有甲、乙、丙三项任务,甲需要2人承担,乙、丙各需要1人承担,现在从10人中选派4人承担这项任务,不同的选派方法共有( ) A .1260种 B .2025种 C .2520种 D .5040种 答案:C 18、若x ∈A 则x 1∈A ,就称A 是伙伴关系集合,集合M={-1,0,31,21,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为(空子集中,具有伙伴关系的集合的个数为( ) A .15 B .16 C .28 D .25答案:A 具有伙伴关系的元素组有-1,1,21、2,31、3共四组,它们中任一组、二组、三组、四组均可组成非空伙伴关系集合,个数为C 14+ C 24+ C 34+ C 44=15, 选A .19、(吉林省吉林市2008届上期末)有5名学生站成一列,要求甲同学必须站在乙同学的后面(可以不相邻),则不同的站法有(,则不同的站法有( )A .120种B .60种C .48种D .150种 答案:B 20、若国际研究小组由来自3个国家的20人组成,其中A 国10人,B 国6人,C 国4人,按分层抽样法从中选10人组成联络小组,则不同的选法有(人组成联络小组,则不同的选法有( )种. )()))且甲车在乙车前开出,那么不同的调度方案有 种.种数是 . 种数是(2)能组成多少个无重复数字的四位偶数?)能组成多少个无重复数字的四位偶数?(3)能组成多少个无重复数字且被25个整除的四位数?个整除的四位数? (4)组成无重复数字的四位数中比4032大的数有多少个?大的数有多少个? 解:(1)1355300A A =(2)31125244156A A A A +=(3)11233421A A A +=(4)312154431112A A A A +++=8、()()34121x x +-展开式中x 的系数为__2_________。
排列组合和概率习题及答案
C 2n k (1/2) 2n独立重复试验。
如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生K 次的概率为P n (K )=C n k P k (1-P) n-k(一夫妇生四孩子,问生2男2女的情况之几率;每次生男女概率相同,1/2,如抛硬币问题(抛四次,2次朝上),即C 42(1/2) 4=3/812、 有5个白色珠子和4个黑色珠子,从中任取3个,问其中至少有一个是黑色的概率。
1- C 53 /C 93 13、 自然数计划S 中所有满足n 100, 问满足n(n+1)(n+2) 被6整除的n 的取值概率?由于3个连续自然数必包括一个偶数及一个可被3整除的数,因此100% 14、 设0为正方形ABCD[ 坐标为(1,1),(1,-1),(-1,1),(-1,-1)]中的一点,求起落在x 2+y 2 1的概率。
面积法。
x 2+y 2=1为一个以原点为圆心,半径为1的圆,面积为л,正方形面积为4,ANSWER: л/415、 A>B (成功的概率)?(1) A 前半部分的成功概率为1%,B 前半部分成功概率为1.4%.(2) A 后半部分的成功概率为10%,B 后半部分成功概率为8.5%.C. P(A)=1%*10% P(B)=1.4%*8.5%16、 集合A 中有100个数,B 中有50个数,并且满足A 中元素于B 中元素关系a+b=10的有20对。
问任意分别从A 和B 中各抽签一个,抽到满足a+b=10的a,b 的概率。
C 201 /C 1001 C 50117、 有两组数,都是『1,2,3,4,5,6』,分别任意取出两个,其中一个比另一个大2的概率?2*4/ C 61 C 61由于注明分别,即分两次取。
18、 从0到9这10个数中任取一个数并且记下它的值,再取一个数也记下它的值。
当两个值的和为8时,出现5的概率是多少?2/9. 总共有{(8,0)(0,8)(1,7)(7,1)(6,2)(2,6)(5,3)(3,5)(4,4)}集合中不能有重复元素。
排列组合概率【含答案】
排列组合概率【含答案】【知识点】
【例题选讲】
例3 采购员要购买10个⼀包的电器元件. 他的采购⽅法是:从⼀包中随机抽查3个, 如这3个元件都是好的,他才买下这⼀包. 假定含有4个次品的包数占 30%,⽽其余包中各含 1个次品. 求采购员拒绝购买的概率。
解记
B B A 1241==={},{},{}
取到的是含个次品的包取到的是含个次品的包采购员拒绝购买
则B B 12,构成样本空间的⼀个正划分,且P B P B ().,()..120307== ⼜由古典概型计算知
103
1)(6
5
1)(310
392310361=-
==
-=C
C B A P C C B A P
从⽽由全概率公式得到
50
23
10310765103)()()()()(2211=
+=
+=B A P B P B A P B P A P 例4 已知甲、⼄两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,⼄箱中仅装有3件合格品,从甲箱中任取3件放⼊⼄箱后,试求从⼄箱中任取⼀件产品是次品的概率。
解设A 表⽰事件 “从⼄箱中任取⼀件产品是次品”, 根据全概率公式, 有
∑====3
)()|()(k k X P k X A P A P
4
1
63626103
6
0333
361323362313363303=
+++=C C C C C C C C C C C C。
排列组合概率练习
排列组合概率练习一、选择题(10×5'=50')1. 8本不同的书分给甲、乙、丙3人,其中有两人各得3本,一人得2本,则不同的分法共有( ) A.560种 B.280种 C.1 680种 D.3 360种2.从不同号码的5双鞋中任取4只,其中恰好有一双的取法种数为( ) A.120 B.240 C.180 D.603.停车场划出一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法有( )A.A 88种B.A 812种C.A 88·C18种D.A 88·C 19种4.设集合M ={a |a ∈N ,1≤a ≤10},A 是M 的三元素子集且至少有两个偶数元素,则如此的集合A 的个数是( )A.60B.100C.120D.1605.某单位有三个科室,为实现减员增效,每科室抽调2人去参加再就业培训,培训后这6人中有2人返回单位,但不回到原科室工作,且每科室至多安排一人,问共有多少种不同的安排方法( ) A.75种 B.42种 C.30种 D.15种6.两个事件对立是这两个事件互斥的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.不充分且不必要条件7.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一次,他们都中靶的概率为 ( )A.53 B. 43 C. 2512 D.2514 8.一学生通过某种英语听力测试的概率为21,他连续测试2次,则恰有1次获得通过的概率为 ( )A. 41B. 31C. 21D. 349.一个小组有8个学生在同年出生,每个学生的生日都不相同的概率是 ( )A. 83658365C C B.3658C. 88365365AD.88365365C10.在正方体8个顶点中任取4个,其中4点恰好能构成三棱锥的概率是 ( ) A.3532 B. 3531C. 3528D. 3529二、填空题(4×3'=12')11.将数字1、2、3、4、5、6、7填入一排编号1、2、3、4、5、6、7的七个方格中,现要适当调换,但每次调换时,恰有四个方格中的数字不变,共有不同的调换方式种数为 .12.在分别标有2、4、6、8、11、12、13的七张卡片中任取两张,用卡片上的两个数组成一个分数,在所得分数中既约分数的概率为 .13.有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,则甲树林恰有3群鸽子的概率为.14.电子设备的某一部件由9个元件组成,其中任何一个元件损坏了,那个部件就不能工作.假定每个元件能使用3 000小时的概率为0.99,则那个部件能工作3 000小时的概率为(结果保留两位有效数字).三、解答题(10'+4×12'=58')15.从7个班中抽出10名学生去做某项工作,每班至少抽出1人,若只考虑各班抽出的人数,而不考虑具体人选,有几种不同抽法?16.已知函数y=f(x)的定义域为A={x|1≤x≤7,x∈N},值域为B={0,1}.(1)试问如此的函数有多少个?(2)使定义域中恰有4个不同元素,对应的函数值差不多上1,如此的函数有多少个?17.一批高梁种子,其发芽率是0.8,现每穴种3粒.问:(1)一穴中有两粒出芽的概率是多少?(2)一穴中小于3粒出芽的概率是多少?18.排队人数0 1 2 3 4 5人以上概率0.1 0.16 0.3 0.3 0.1 0.04求:(1)至多有2个人排队的概率;(2)至少有2人排队的概率.19.一个口袋内装有大小相同的7个白球和3个黑球,从中任意摸出2个,得到1个白球和1个黑球的概率是多少?排列、组合、概率练习120分答案1.C33223538A A C C ••=1 680.2.C 2C 11·C 24+C 25·C 12·C 13=180或C 15·C24·2·2=180.3.D 插空法.空车位插入8辆车的9个空格,故有C 19·A 88.4.A.M 中有5个奇数,5个偶数,至少取2个偶数,∴C 25C 15+C 35C 05=60个.5.B分两类:(1)返回两人来自同一科室,返回有A 22种,故有C 13·A22=6;(2)两人来自不同的科室,返回有2+1=3,故有(C 26C 13)·3=36种.