图形的旋转练习题
中考数学元复习《图形的旋转》练习题含答案
中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
图形的旋转练习题精选
旋转单元练习一、选择题1、下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中 心对称图形的有( )A.、1种 B 、2种 C 、 3种 D 、 4种2、下列图案中是中心对称图形但不是轴对称图形的是( )3、如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )A .25°B .30°C .35°D .40°4、如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4; ③∠AOB=150°;④S 四边形AOBO =336+;⑤ S △AOC +S △AOB =6+349 . 其中正确的结论是( )A .①②③⑤B .①②③④C .①②③④⑤D .①②③5、如图Rt △ABC 中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l 上,将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=32+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=33+;…按此规律继续旋转,直到点P 2012为止,则AP 2012等于( ) A.36712011+ B. 36712012+ C. 36712013+ D. 36712014+6、如图,A (3, 1)B (1, 3).将△AOB 绕点O 旋转150°得到△A′OB′,则此时点A 的对应点A′的坐标为( )A .(3-,-1)B .(-2,0)C 。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)
《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
四年级图形旋转练习题
四年级图形旋转练习题一、看图填空:
图1 图2 图3
图1绕()点()时针旋转()度得到现在的图形。
图2绕()点()时针旋转()度得到现在的图形。
图3绕()点()时针旋转()度得到现在的图形。
二、填空。
在右图中:
(1)图形1绕A点()旋转90。
到图形2。
(2)图形2绕A点()旋转90。
到图形3。
(3)图形4绕A点顺时针旋转()到图形2。
(4)图形3绕A点顺时针旋转()到图形1。
.三、练习画图
(1)把三角形绕A点顺时针旋转90°。
1
4
3
2
图形①是以点()为中心旋转的;
图形②是以点()为中心旋转
(2)把长方形绕B点逆时针旋转90°。
四、把小旗图绕O点、逆时针旋转90°,并把旋转后的图形画下来。
①将向左平移8格。
②将向下平移5格。
图形的旋转练习题
图形的旋转练习题一、选择题1. 一个图形绕某点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 无法确定D. 形状不变,大小变小2. 如果一个图形绕其对称中心旋转180度,其位置:A. 不变B. 改变C. 无法确定D. 形状改变3. 一个正方形绕其中心点旋转45度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变4. 一个等边三角形绕其一个顶点旋转120度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变5. 一个圆绕其圆心旋转任意角度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变二、填空题6. 一个图形绕某点旋转______度后,其形状和位置都不变。
7. 如果一个图形绕其对称中心旋转______度,其位置不变。
8. 一个图形绕某点旋转180度后,其形状______,位置______。
9. 一个图形绕某点旋转90度后,其形状______,位置______。
10. 一个图形绕其对称中心旋转任意角度后,其形状______,位置______。
三、简答题11. 描述一个正方形绕其中心点顺时针旋转90度后,其四个顶点的新位置。
12. 解释为什么一个圆在绕其圆心旋转任意角度后,其形状和位置都不变。
13. 如果一个正六边形绕其中心点旋转60度,描述其顶点的新位置。
14. 一个矩形绕其对角线中点旋转180度后,其四个顶点的新位置是什么?15. 解释为什么一个图形绕其对称中心旋转180度后,其位置不变。
四、应用题16. 一个时钟的时针在12小时内绕钟面中心点旋转了多少度?17. 如果一个图形被设计为可以围绕其对称中心旋转,那么在旋转过程中,它的对称性如何保持?18. 一个图形绕其一个顶点旋转,如果旋转角度是360度的整数倍,图形的最终位置是什么?19. 在一个平面直角坐标系中,一个点绕原点旋转θ度后,其新的坐标如何计算?20. 如果一个图形绕其对称中心旋转了θ度,那么它的对称轴会如何变化?五、综合题21. 给出一个图形的旋转矩阵,并说明如何使用它来计算图形绕某点旋转后的新位置。