共有42种.6.A 由定义知选A .7.D ∵54×107=2514,∴选D. 8.C ∵21×21+21×21=21,∴选C.9.C 8个学生的生日占用8天,每个学生的生日都有365种可能.10.D 所有4点的组合数为48C ,共面的情形:6个面、6个对角面;三棱锥的4个顶点不共面,故所求概率为48C -1235294844=C C .11.70 从7个方格选出3个方格,有C 37,3个方格的数字重排,但没有一个数字与先前数字相同有2种,故共有C 37·2=70(种).12.2111 从中取一奇数、一偶数组成的分数既约,又11、13互质,∴概率为2722221215A A A C C +=2111. 13.729160 ∵72916032C 6336=•.14. 0.91 因为各元件能否正常工作是相互独立的,因此所求概率P =0.999≈0.91.15.解析一:由于只考虑抽出的人数而不考虑具体人选,同时每班至少一人,因此只需考虑除去每班1人外的剩余3个名额的抽取方法.而三个名额的分组形式为“1,1,1”或“2,1,0”或“3,0,0”.因此可分三类:第一类:若再从7个班中抽出3个班每班1人,有C 37种方法.第二类:若再从7个班中抽出2个班每班分别有2人或1人,有A27种方法.第三类:若再从7个班中抽出1个班,从中抽出3人,有C 17种方法.依照加法原理共有:N=C 37+P 27+C 17=84种方法.解析二:[隔板法]本题相当于将10个名额分成7组(每组至少1个名额)对应7个班.因此,可作如下考虑:10人形成9个相邻空位,欲分成7部分,需用6个“隔板”任意插入9个空位中,不同的插入方法共有:C 69=84(种).点评:本例由于只考虑人数,而不考虑具体人选.即元素之间不可区分,故才可用上述两种方法.16.(1)先对A 中7个元素分为两组有C 17+C27+C37=63种,再将每次分组分别对应0,1有A 22种,故共有63×2=126个如此的函数.(2)从B 中0,1分别在A 中选元素入手,由(1)先有C 47种,第二步由0选只有1种,故共有C 47=35种.17.事件A 恰好发生k 次的概率为kn C P k (1-P )n-k ,事件A 发生偶数次的概率为0n C P 0(1-P )n +2n C P 2(1-P )n -2+ 4n C ·P (1-P )n -4+…+[(1-P )+P ]n=0n C (1-P )n P 0+1n C (1-P )n -1P +2n C ·(1-P )n -2·P 2+3n C (1-P )n -3P 3+… ①[(1-P )+(-P )]n =0n C (1-P )n (-P )n +1n C (1-P )n -1·(-P )+ 2n C (1-P )n -2(-P )2+3n C (1-P )n -3(-P )3+… ②①+②得[(1-P )+P ]n +[(1-P )+(-P )]n =2[0n C (1-P )n P 0+0n C (1-P )n -2·P 2+…]. 因此0n C (1-P )n ·P 0+2n C (1-P )n -2·P 2+…=21[1+(1-2P )n ]. 故事件A 发生偶次的概率为2)21(1nP -+.18.(1)设没有人排除为事件A ,1个人排队为事件B ,2个人排队为事件C ,则P (A )=0.1, P (B )=0.16, P (C )=0.3,依题意A 、B 、C 彼此互斥,因此至多2个人排队的概率为: P (A +B +C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56. (2)设至少2个人排队为事件D ,则D 为至多1个人排队,即D =A +B ,因此 P (D )=1-P (D )=1-P (A +B )=1-[P (A )+P (B )]=1-(0.1+0.16)=0.74.19. 我们想像着给白球编号,因此有白1,白2,白3,白4,白5,白6,白7共7个白球;又想像着给黑球编号,有黑1,黑2,黑3共3个黑球.从这十个不同的球中,任意取出两个球的取法共有12910210⨯⨯=C =45种.每一种取法确实是一个差不多事件.由于这些球大小相同,我们认为取得白1和白2的可能性与取得黑1和黑2的可能性是相等的.这确实是说,这45种取法中,每两种的可能性差不多上相等的.如此就得到一个含有45个差不多事件的等可能差不多事件集.如此来假设等可能性就合乎情理了.取得一个黑球和白球的取法共有多少呢?依照分步计数原理,共有⨯=⨯71317C C 3=21种取法.∴P (摸得一个白球和一个黑球)=1574521=.。
排列组合与概率含习题答案
2014高三暑期保送复习《排列组合与概率》专题第一讲 排列组合与二项式定理【基础梳理】 1.排列(1)排列的概念:从n 个不同元素中,任取m (m ≤n )个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(2)排列数的定义:从n 个不同元素中,任取m (m ≤n )个元素的所有排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示. (3)排列数公式 A mn =(4)全排列数公式 A nn =(叫做n 的阶乘). 2.组合(1)组合的定义:一般地,从n 个不同元素中取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号C mn 表示. (3)组合数公式C m n =(n ,m ∈N *,且m ≤n ).特别地C 0n =1. (4)组合数的性质:①C m n =C n -m n ;②C m n +1=C m n +C m -1n . 3.二项式定理 (1)(a +b )n=C 0n a n+C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n的其中的系数C rn (r =0,1,…,n )叫. 式中的C r n an -r b r叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n a n -r b r. (2).二项展开式形式上的特点 ①项数为.②各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为.③字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增直到n .(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C nn . (3).二项式系数的性质①对称性:与首末两端“等距离”的两个二项式系数即②增减性与最大值: 二项式系数C kn ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项取得最大值; 当n 是奇数时,中间两项取得最大值.③各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=.【基础自测】1.8名运动员参加男子100米的决赛.已知运动场有从内到外编号依次为1,2,3,4,5,6,7,8的八条跑道,若指定的3名运动员所在的跑道编号必须是三个连续数字(如:4,5,6),则参加比赛的这8名运动员安排跑道的方式共有( ). A .360种 B .4 320种 C .720种D .2 160种2.以一个正五棱柱的顶点为顶点的四面体共有( ). A .200个 B .190个 C .185个 D .180个3.(2010·山东)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ). A .36种 B .42种 C .48种 D .54种4.如图,将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有( ).A .6种B .12种C .24种D .48种 5.某工程队有6项工程需要先后单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,又工程丁必须在工程丙完成后立即进行,那么安排这6项工程的不同排法种数是________(用数字作答).6.(2011·福建)(1+2x )5的展开式中,x 2的系数等于( ). A .80 B .40 C .20 D .107.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( ). A .45 B .55 C .70 D .808.(人教A 版教材习题改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ).A.9 B.8 C.7 D.69.(2011·重庆)(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=().A.6 B.7 C.8 D.9【例题分析】考向一排列问题【例1】►六个人按下列要求站成一排,分别有多少种不同的站法?(1)甲不站在两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间恰有两人;(5)甲不站在左端,乙不站在右端;(6)甲、乙、丙三人顺序已定.【巩固练习1】用0,1,2,3,4,5六个数字排成没有重复数字的6位数,分别有多少个?(1)0不在个位;(2)1与2相邻;(3)1与2不相邻;(4)0与1之间恰有两个数;(5)1不在个位;(6)偶数数字从左向右从小到大排列.考向二组合问题【例2】►某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?【巩固练习2】甲、乙两人从4门课程中各选修2门,(1)甲、乙所选的课程中恰有1门相同的选法有多少种?(2)甲、乙所选的课程中至少有一门不相同的选法有多少种?考向三排列、组合的综合应用【例3】►(1)7个相同的小球,任意放入4个不同的盒子中,试问:每个盒子都不空的放法共有多少种?(2)计算x +y +z =6的正整数解有多少组; (3)计算x +y +z =6的非负整数解有多少组.【巩固练习3】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式? (1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本; (3)分成每组都是2本的三组; (4)分给甲、乙、丙三人,每人2本.【巩固练习4】► 有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有多少种?【巩固练习5】 在10名演员中,5人能歌,8人善舞,从中选出5人,使这5人能演出一个由1人独唱4人伴舞的节目,共有几种选法?考向四 二项展开式中的特定项或特定项的系数【例4】►已知在⎝ ⎛⎭⎪⎪⎫3x -33x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.【训练6】(2011·山东)若⎝⎛⎭⎫x -a x 26展开式的常数项为60,则常数a 的值为________.考向五 二项式定理中的赋值【例7】►二项式(2x -3y )9的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和.【训练7】 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.考向六 二项式的和与积【例8】►(1+2x )3(1-x )4展开式中x 项的系数为________.【训练8】(2011·广东)x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________(用数字作答).【巩固作业】一、选择题11 .(2013年普通高等学校招生统一考试山东数学(理)试题)用0,1,,9十个数字,可以组成有重复数字的三位数的个数为 ( ) A .243 B .252 C .261 D .279 22 .(2013年普通高等学校招生统一考试福建数学(理)试题)满足{},1,0,1,2a b ∈-,且关于x 的方程220ax x b ++=有实数解的有序数对(,)a b 的个数为( )A .14B .13C .12D .1033.(2013年普通高等学校招生统一考试辽宁数学(理)试题)使得()3nx n N n+⎛∈⎝的展开式中含有常数项的最小的为()A.4B.5C.6D.744.(2013年高考四川卷(理))从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b,共可得到lg lga b-的不同值的个数是()A.9B.10C.18D.2055 .(2013年高考陕西卷(理))设函数61,.,()x xf x xx⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩, 则当x>0时, [()]f f x表达式的展开式中常数项为()A.-20 B.20 C.-15 D.1566.(2013年高考江西卷(理))(x2-32x)5展开式中的常数项为()A.80 B.-80 C.40 D.-40二、填空题77.(2013年上海市春季高考数学试卷()36的所有正约数之和可按如下方法得到:因为2236=23⨯,所以36的所有正约数之和为22222222(133)(22323)(22323)(122)133)91++++⨯+⨯++⨯+⨯=++++=(参照上述方法,可求得2000的所有正约数之和为________________________88.(2013年高考四川卷(理))二项式5()x y+的展开式中,含23x y的项的系数是_________.(用数字作答)99.(2013年上海市春季高考数学试卷()从4名男同学和6名女同学中随机选取3人参加某社团活动,选出的3人中男女同学都有的概率为________(结果用数值表示).1010.(2013年普通高等学校招生统一考试浙江数学(理)试题)将FEDCBA,,,,,六个字母排成一排,且BA,均在C的同侧,则不同的排法共有________种(用数字作答)1111.(2013年普通高等学校招生统一考试重庆数学(理)试题)从3名骨科.4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科.脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答)1212.(2013年普通高等学校招生统一考试天津数学(理)试题)6x⎛⎝的二项展开式中的常数项为______.第二讲离散型随机变量和其分布列【知识梳理】1.离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y等表示.(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. (3)分布列设离散型随机变量X 可能取得值为x 1,x 2,…,x i ,…x n ,X 取每一个值x i (i =1,2,…,n )的概率为P (X =x i )=p i ,则称表为随机变量X 的概率分布列,简称(4)分布列的两个性质①p i ≥0,i =1,2,…,n ;②p 1+p 2+…+p n =_1_. 2.两点分布如果随机变量X 的分布列为其中0<p <1,q =1-p ,则称离散型随机变量X 3.超几何分布列在含有M 件次品数的N 件产品中,任取n 件,其中含有X 件次品数,则事件{X =k }发生的概率为:P (X =k )=C k M C n -kN -MC n N (k=0,1,2,…,m ),其中m =min{M ,n },且n ≤N ,M ≤N ,n 、M 、N ∈N *,则称分布列为超几何分布列. 【基础自测】1.抛掷均匀硬币一次,随机变量为( ). A .出现正面的次数 B .出现正面或反面的次数 C .掷硬币的次数 D .出现正、反面次数之和2.如果X 是一个离散型随机变量,那么下列命题中假命题是( ). A .X 取每个可能值的概率是非负实数 B .X 取所有可能值的概率之和为1C .X 取某2个可能值的概率等于分别取其中每个值的概率之和D .X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和3.已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于()A.316 B.14 C.116 D.5164.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ).A .25B .10C .7D .65.设某运动员投篮投中的概率为P =0.3,则一次投篮时投中次数的分布列是________.考点一 由统计数据求离散型随机变量的分布列【例1】►(2011·北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学 (1)求这两名同学的植树总棵数y 的分布列;(2)每植一棵树可获10元,求这两名同学获得钱数的数学期望.【练习1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果:则该公司一年后可获收益的分布列是________. 考点二 由古典概型求离散型随机变量的分布列【例2】►袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用X 表示取球终止时所需要的取球次数. (1)求袋中原有白球的个数;(2)求随机变量X 的分布列;(3)求甲取到白球的概率.【练习2】 (2011·江西)某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力. (1)求X 的分布列;(2)求此员工月工资的期望.投资成功 投资失败 192次8次考点三 由独立事件同时发生的概率求离散型随机变量的分布列【例3】►(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.【练习3】 某地有A 、B 、C 、D 四人先后感染了甲型H 1N 1流感,其中只有A 到过疫区.B 肯定是受A 感染的.对于C ,因为难以断定他是受A 还是受B 感染的,于是假定他受A 和受B 感染的概率都是12.同样也假定D 受A 、B 和C 感染的概率都是13.在这种假定之下,B 、C 、D 中直接受A 感染的人数X 就是一个随机变量.写出X 的分布列(不要求写出计算过程),并求X 的均值(即数学期望).【练习4】►(本题满分12分)在一个盒子中,放有标号分别为1,2,3的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为x 、y ,记ξ=|x -2|+|y -x |. (1)求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率; (2)求随机变量ξ的分布列.【练习5】 某射手进行射击练习,假设每次射击击中目标的概率为35,且各次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答); (3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列. 【巩固作业】1、如果X 是一个离散型随机变量,则假命题是( )A.X 取每一个可能值的概率都是非负数;B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( )A .①;B .②;C .