九年级数学:图形的旋转练习(含答案)
九年级数学:图形的旋转练习(含答案)1.图形旋转的性质:图形经过旋转所得的图形与原图形________;对应点到旋转中心的距离________;任何一对对应点与旋转中心连线所成的角度等于____________.2.圆既是一个轴对称图形,又是一个________对称图形.A组基础训练1.下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )2.在图形旋转中,下列说法错误的是( )A.图形上各点的旋转角度相同B.对应点到旋转中心的距离相等C.由旋转得到的图形也一定可以由平移得到D.旋转不改变图形的大小、形状3.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( )第3题图4.如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC =90°,则∠A的度数为( )第4题图A .45°B .55°C .65°D .75° 5.下图中的各种变换分别属于平移、轴对称、旋转中的哪种图形变换(填空)?第5题图①________ ②________ ③________6.如图,△ABC 经过旋转得到△A′B′C′,且∠AOB =25°,∠AOB ′=20°,则线段OB 的对应线段是________;∠OAB 的对应角是________;旋转中心是________;旋转的角度是________.第6题图7.如图,下面的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合.若每个..叶片的面积为4cm 2,∠AOB 为120°,则图中阴影部分的面积之和为________cm 2.第7题图8.如图,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标为________.第8题图9.如图,在△ABC 和△AEF 中,∠B =∠E ,AB =AE ,BC =EF ,∠BAE =25°,∠F =60°.(1)求证:∠BAE=∠CAF;(2)△ABC可以经过图形变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.第9题图10.如图,在正方形ABCD中,E,F分别是边BC,CD上的点,∠EAF=45°.(1)求证:EF=DF+BE;(2)若DF=3,BE=2,求正方ABCD的边长.第10题图B组自主提高11.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )第11题图A.(1,1)B.(1,2)C.(1,3)D.(1,4)12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为________.第12题图13.在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图1,他连结AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.第13题图C组综合运用14.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.第14题图(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求α的值.3.2 图形的旋转【课堂笔记】1.全等相等旋转的角度 2.中心【课时训练】1-4.BCCB5.①旋转②平移③轴对称6.OB′∠OA′B′点O 45°7. 48.(7,3)9.(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC-∠PAF =∠EAF-∠PAF,即∠BAE=∠CAF;(2)通过观察可知,△ABC绕点A顺时针旋转25°得到△AEF; (3)由(1)知,∠C =∠F=60°,∠CAF =∠BAE=25°,∴∠AMB =∠C+∠CAF=60°+25°=85°.第10题图10.(1)将△DAF 绕点A 顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF =BF′,∠DAF =∠BAF′,∴∠EAF ′=45°,在△FAE 和△F′AE 中,⎩⎨⎧AF =AF′,∠FAE =∠EAF′AE =AE ,,∴△FAE ≌△F ′AE(SAS),∴EF =EF′=DF +BE. (2)∵DF=3,BE =2,∴EF =5,设边长为x ,在△CFE 中,(x -3)2+(x -2)2=52,∴x =6,(x =-1舍去).∴正方形的边长为6.11. B 12.85°第13题图13.(1)AD 与CF 还相等,理由:∵四边形ODEF ,四边形ABCO 为正方形,∴∠DOF =∠COA =90°,DO =OF ,CO =OA ,∴∠COF =∠AOD,∴△COF ≌△AOD(SAS),∴AD =CF ; (2)如图,连结DF ,交EO 于G ,则DF⊥EO,DG =OG =12EO =1,∴GA =4,∴CF =AD =DG 2+GA 2=1+42=17.14.(1)30°-12α; (2)△ABE 为等边三角形.证明:连结AD ,CD ,∵线段BC 绕点B逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°,又∵∠ABE=60°,∴∠ABD =60°-∠DBE=∠EBC=30°-12α;且△BCD为等边三角形,在△ABD与△ACD中,⎩⎨⎧AB=AC,AD=AD,BD=CD.∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD=12∠BAC=12α.∵∠BCE=150°,∴∠BEC=180°-(30°-12α)-150°=12α.在△ABD与△EBC中,⎩⎨⎧∠BEC=∠BAD,∠EBC=∠ABD,BC=BD.∴△ABD≌△EBC(AAS).∴AB=BE.又∠ABE=60°.∴△ABE为等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°,∵∠DEC=45°,∴△DCE为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=180°-150°2=15°,而∠EBC=30°-12α=15°,∴α=30°.。
23.1图形的旋转练习卷
学校:___________姓名:___________班级:___________考号:___________一、选择题1.以下实际现象中,属于旋转的是( )A.钟表指针运动B.站在电梯上的人的运动C.在火车上睡觉的旅客D.地下水位逐年下降【答案】A【解析】试题分析:根据旋转的定义进行判断.解:根据旋转的定义可得:A选项:钟表指针运动是旋转;B选项:站在电梯上的人的运动是平移;C选项:在火车上睡觉的旅客是平移;D选项:地下水位逐年下降是平移.故选A.考点:图形的旋转的定义2.如下图所示,将△ABC旋转到△AB′C′,下列说法正确的个数是( )①AC=AB′②BC=B′C′③∠BAC=∠B′AC′④∠CAC′=∠BAB′A.1B.2C.3D.4【答案】C【解析】试题分析:根据在平面内,一个图形旋转后得到的图形与原来的图形之间对应线段相等;对应角相等;对应点到旋转中心的距离相等;每对对应点与旋转中心连线所成的角都是相等的角,它们都等于旋转角进行判断.解:①:因为点C与点B′不是对应点,所以AC与AB′不一定相等;②:因为BC与BC′是对应线段,所以BC=BC′;③:因为∠BAC与∠B′AC′是对应角,所以∠BAC=∠B′AC′;④:因为∠CAC′与∠BAB′是对应角,所以∠CAC′=∠BAB′.所以正确的有三个,故应选C.考点:图形的旋转的性质3.如图所示,△ACB和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述错误的是( )A.旋转中心是点CB.旋转角度是90°C.既可以是逆时针旋转也可以是顺时针旋转D.旋转中心是点B,旋转角是∠ABC【答案】D【解析】试题分析:根据旋转的定义进行判断.解:A选项:因为△ACB和△DCE都是直角三角形,可得:点A的对应点是点D,点B的对应点是点E,所以旋转中心是点C,故A选项正确;B选项:根据旋转的定义可得:旋转角是∠ACD,因为∠ACD=∠ACB=90°,所以旋转角是90°,故B选项正确;C选项:△DCE可以看作是由△ACB顺时针旋转90°得到的,也可以看作是逆时针旋转270°得到的,故C选项正确;D选项:根据旋转的定义可得:旋转中心是点C,旋转角是∠ACD,故D选项错误.故应选D考点:图形的旋转的定义4.将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=40°,∠B′=100°,则∠BCA′的度数是( )A.110°B. 80°C.40°D.90°【答案】D【解析】试题分析:根据旋转的性质可得:△ABC≌△A′B′C,因为∠B′=100°,所以∠B=100°,根据三角形内角和定理可以求出∠BCA=40°,因为旋转角是50°,所以∠ACA′=50°,所以∠BCA′=50°+40°=90°.解:根据旋转的性质可得:△ABC≌△A′B′C,∴∠B=∠B′∵∠B′=100°,∴∠B=100°,∴∠BCA=40°,∵旋转角是50°,∴∠ACA′=50°,∴∠BCA′=50°+40°=90°.考点:旋转角;旋转的性质5.中午12点15分时,钟表上的时针和分针的夹角的度数( )A.90°B. 75°C. 82.5°D.60°答案:C试题分析:在钟面上,时针每个小时旋转30°,分针每分钟旋转6°,用15分钟分针旋转的度数减去时针旋转的度数,得到时针与分针的夹角的度数.解:115630907.582.54⨯︒-⨯︒=︒-︒=︒.故应选C二、填空题6.写出三个旋转180°后可以与自身重合的英文字母______________.【答案】H、I、X(答案不唯一).