③;D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 1316a A .12 B .16 C .13 D .144、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )A .1;B .12; C .13; D .145.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量; ②在一段时间内,某侯车室内侯车的旅客人数是随机变量; ③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( D )A.1 B.2 C.3 D.46、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的9.(2007年湖北卷第1题) 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.1010.(2007年湖北卷第9题)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C.127D.6511.(2007年北京卷第5题)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一行,2位老人相邻但不排在两端,不同的排法共有A .1440种 B.960种 C .720种 D.480种12.(2007年全国卷Ⅱ第10题) 从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种 (C) 100种 (D) 120种13 、下列表中能成为随机变量X 的分布列的是(把全部正确的答案序号填上)()2,1,2,3,,21n P X k k n ===-14、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为 15、一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为16.(2007年重庆卷第4题)若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____18、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以和ξ取每一值时的概率.19.(2007年重庆卷第6题) 从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率20.(2007年辽宁卷) 一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.22.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.X -10 1 p 0.3 0.4 0.4X 1 2 3 p 0.4 0.7 -0.1 X 5 0 -5 p 0.3 0.6 0.1 ()1,2,3,4,5,P X k k k === ④ ⑤高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、D6、C7、D8、C9、B 10、C 11、B 12、B 二、填空题: 13、 ③④ 14、13579,1,,2,,3,,4,,52222215、 3,4,5 16、 20三、解答题:17、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 18、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种). 所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X2 4 8 16 ...n 2 ... P21 41 81 161 ... n 21 ...∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为:X 1 2 P3414第三讲 随机变量的数字特征【基础梳理】 1.条件概率和其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )= (2)条件概率具有的性质: ①0≤P (B |A )≤1;② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称 (2)若A 与B 相互独立,则P (B |A )=,P (AB )=(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则 3.独立重复试验与二项分布 (1)独立重复试验独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是的. (2)二项分布在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率.4.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为三种分布(1)若X 服从两点分布,则E(X)=p ,D(X)=p(1-p); (2)X ~B(n ,p),则E(X)=np ,D(X)=np(1-p); (3)若X 服从超几何分布, 则E(X)=n MN .期望和方差性质 (1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2(4)D (aX +b )=a 2·D (X ) 【基础自测】1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65C. 2 D .2 2.(2010·湖北)某射手射击所得环数ξ的分布列如下:(1)均值 称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值 或 ,它反映了离散型随机变量取值的 . (2)方差 称D (X )=∑i =1n [x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均 ,其算术平方根D (X )为随机变量X 的标准差.已知ξ的期望E (ξ)=8.9,则y 的值为A .0.4 B .0.6 C .0.7 D .0.9 3.(2010·上海)随机变量ξ的概率分布列由下表给出:该随机变量ξ的均值是________.4.小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是( ).A.49B.29C.427D.2275.如果X ~B ⎝ ⎛⎭⎪⎫15,14,则使P (X =k )取最大值的k 值为( ).A .3B .4C .5D .3或46.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ). A.12 B.14 C.16 D.18 考点一 离散型随机变量的均值和方差【例1】►A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:Y (1)求X ,Y 的分布列;(2)求E (X ),E (Y ).【练习1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列和数学期望E (ξ).考点二 均值与方差性质的应用【例2】►设随机变量X 具有分布P (X =k )=15,k =1,2,3,4,5,求E (X +2)2,D (2X -1),DX -1.【练习2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号. (1)求X 的分布列、期望和方差;(2)若η=aX +b ,E (η)=1,D (η)=11,试求a ,b 的值.考点三 均值与方差的实际应用【例3】►(2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准.(1)已知甲厂产品的等级系数X 1的概率分布列如下所示: 且X 1的数学期望E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望.(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.X 1 5 6 7 8 P0.4a b0.1注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.【练习3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X 表示投资收益(收益=回收资金-投资资金),求X 的概率分布和E (X ); (2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.考点四 条件概率【例4】►(2011·辽宁)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12【练习4】 (2011·湖南高考)如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则 (1)P (A )=________;(2)P (B |A )=________.考点五 独立事件的概率【例5】►(2011·全国)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率; (2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【练习5】 (2011·山东)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B ,丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立. (1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).考点六 独立重复试验与二项分布【例6】►一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.(1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.【练习6】 某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响. (1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.【巩固作业】1.已知X 的分布列为。
高中数学总复习——专题 排列组合与统计概率(附带答案及详细解析)
高中数学总复习——专题 排列与统计概率数学考试姓名:__________ 班级:__________考号:__________一、单选题 1.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是 ( )A. ①B. ②④C. ③D. ①③ 2.学校为了解学生在课外读物方面的支出情况,抽取了n 位同学进行调查,结果显示这些同学的支出都在 [10,50] ,(单位:元)之间,其频率分布直方图如图所示,其中支出在 [10,30) (单位:元)内的同学有33人,则支出在 [40,50] (单位:元)内的同学人数为( )A. 100B. 120C. 30D. 300 3.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A. 1−π4B. 1−π8C. π4D. π84.已知随机变量X 的分布列如下:若随机变量Y 满足 Y =3X −1 ,则Y 的方差 D(Y)= ( )A. 1B. 2C. 3D. 9 5.(1−x 3)(1−x)10的展开式中,x 5的系数是( )A. -297B. -252C. 297D. 207 6.盒子中有若干个红球和黄球,已知从盒中取出2个球都是红球的概率为 328 ,从盒中取出2个球都是黄球的概率是 514 ,则从盒中任意取出2个球恰好是同一颜色的概率是( ) A. 1328 B. 57 C. 1528 D. 377.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角 α=π6 ,现在向大正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )A. B. C. D.8.若干个人站成一排,其中为互斥事件的是( ) A. “甲站排头”与“乙站排头” B. “甲站排头”与“乙不站排尾” C. “甲站排头”与“乙站排尾” D. “甲不站排头”与“乙不站排尾”9.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从 1~160 编号,若第1组抽出的号码为6,则第6组中抽取的号码是( ) A. 66 B. 56 C. 46 D. 12610.已知随机变量服从正态分布N (0,σ2),且P (﹣2≤ξ≤0)=0.4,则P (ξ>2)=( ) A. 0.1 B. 0.2 C. 0.4 D. 0.611.从某高中随机选取5名高三男生,其身高和体重的数据如表所示:根据上表可得回归直线方程y ∧=0.56x+a ∧, 据此模型预报身高为172cm 的高三男生的体重为( )A. 70.09 kgB. 70.12 kgC. 70.55 kgD. 71.05 kg 12.样本4,2,1,0,-2的标准差是:( )A. 1B. 2C. 4D. 2√5 13.某校通过随机询问100名性别不同的学生是否能做到“光盘”行动,得到所示联表:附:K 2=n (n 11n 22−n 12n 21)2n 1+n 2+n 1+n 2, 则下列结论正确的是( )A. 在犯错误的概率不超过1%的前提下,认为“该校学生能否做到‘光盘’与性别无关”B. 有99%以上的把握认为“该校学生能否做到‘光盘’与性别有关”C. 在犯错误的概率不超过10%的前提下,认为“该校学生能否做到‘光盘’与性别有关”D. 有90%以上的把握认为“该校学生能否做到‘光盘’与性别无关”14.已知X 是离散型随机变量,P (X=1)=23 , P (X=a )=13 , E (X )=43 , 则D (2X ﹣1)等于( )A. 89 B. −19 C. 43 D. 1315.A 、B 两位同学各有3张卡片,现以投掷硬币的形式进行游戏.当硬币正面向上时,A 赢得B 一张卡片,否则B 赢得A 一张卡片,如果某人已赢得所有卡片,则游戏终止,那么恰好掷完5次硬币时游戏终止的概率为( )A. 116B. 18C. 332D. 316 16.设随机变量X 的概率分布如右下,则P (X≥0)=( ) 23A. 16 B. 13 C. 12 D. 56 17.(1+x )10的二项展开式中的一项是( )A. 45xB. 90x 2C. 120x 3D. 252x 4二、填空题18.从 {1,2,3,4,5,6} 中随机选一个数 a ,从 {1,2,3} 中随机选一个数 b ,则 a <b 的概率等于________.19.一组样本数据的频率分布直方图如图所示,试估计此样本数据的中位数为________.20.某公司对一批产品的质量进行检测,现采用系统抽样的方法从100件产品中抽取5件进行检测,对这100件产品随机编号后分成5组,第一组 1~20 号,第二组 21~40 号,…,第五组 81~100 号,若在第二组中抽取的编号为24,则在第四组中抽取的编号为________. 21.国家气象局统计某市2016年各月的平均气温(单位:C )数据的茎叶图所示,则这组数据的中位数是________.22.若(x−1ax )6的二项展开式中常数项为−52,则常数a的值是________.23.掷一枚骰子,出现的点数X是一随机变量,则P(X>5)的值为________.24.已知样本数据a1,a2,a3,a4,a5的方差s2=15(a12+a22+a32+a42+a52−20),则样本数据2a1+1,2a2+1,2a3+1,2a4+1,2a5+1的平均数为________.25.有3个兴趣小组,甲、乙两位同学各自选择其中一个参加,且每位同学参加各个兴趣小组的可能性相同,则这两位同学参加了不同的兴趣小组的概率为________26.在(x−2√x)5的展开式中,x2的系数为________27.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.28.西部五省,有五种颜色供选择涂色,要求每省涂一色,相邻省不同色,有________种涂色方法.29.若(√a−1)6的展开式中的第5项等于152,则limn→∞(a+a2+⋯+a n)的值为________.30.分别从集合A={1,2,3,4}和集合B={5,6,7,8}中各取一个数,则这两数之积为偶数的概率是________31.2020年初,我国突发新冠肺炎疫情.面对“突发灾难”,举国上下心,继解放军医疗队于除夕夜飞抵武汉,各省医疗队也陆续增援,纷纷投身疫情防控与病人救治之中.为分担“逆行者”的后顾之忧,某大学学生志愿者团队开展“爱心辅学”活动,为抗疫前线工作者子女在线辅导功课.现随机安排甲、乙、丙3名志愿者为某学生辅导数学、物理、化学、生物4门学科,每名志愿者至少辅导1门学科,每门学科由1名志愿者辅导,则数学学科恰好由甲辅导的概率为________.32.有3女2男共5名志愿者要全部分到3个社区去参加志愿服务,每个社区1到2人,甲、乙两名女志愿者需到同一社区,男志愿者到不同社区,则不同的分法种数为________.33.两所学校分别有2名,3名学生获奖,这5名学生要排成一排合影,则存在同校学生排在一起的概率为________.34.若(1+x+x2)6=a0+a1x+a2x2+…+a12x12,则a2+a4+…+a12=________三、解答题35.某校书法兴趣组有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6名同学中随机选出2人参加书法比赛(每人被选到的可能性相同).(I)用表中字母列举出所有可能的结果;(II)设M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.36.2020年4月21日,习近平总书记到安康市平利县老县镇考察调研,在镇中心小学的课堂上向孩子们发出了“文明其精神,野蛮其体魄”的期许某市教育部门为了了解全市01中学生疫情期间居家体育锻炼的情况,从全市随机抽1000名中学生进行调查,统计他们每周参加体育锻炼的时长,右图是根据调查结果绘制的频率分布直方图.(1)已知样本中每周体育锻炼时长不足4小时的体育锻炼的中学生有100人,求直方图中a,b的值;(2)为了更具体地了解全市中学生疫情期间的体育锻炼情况,利用分层抽样的方法从[10,12)和[12,14]两组中共抽取了6名中学生参加线上座谈会,现从上述6名学生中随机抽取2名在会上进行体育锻炼视频展示,求这2名学生来自不同组的概率.37.近年来,在新高考改革中,打破文理分科的“3+3”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定A省规定:选考科目按考生成绩从高到低排列,按照占总体15%、35%、35%、15%分别赋分70分、60分、50分、40分,为了让学生们体验“赋分制”计算成绩的方法,A省某高中高一(1)班(共40人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分100分)频率分布直方图,化学成绩(满分100分)茎叶图如图所示,小明同学在这次考试中物理82分,化学70多分.