【解析】试题分析:根据旋转的性质可得:旋转180°后可以与自身重合的英文字母有:H、I、X、O、S、Z,写出其中的三个即可..解:H、I、X.7.如图E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将△BCE绕着正方形的中心O,按逆时针旋转到△CDF的位置,则旋转角是________.【答案】90°.【解析】试题分析:连接线段OC、OB,则线段OC、OB的夹角就是旋转角,根据正方形的性质可得:∠BOC=90°.解:如下图所示,连接OB、OC,根据正方形的性质可得:∠BOC=90°,所以旋转角是90°.故答案是90°.8.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OCD,则∠COB=_______.【答案】70°.【解析】试题分析:首先根据旋转角是100°,可以求出∠AOC=100°,又因为∠AOB=30°,所以∠COB=∠AOC-∠AOB=100°.解:∵旋转角是100°,∴∠AOC=100°,又∵∠AOB=30°,∴∠COB=∠AOC-∠AOB=70°.故答案是70°.9.在钟面上,时针旋转1小时的旋转角是_______;分针旋转1分钟的旋转角是______.【答案】30°;6°.【解析】试题分析:根据时针旋转360°时所用的时间是12个小时,求出时针旋转1小时的旋转角;根据分针旋转360°时所用的时间是60分钟,求出分针旋转1分钟的旋转角.解:时针旋转1小时的旋转角是360°÷12=30°,分针旋转1分钟的旋转角是360°÷60=6°.故答案是30°;6°.10.如图,在△ABC中,∠BAC=90°,AB=AC=5cm,△ABC按逆时针旋转一个角度后成为△ACD,则旋转中心是点____;旋转角是_____.【答案】A;90°.【解析】试题分析:因为图形旋转前后,只有点A的位置没有改变,所以旋转中心是点A,根据旋转前后∠BAC与∠DAC重合,所以可以求出∠BAC=∠DAC=90°,所以可以得到旋转角是90°.解:因为旋转后△ABC与△ACD中,点C与点D是对应点,点B与点C是对应点,点A与点A是对应点,所以旋转中心是点A;因为点C、D是对应点,所以∠DAC是旋转角,根据旋转前后∠BAC与∠DAC重合,所以∠BAC=∠DAC=90°,所以旋转角是90°.三、解答题11.已知△ABC绕点O旋转,点D是点A的对应点,试作出旋转后的△DEF.【答案】作图见解析.【解析】试题分析:首连接AO、DO;再连接OB、OC,分别作∠BOE=∠COF=∠AOD;在射线OE、OF上截取OE=OF,OF=OC,连接DE、EF、FD,则△DEF就是旋转后的图形.解:作图如下,12.从12时整开始计时到几时几分时,分针和时针的旋转角第一次相差90°【答案】12时18011分.【解析】试题分析:设经过x分钟时分针和时针的旋转角第一次相差90°,可以列出关于x的方程,解方程求出经过的时间.解:设经过x分钟时分针和时针的旋转角第一次相差90°根据题意可得:6309060x x -⨯=, 解得:18011x =. 答:12时18011分时,时针和分针的旋转角第一次相差90°.。
图形的旋转综合练习题
解析
长方体绕直线AB旋转一周,形成的旋 转体为圆柱。根据圆柱的体积和表面积 公式,可以计算出旋转体的体积和表面 积。
例题2
已知圆锥绕其母线旋转一周,求 旋转体的体积和表面积。
解题技巧总结及易错点提示
01
解题技巧
02
在解决平面图形旋转问题时,要充分利用旋转的性质,如旋转角、旋转中心等 ,通过计算各顶点与旋转中心的连线与坐标轴的夹角来确定旋转后各顶点的坐 标。
图形的旋转综合练习
• 图形旋转基本概念与性质 • 平面图形旋转问题分析方法 • 空间图形旋转问题解决方法探讨 • 典型例题解析与技巧总结 • 拓展延伸:复杂场景下图形旋转应用举例 • 练习题与答案解析
目录
Part
01
图形旋转基本概念与性质
旋转中心、旋转角度和旋转方向
旋转中心
图形旋转时所围绕的点, 通常是图形的中心点或特 定点。
在机械制造和工程领域应用
旋转机械部件设计
在机械制造中,许多部件需要实 现旋转功能,如齿轮、轴承、涡 轮等。通过精确的图形旋转技术, 可以设计出高效、稳定的机械部 件。
工程图纸的旋转标
注
在工程图纸中,为了方便制造和 装配,常常需要对图形进行旋转 并标注相应的尺寸和角度。
精密测量与定位
在机械制造和工程领域,图形的 旋转也应用于精密测量和定位系 统中,如旋转编码器、激光测距 仪等。
空间几何计算
在建立空间几何模型的基础上,可以利用空间几何知识进行相关的计算和分析。例如,可 以计算图形的面积、体积、角度等几何量,以及进行图形的平移、旋转、缩放等变换操作 。
实际应用举例
空间图形旋转在实际问题中有着广泛的应用,如机器人运动规划、三维动画制作、建筑设 计等领域。例如,在机器人运动规划中,可以利用空间几何知识来描述机器人的位置和姿 态,以及进行机器人的路径规划和碰撞检测等操作。
小学数学旋转问题练习题
小学数学旋转问题练习题旋转问题是小学数学中的一个重要内容,它不仅能够培养学生的观察力和逻辑思维能力,还能提高他们的几何想象能力。