(1)采用赋分制后,求小明物理成绩的最后得分;(2)若小明的化学成绩最后得分为60分,求小明的原始成绩的可能值;(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.38.已知一个科研小组有4位男组员和2位女组员,其中一位男组员和一位女组员不会英语,其他组员都会英语,现在要用抽签的方法从中选出两名组员组成一个科研攻关小组.(Ⅰ)求组成攻关小组的成员是同性的概率;(Ⅱ)求组成攻关小组的成员中有会英语的概率;(Ⅲ)求组成攻关小组的成员中有会英语并且是异性的概率.39.衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:下面临界值表:K2=n(ad−bc)2,n=a+b+c+d(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?40.根据国家统计局数据,1999年至2019年我国进出口贸易总额从3万亿元跃升至31.6万亿元,中国在国际市场上的贸易份额越来越大对外贸易在国民经济中的作用日益突出.将年份1999,2004,2009,2014,2019分别用1,2,3,4,5代替,并表示为t,y表示全国进出口贸易总额.参考数据:① 0.142+0.342+0.662+1.862+2.042=8.192 ② 0.142+0.342+1.862+2.042+2.142=12.336 ③ 8.192555.792≈0.0147 ④ 12.336555.792≈0.0222参考公式:线性回归方程中的斜率和截距的最小二乘法估计公式分别为: b̂=∑(x i −x̅)(y i −y ̅)ni=1∑(x i −x̅)2n i=1 , a ̂=y ̅−b̂x̅ ,相关指数 R 2=1−∑(y i −y ̂i )2ni=1∑(y i −y ̅)2ni=1 .(1)根据以上统计数据及图表,给出了下列两个方案,请解决方案1中的问题. 方案1:用 y ̂=bt +a 作为全国进出口贸易总额 y 关于 t 的回归方程,根据以下参考数据,求出 y 关于 t 的回归方程,并求相关指数 R 12 . 方案2:用 y ̂=ce dt 作为全国进出口贸易总额 y 关于 t 的回归方程,求得回归方程 ŷ=2.3259e 0.5721x ,相关指数 R 22 . (2)通过对比(1)中两个方案的相关指数,你认为哪个方案中的回归方程更合适,并利用此回归方程预测2020年全国进出口贸易总额.41.2020年1月10日,引发新冠肺炎疫情的 COVID −9 病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为1,假设每次接种后当天是否出现抗体与上次接种无关.2(1)求一个接种周期内出现抗体次数K的分布列;(2)已知每天接种一次花费100元,现有以下两种试验方案:①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X元;②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为Y元.本着节约成本的原则,选择哪种实验方案.42.参与舒城中学数学选修课的同学对某公司的一种产品销量与价格进行了统计,得到如下数据和散点图.参考数据: ∑i=16(x i -x ¯)·(y i -y ¯)=-34580,∑i =16(x i -x̅)·(z i -z̅)=-175.5,∑i=16(y i -y̅)2 , =776840,∑i=16(y i -y̅)·(z i -z̅)=3465.2 . (1)根据散点图判断y 与x,z 与x 哪一对具有较强的线性相关性(给出判断即可,不必说明理由)? (2)根据(1)的判断结果及数据,建立y 关于x 的回归方程(方程中的系数均保留两位有效数字). (3)当定价为150元/千克时,试估计年销量.附:对于一组数据(x 1,y 1),(x 2,y 2),(x 3,y 3),…,(x n ,y n ),其回归直线 y ^=b^x+ a ^ 的斜率和截距的最 小二乘估计分别为 b ^=∑i=1n(x i -x ¯)⋅(y i -y ¯)∑i=1n(x i -x̅)2=∑i=1nx i ⋅y i -n⋅x̅⋅y̅∑i=1nx i 2-n⋅x̅2,a ^=y ̅-b ^x̅43.某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取120人,统计他们平均每天在家的时间(在家时间在4小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)参考公式: K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d) ,其中n=a+b+c+d . 参考数据:(1)请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否具有‘宅’属性与性别有关?”(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个6人的样本,其中男生和女生各多少人?从6人中随机选取3人做进一步的调查,求选取的3人至少有1名女生的概率.44.某商超为庆祝店庆十周年,准备举办一次有奖促销活动,若顾客一次消费达到400元,则可参加一次抽奖活动,主办方设计了两种抽奖方案∶方案①∶一个不透明的盘子中装有12个质地均匀且大小相同的小球,其中3个红球,9个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案②∶一个不透明的盒子中装有12个质地均匀且大小相同的小球,其中3个红球,9个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得100元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3(1)现有一位顾客消费了420元,获得一次抽奖机会,试求这位顾客获得180元返金券的概率;(2)如果某顾客获得一次抽奖机会.那么他选择哪种方案更划算.45.从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x̅和样本方差s2(同一组数据用该区间的中点值作代表);(2)由频率分布直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,δ2),其中μ近似为样本平均数x̅,δ2近似为样本方差s2.(i)利用该正态分布,求P(187.8<Z<212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用(i)的结果,求E(X).附:√150≈12.2.若Z∼N(μ,δ2),则P(μ−δ<Z<μ+δ)=0.6826,P(μ−2δ<Z<μ+2δ)=0.9544.46.某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(Ⅰ)利用上表提供的样本数据估计该批产品的一等品率;(Ⅱ)在该样品的一等品中,随机抽取2件产品,(i)用产品编号列出所有可能的结果;(ii)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.47.用0,1,2,3,4,5这六个数字:(1)可组成多少个无重复数字的自然数?(2)可组成多少个无重复数字的四位偶数?48.为了搞好某运动会的接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.附:K2=n(ad−bc)2.(a+b)(c+d)(a+c)(b+d)(1)根据以上数据完成以下2×2列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?(3)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?49.为了参加某数学竞赛,某高级中学对高二年级理科、文科两个数学兴趣小组的同学进行了赛前模拟测试,成绩(单位:分)记录如下.理科:79,81,81,79,94,92,85,89文科:94,80,90,81,73,84,90,80(1)画出理科、文科两组同学成绩的茎叶图;(2)计算理科、文科两组同学成绩的平均数和方差,并从统计学的角度分析,哪组同学在此次模拟测试中发挥比较好;(参考公式:样本数据x1,x2,…,x n的方差:S2=1[(x1−x̅)2+(x2−x̅)2+⋯+(x n−x̅)2],其中x̅为样本平均数)n(3)若在成绩不低于90分的同学中随机抽出3人进行培训,求抽出的3人中既有理科组同学又有文科组同学的概率.50.盒中有标号分别为0,1,2,3的球各一个,这些球除标号外均相同.从盒中依次摸取两个球(每次一球,摸出后不放回),记为一次游戏.规定:摸出的两个球上的标号之和等于5为一等奖,等于4为二等奖,等于其它为三等奖.(1)求完成一次游戏获三等奖的概率;(2)记完成一次游戏获奖的等级为ξ,求随机变量ξ的分布列和数学期望.答案解析部分一、单选题1.【答案】C【考点】互斥事件与对立事件【解析】【解答】解:根据对立事件的定义,只有③中两事件符合定义.故答案为:C.【分析】由对立事件的定义直接求得答案。
排列组合与概率公考例题
排列组合与概率公考例题
排列组合与概率是公考中常见的数学问题,下面提供一些相关的例题。
1.概率问题
题目:在某项测试中,测试结果为甲、乙、丙、丁、戊五个等级。
已知甲级和乙级均占30%,丙级占25%,丁级占20%,戊级占5%。
如果得分在75分以上(含75分)则评为甲级,那么随机抽取一人,其测试结果被评为甲级的概率是多少?
答案:0.3
解析:根据题目条件,甲级和乙级均占30%,即60%的得分在75分以上或75分以下。
因此,甲级的概率为30% / 60% = 0.5。
所以,随机抽取一人,其测试结果被评为甲级的概率是0.5,或者简单说,概率为0.3。
2.排列组合问题
题目:现有8名学生分配到3个不同的岗位进行工作,其中每个岗位至少有1名学生,则不同的分配方式共有_______ 种.
答案:105
解析:根据题意,可以分为两种情况进行讨论:第一种,3、2、3分配,有C83×C52×C32×A33=1680种;第二种,4、2、2分配,有A22 C84×C42×C32×C22×A33=105种,共有1680+105=1785种,故答案为:1785.。
初三数学概率与排列组合练习题及答案20题
初三数学概率与排列组合练习题及答案20题1、某班级有24名学生,其中12人喜欢音乐,15人喜欢篮球。
有4人既喜欢音乐又喜欢篮球。
某学生只有喜欢音乐或者喜欢篮球。
请问该班级有多少名学生既不喜欢音乐也不喜欢篮球?解答:根据题意,喜欢音乐的学生数量为12,喜欢篮球的学生数量为15,既喜欢音乐又喜欢篮球的学生数量为4。
根据集合的性质可知,喜欢音乐或者喜欢篮球的学生数量应为喜欢音乐的学生数量加上喜欢篮球的学生数量,再减去既喜欢音乐又喜欢篮球的学生数量。
即 12 + 15 - 4 = 23。
所以,该班级共有23名学生既不喜欢音乐也不喜欢篮球。
2、小明有6只不同颜色的球,他想把这些球放入4个不同的盒子中。
每个盒子至少放一个球。
问他有多少种不同的放置方法?解答:首先,我们需要找到小明将6个球分配到4个盒子中的所有可能性。
假设每个盒子中放了a、b、c、d个球,根据题意可知,a、b、c、d都是大于等于1的正整数,并且a + b + c + d = 6。
我们可以使用组合数学中的排列组合方法来解答这个问题。
首先,将6个球放到4个盒子中,相当于在6个位置中插入3个分隔符,将这6个位置分为4个区域。
例如,位置间隔和分隔符的排列可以表示为:OO|OOO|O|。
根据排列组合的知识,将3个相同的分隔符插入6个位置中的所有不同方法数为 C(6, 3) = 20。
所以,小明有20种不同的放置方法。
3、在一副标准扑克牌中,从中随机抽取3张牌。
请问有多少种可能的抽牌结果?解答:一副标准扑克牌共有52张牌,我们需要从中抽取3张牌,而每张牌的选取都是独立的,所以我们可以使用排列组合的方法计算总的可能性。
根据组合数学的知识,从n个元素中选取m个元素的组合数可以表示为 C(n, m) = n! / (m! * (n - m)!)。
所以,从52张牌中选取3张牌的组合数为 C(52, 3) = 22,100。
因此,有22,100种可能的抽牌结果。
4、一枚硬币抛掷8次,问出现正面的次数为奇数的概率是多少?解答:一枚硬币抛掷8次,每次抛掷都有两种可能的结果:正面或反面。
数学竞赛组合试题及答案
数学竞赛组合试题及答案试题一:排列组合问题题目:某班级有30名学生,需要选出5名代表参加校际数学竞赛。
如果不考虑性别和成绩,仅考虑组合方式,问有多少种不同的选法?答案:这是一个组合问题,可以用组合公式C(n, k) = n! / (k! *(n-k)!)来计算,其中n为总人数,k为选出的人数。
将数值代入公式,得到C(30, 5) = 30! / (5! * 25!) = 142506。
试题二:概率问题题目:一个袋子里有10个红球和20个蓝球,随机抽取3个球,求至少有1个红球的概率。
答案:首先计算没有红球的概率,即抽到3个蓝球的概率。
用组合公式计算,P(3蓝) = C(20, 3) / (C(30, 3)) = (20! / (3! * 17!)) / (30! / (3! * 27!))。
然后,用1减去这个概率得到至少有1个红球的概率,P(至少1红) = 1 - P(3蓝)。
试题三:几何问题题目:在一个半径为10的圆内,随机选择两个点,连接这两点形成弦。
求这条弦的长度小于8的概率。
答案:首先,弦的长度小于8意味着弦所对的圆心角小于某个特定角度。
通过几何关系和圆的性质,可以计算出这个特定角度。
然后,利用面积比来计算概率。
圆的面积为πr²,而弦所对的扇形面积可以通过角度来计算。
最后,将扇形面积除以圆的面积得到概率。
试题四:数列问题题目:给定一个等差数列,其首项为3,公差为2,求前10项的和。
答案:等差数列的前n项和公式为S_n = n/2 * (2a + (n-1)d),其中a为首项,d为公差,n为项数。
将数值代入公式,得到S_10 = 10/2* (2*3 + (10-1)*2) = 10 * 13 = 130。
试题五:逻辑推理问题题目:有5个盒子,每个盒子里都有不同数量的球,分别是1个,2个,3个,4个和5个。
现在有5个人,每个人随机选择一个盒子,每个人只能拿一个盒子。
问至少有一个人拿到的盒子里球的数量与他选择的顺序号相同的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合与概率
一、选择题(每题5分,计60分)
1、书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为(A )
A 、1/15
B 、1/120
C 、1/90
D 、1/30
2、甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为(C )
A 、1/20
B 、15/16
C 、3/5
D 、19/20
3、一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMATICIAN ”一词的概率为(D )
A 、!824
B 、!848
C 、!1324
D 、!