下面是一些有关旋转问题的练习题,希望能够帮助同学们更好地理解和掌握这一知识点。
题目一:旋转图形的坐标变化已知点A(-2, 3),要求绕原点逆时针旋转90°,求旋转后点的坐标。
解析:根据旋转的特点,逆时针旋转90°后,点A的横坐标变为原来的纵坐标的相反数,纵坐标变为原来的横坐标。
所以,旋转后的点的坐标为(3, 2)。
题目二:矩形绕顶点旋转已知长方形ABCD的顶点A(2, 4),要求将该矩形绕顶点A逆时针旋转180°,求旋转后矩形的顶点坐标。
解析:绕顶点A逆时针旋转180°后,矩形的顶点D变为A,顶点C变为B,顶点B变为C,顶点A变为D。
因此,旋转后矩形的顶点坐标为A(2, 4),B(-2, 4),C(-2, -4),D(2, -4)。
题目三:正方形绕中心点旋转已知正方形EFGH的中心点为O(0, 0),边长为4个单位,要求将该正方形逆时针旋转270°,求旋转后正方形的顶点坐标。
解析:绕中心点O逆时针旋转270°后,正方形的顶点顺序依次变为G、H、E、F。
利用正方形的对称性可知,旋转后正方形的顶点坐标分别为G(2, -2),H(2, 2),E(-2, 2),F(-2, -2)。
题目四:三角形绕中心点旋转已知三角形IJK的中心点为P(0, 0),顶点分别为I(1, 1),J(1, -1),K(-1, -1),要求将该三角形逆时针旋转120°,求旋转后三角形的顶点坐标。
解析:绕中心点P逆时针旋转120°后,三角形的顶点顺序变为J、K、I。
利用旋转的性质可知,旋转后三角形的顶点坐标分别为J(0, -2),K(1.732, -0.366),I(-1.732, -0.366)(保留小数点后有效数字)。
通过以上练习题的解析,我们可以发现,旋转问题的解答关键在于观察和运用几何知识。
旋转》画图练习
旋转》画图练习一、实践操作画图练1.画出将图形向上平移3格、向右平移8格后得到的图形。
2.画出顺时针旋转90度后的三角形图形。
3.画出长方形向右平移3格后再绕点34旋转的图形。
画出下面图形的另一半,使它成为轴对称图形。
4.画出顺时针旋转90度后的“O”图形。
画出逆时针旋转90度后的“A”图形。
5.画出逆时针旋转90度后的小旗图形。
二、旋转练题1.在右图中,指针从A开始,逆时针方向旋转90度到B;指针从A开始,顺时针方向旋转90度到D。
2.指针从B开始,顺时针方向旋转90度到C;指针从B到A,顺时针旋转了90度;指针从B到C,顺时针旋转了90度。
指针从C到D,顺时针旋转了90度;指针从C开始,逆时针方向旋转90度到B。
3.没有第三个问题。
三、旋转练题1.将①号图形绕A点按顺时针方向旋转90度;将②号图形绕A点按逆时针方向旋转90度;将③号图形绕A点按逆时针方向旋转90度;将④号图形绕A点按顺时针方向旋转90度;将⑤号图形绕A点按逆时针方向旋转90度;将⑥号图形绕A点按逆时针方向旋转90度。
2.将①号图形绕A点按逆时针方向旋转90度;将②号图形绕A点按顺时针方向旋转90度;将③号图形绕A点按顺时针方向旋转90度;将④号图形绕A点按逆时针方向旋转90度;将⑤号图形绕A点按顺时针方向旋转90度;将⑥号图形绕A点按顺时针方向旋转90度。
3.将①号图形绕A点按顺时针方向旋转90度;将②号图形绕B点按顺时针方向旋转90度;将③号图形绕C点按顺时针方向旋转90度;将④号图形绕D点按顺时针方向旋转90度;将⑤号图形绕O点按顺时针方向旋转90度;将⑥号图形绕O点按顺时针方向旋转90度。
将上述9个图形全部绕O点按顺时针方向旋转90度。
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)1、如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是().A. 60m2B. 63m2C. 64m2D. 66m22、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1) 若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.(3) 当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.3、某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.4、某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=−2x+80(20⩽x⩽40),设销售这种产品每天的利润为W(元).(1) 求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少元?5、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1) 求y与x之间的函数关系式.