1348 4、袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是(B )
A 、颜色全相同
B 、颜色不全相同
C 、颜色全不同
D 、颜色无红色
5、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为(C )
A 、P 3
B 、(1—P)3
C 、1—P 3
D 、1—(1-P)3
6.2004年7月7日,甲地下雨的概率是0.15,乙地下雨的概率是0.12。
假定在这天两地是否下雨相互之间没有影响,那么甲、乙都不下雨的概率是( C )
(A ) 0.102 (B ) 0.132
(C ) 0.748 (D ) 0.982
7.电灯泡使用时数在1000小时以上的概率为0.8,则3个灯泡在使用1000小时后坏了1个的概率是( D )
(A ) 0.128 (B ) 31
(C ) 0.104 (D ) 0.384
8. 从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率B
A.小
B.大
C.相等
D.大小不能确定
9.16支球队,其中6支欧洲队、4支美洲队、3支亚洲队、3支非洲队,从中任抽一队为欧洲队或美洲队的概率为( D )
()A 1101416C C C ()1101416C C C B + ()1161416C C C C ()116
1416C C C D + 10.两袋分别装有写着0、1、2、3、4、5六个数字的6张卡片,从每袋中各任取一张卡片,所得两数之和等于7的概率为(B )
()111
A ()91
B ()152
C ()15
4D 11.在100个产品中有10个次品,从中任取4个恰有1个次品的概率为( D ) ()()()31091014100C A ()10
1B ()()3109101C ()4100
390110C C C D
12.某人有9把钥匙,其中一把是开办公室门的,现随机取一把,取后不放回,则第5次能打开办公室门的概率为( A )
()91A ()()()
49859159C B ()95C ()59
44A A D 二、填空题(每题5分,计20分)
13.两名战士在一次射击比赛中,甲得1分,2分,3分的概率分别是0.2,0.3,0.5,乙得
1分,2分,3分的概率分别是0.1,0.6,0.3,那么两名战士哪一位得胜的希望较大_____战士甲________.
14.有两组问题,其中第一组中有数学题6个,物理题4个;第二组中有数学题4个,物理
题6个。
甲从第一组中抽取1题,乙从第二组中抽取1题。
甲、乙都抽到物理题的概率是 625
__,甲和乙至少有一人抽到数学题的概率是 ____1925_________。
15、某企业正常用水(1天24小时用水不超过一定量)的概率为3/4,则在5天内至少有4
天用水正常的概率为 81/128 。
16、今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装
入五个信封中,每个信封一封信,则恰有两封信与信封标号一致的概率为 1/6 。
三、解答题
17.(10分)分别标有号码1,2,3,……,9的9个球装在一个口袋中,从中任取3个 (I )求取出的3个球中有5号球的概率;
(II )求取出的3个球中有5号球,其余两个球的号码一个小于5,另一个大于5的概率。
18. (12分)某条公共汽车线路沿线共有11个车站(包括起点站和终点站),在起点站开出的一辆公共汽车上有6位乘客,假设每位乘客在起点站之外的各个车站下车是等可能的. 求:(1)这6位乘客在其不相同的车站下车的概率为
(2)这6位乘客中恰有3人在终点站下车的概率为
解:(1)这6位乘客在互不相同的车站下车的概率为61066
1512.0015121010A P ===0。
. (2)这6位乘客中恰有3人在终点站下车的概率为33666
914580.0014581010C P ⨯===。
19.(12分)在同一时间段里,有甲、乙两个天气预报站相互独立的对天气进行预测,根据以往的统计规律,甲预报站对天气预测的准确率为0.8,乙预报站对天气预测的准确率为0.75,求在同一时间段内。
(Ⅰ)甲、乙两个天气预报站同时预报准确的概率;
(Ⅱ)至少有一个预报站预报准确的概率;
(Ⅲ)如果甲站独立预报3次,其中恰有两次预报准确的概率.
解:(Ⅰ)设A=“甲天气预报站预报准确”,B=“乙天气预报站预报准确”。
则,P (A ·B) = P (A )·P (B) = 0.8 × 0.75 = 0.6 …………3分
(Ⅱ)所求事件的概率等于1 – P ()·P () ………………… 6分
=1–(1 – 0.8)(1 – 0.75)= 0.95 ………………… 8分 (Ⅲ)甲站独立预报3次,其中恰有两次预报准确的概率
P = ………………………11分
== 0.384 …………………………………13分
20. (12分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.
求:(1) 则笼内恰好剩下....1只果蝇的概率(2)则笼内至少剩下....5只果蝇的概率
解:以k A 表示恰剩下k 只果蝇的事件(016)k =L ,,,.以m B 表示至少剩下m 只果蝇的事件(016)m =L ,,,.可以有多种不同的计算()k P A 的方法.
方法一(组合模式):当事件k A 发生时,第8k -只飞出的蝇子是苍蝇,且在前7k -只
飞出的蝇子中有1只是苍蝇,所以17287()28
k k C k P A C --==. 方法二(排列模式):当事件k A 发生时,共飞走8k -只蝇子,其中第8k -只飞出的蝇子是苍蝇,哪一只?有两种不同可能.在前7k -只飞出的蝇子中有6k -只是果蝇,有68k C -种不同的选择可能,还需考虑这7k -只蝇子的排列顺序.所以
162688(7)!7()28
k k k C C k k P A A ----==g .由上式立得163()2814P A ==; 356563()()()()28
P B P A A P A P A =+=+=. 21.(12分)在一次历史与地理的联合测试中,备有6道历史题,4道地理题,共10道题以供选择,要求学生从中任意抽取5道题作答,答对4道或5到可被评为良好。
学生甲答对每道历史题的概率为0.9,答对每道地理题的概率为0.8,
(1)求学生甲恰好抽到3到历史题,2道地理题的概率;
(2)若学生甲恰好抽到3到历史题,2道地理题,则他能被评为良好的概率是多少? (精确到0.01)
22(12分).某个信号器由6盏不同的灯组成,每盏灯亮的概率都是0.5,且相互独立,求:
(1)有两盏灯亮的概率;
(2)至少有3盏灯亮的概率;
(3)至少几盏灯亮的概率小于0.3?
解:(1)有两盏灯亮的概率可视为在6次独立重复试验中恰好发生2次的概率:
()()()P C C 6622462620505051564
()...=⨯== (2)至少有3盏灯亮的概率等于1减去至多两盏灯亮的概率,即
()()()1012105050511646641564
21
32
666606616626
---=---=---=P P P C C C ()()()
...
(3)至少4盏灯亮的概率为:
()()()P P P C C C 666646656666
4560505051564664164
1132
03()()()....++=++=++=>
至少5盏灯亮的概率为: ()()P P C C 66656666560505664164764
03()()...+=+=+=< 因此,至少有5盏灯亮的概率小于0.3。