(2) 在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3) 当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?6、解答:(1) 一辆宽2米的货车要通过跨度为8米,拱高为4米的单行抛物线隧道(从正中通过),为保证安全,车顶左右两侧离隧道的垂直距离至少要0.5米,求货车的限高为多少?(2) 若将(1)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,求货车的限高应是多少?7、把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度ℎ(米)适用公式ℎ=20t−5t2(0⩽t⩽4).(1) 经过多少时间足球能到达最大高度,最大高度是几米?(2) 足球从开始踢至回到地面需要多少时间?(3) 若存在两个不相等的实数t,能使足球距离地面的高度都为m(米),请直接写出m的取值范围.8、运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度ℎ(m)与它的飞行时间t(s)满足二次函数关系,t与ℎ的几组对应值如下表所示:(1) 求ℎ与t之间的函数关系式(不要求写t的取值范围).(2) 求小球飞行3s时的高度.(3) 问:小球的飞行高度能否达到22m.请说明理由.9、军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的x2+10x,经过秒时间,炮弹落到地上爆炸了.关系满足y=−1510、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A出发沿AC向点C以1cm/s的速度运动,同时点Q从点C出发沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小为().A. 19cm2B. 16cm2C. 15cm2D. 12cm211、如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1) 若苗圃园的面积为100平方米,求x的值.(2) 若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.12、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1) 求S与x的函数关系式.(2) 如果要围成面积为45m2的花圃,AB的长是多少米?(3) 能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.13、某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=−2x+80,设这种水果每天的销售利润为w元.(1) 求w与x之间的函数关系式.(2) 该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元.(3) 如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元.14、服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1) 求y与x之间所满足的函数关系式,并写出x的取值范围.(2) 设服装厂所获利润为w(元),若10⩽x⩽50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?15、一条单车道的抛物线形隧道如图所示,隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式.(2) 现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.16、如图,以40m/s的速度将小球沿与地面成某一角度的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间(单位:s)之间具有函数关系ℎ=20t−5t2.请解答以下问题:(1) 小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2) 小球的飞行高度能否达到20.5m?为什么?(3) 小球从飞出到落地要用多少时间?1 、【答案】 C;【解析】设BC=xm,矩形ABCD的面积为ym2,易知AB=(16−x)m,根据题意得y=(16−x)x=−x2+16x=−(x−8)2+64,当x=8时,y取得最大值,为64,则所围成矩形ABCD的最大面积是64m2.故选C.2 、【答案】 (1) y=30−2x(6⩽x<15).;(2) 当x=7.5时,S最大值=112.5.;(3) x的取值范围为6⩽x⩽11.;【解析】 (1) y=30−2x(6⩽x<15).(2) 设矩形苗圃园的面积为S,则S=xy=x(30−2x)=−2x2+30x,∴S=−2(x−7.5)2+112.5.由(1)知,6⩽x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3) ∵这个苗圃园的面积不小于88平方米,即−2(x−7.5)2+112.5⩾88,∴6⩽x⩽11.由(1)可知6⩽x<15,∴x的取值范围为6⩽x⩽11.3 、【答案】70;【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.4 、【答案】 (1) w=−2x2+120x−1600 (20⩽x⩽40);(2) 当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元;【解析】 (1) w=y(x−20)=(x−20)(−2x+80)=−2x2+120x−1600 (20⩽x⩽40).(2) w=−2x2+120x−1600=−2(x−30)2+200则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.5 、【答案】 (1) y=−0.5x+80.;(2) 增种果树10棵时,果园可以收获果实6750千克.;(3) 当增种果树40棵时果园的最大产量是7200千克.;【解析】 (1) 设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得:{74=12k +b 66=28k +b ,解得,{k =−0.5b =80, ∴该函数的表达式为y =−0.5x +80.(2) 根据题意,得,(−0.5x +80)(80+x)=6750,解这个方程得,x 1=10,x 2=70,∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3) 根据题意,得w =(−0.5x +80)(80+x)=−0.5(x −40)2+7200, ∵a =−0.5<0,则抛物线开口向下,函数有最大值,∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.6 、【答案】 (1) 3.25米.;(2) 2.5米.;【解析】 (1) 以抛物线的对称轴为y 轴,地平线为x 轴,建立如图所示坐标系,∵抛物线的顶点坐标是(0,4),∴可设抛物线的解析式为y =ax 2+4.又∵抛物线过(4,0)点,∴0=a×42+4,∴a=−1.4x2+4(−4⩽x⩽4)∴y=−14当x=1时,y=3.75.∴货车限高为3.75−0.5=3.25(米).(2) 当x=2时,y=3,故货车限高为3−0.5=2.5(米).7 、【答案】 (1) 经过2s足球能到达最大高度,最大高度是20米.;(2) 足球从开始踢至回到地面需要4秒.;(3) 0⩽m<20.;【解析】 (1) ∵ℎ=20t−5t2=−5(t−2)2+20,∴t=2时,ℎ最大,最大值为20m,答:经过2s足球能到达最大高度,最大高度是20米.(2) 令ℎ=0,得:20t−5t2=0,解得:t=0或t=4,∴足球从开始踢至回到地面需要4秒.(3) 由(1)知足球的最大高度为20米,∴0⩽m<20.8 、【答案】 (1) ℎ=−5t2+20t.;(2) 15m.;(3) 小球的飞行高度不能达到22m.;【解析】 (1) ∵t =0时,ℎ=0∴设ℎ与t 的函数关系式为ℎ=at 2+bt(a ≠0),∵t =1时,ℎ=15,t =2时,ℎ=20,∴{a +b =154a +2b =20, 解得{a =−5b =20, ∴ℎ与t 之间的函数关系式为ℎ=−5t 2+20t .(2) 小球飞行3秒时,t =3,此时ℎ=−5×32+20×3=15(m),答:此时小球的高度为15m .(3) 方法一 : 设ts 时,小球的飞行高度达到22m ,则−5t 2+20t =22,即5t 2−20t +22=0,∵Δ=(−20)2−4×5×22<0,∴此方程无实数根,∴小球的飞行高度不能达到22m .(3) 方法二 : ∵ℎ=−5t 2+20t =−5(t −2)2+20,∴小球飞行的最大高度为20m ,∵22>20,∴小球的飞行高度不能达到22m .9 、【答案】 50;【解析】 依题意,关系式化为:y =−15(x −25)2+125.令y =0,解得:x =50秒.10 、【答案】 C;【解析】 在Rt △ABC 中,∠C =90°,AB =10cm ,BC =8cm ,∴AC =√AB 2−BC 2=√102−82=6(cm).设运动时间为t 秒(0⩽t ⩽4),则PC =(6−t)cm ,CQ =2tcm ,∴S 四边形PABQ =S △ABC −S △CPQ=12AC ⋅BC −12PC ⋅CQ=12×6×8−12(6−t)×2t=t 2−6t +24=(t −3)2+15,∴当t =3时,四边形PABQ 的面积有最小值,最小值为15.故选C .11 、【答案】 (1) x =10.;(2) 有,当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.;【解析】 (1) 由题意,得:平行于墙的一边长为(30−2x),根据题意,得:x(30−2x)=100,解得:x =5或x =10,∵{30−2x ⩽182x <30, ∴6⩽x <15.∴x =10.(2) ∵矩形的面积y =x(30−2x)=−2(x −152)2+2252,且30−2x ⩾8,即x ⩽11, ∴当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.12 、【答案】 (1) S =−3x 2+24x .;(2) 5m .;(3) 能,当长为10m ,宽为143m 时,最大面积为1403m 2. ;【解析】 (1) 根据题意,得S =x (24−3x ),即所求的函数解析式为:S =−3x 2+24x .(2) 根据题意,设AB 长为x ,则BC 长为24−3x ,则−3x 2+24x =45.整理,得x 2−8x +15=0,解得x =3或5,当x =3时,BC =24−9=15>10不成立,当x =5时,BC =24−15=9<10成立,∴AB 长为5m .(3) S =24x −3x 2=−3(x −4)2+48,由于0<24−3x ⩽10,得143⩽x <8. ∵143>4,∴当x =143时,S 取得最大值为1403>45,∴能围成面积比45m 2更大的花圃,当长为10m ,宽为143m 时,最大面积为1403m 2. 13 、【答案】 (1) w =−2x 2+120x −1600.;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.;(3) 该农户想要每天获得150元的销售利润,销售价应定为每千克25元.;【解析】 (1) 由题意得出:w =(x −20)⋅y=(x −20)(−2x +80)=−2x 2+120x −1600,故w 与x 的函数关系式为:w =−2x 2+120x −1600.(2) w =−2x 2+120x −1600=−2(x −30)2+200,∵−2<0,∴当x =30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3) 当w =150时,可得方程−2(x −30)2+200=150.解得x 1=25,x 2=35.∵35>28,∴x 2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.14 、【答案】 (1) y ={−0.5x +105(10⩽x ⩽50)80(x >50). ;(2) 批发该种服装40件时,服装厂获得利润最大,最大利润是800元.;【解析】 (1) 当10⩽x ⩽50时,设y 与x 的函数关系式为y =kx +b ,{10k +b =10050k +b =80,得{k =−0.5b =105, ∴当10⩽x ⩽50时,y 与x 的函数关系式为y =−0.5x +105,当x >50时,y =80,即y 与x 的函数关系式为:y ={−0.5x +105(10⩽x ⩽50)80(x >50). (2) 由题意可得,w =(−0.5x +105−65)x =−0.5x 2+40x=−0.5(x−40)2+800,∴当x=40时,w取得最大值,此时w=800,y=−0.5×40+105=85,答:批发该种服装40件时,服装厂获得利润最大,最大利润是800元.x2+6.15 、【答案】 (1) (答案不唯一)抛物线的表达式为y=−38;(2) 这辆货车能安全通过这条隧道.;【解析】(1) 以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系xOy,则A(−4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x−4)(x+4).∵抛物线经过点C,∴−16a=6.∴a=−3.8x2+6(−4⩽x⩽4).∴这条抛物线表示的二次函数表达式为y=−38(2) 当x=1时,y=45,8∵4.4+0.5=4.9<45,8∴这辆货车能安全通过这条隧道.16 、【答案】 (1) 当小球的飞行1s和3s时,高度达到15m.;(2) 小球的飞行高度不能达到20.5m.;(3) 小球从飞出到落地要用4s.;【解析】 (1) 令ℎ=15,得方程15=20t−5t2,解这个方程得:t1=1,t2=3,当小球的飞行1s和3s时,高度达到15m.(2) 令ℎ=20.5,得方程20.5=20t−5t2,整理得:t2−4t+4.1=0,因为(−4)2−4×4.1<0,所以方程无实数根,所以小球的飞行高度不能达到20.5m.(3) 小球飞出和落地时的高度都为0,令ℎ=0,得方程0=20t−5t2,解这个方程得:t1=0,t2=4,所以小球从飞出到落地要用4s.。
图形的旋转练习题(二年级下册)
1.下列现象中,是旋转的在括号里画“√”。
2.下面的图案分别是由哪个图形旋转而成的?涂一涂。
3.写出分针从12旋转到下面各个位置所经过的时间。
4.神奇的转盘。
(1)转盘的运动是()现象。
(填“平移”或“旋转”)(2)小兔转()格就可以到小猫现在的位置上。
(3)当小鸡转到小猫的位置上时,小猫转到了()的位置上,蜗牛就转到了()的位置上。
5.下列现象是平移现象的在括号里画“⃝”,是旋转现象的在括号里画“△”。
6.选一选。
(将正确答案的序号填在括号里)(1)下列字母图形不是轴对称图形的是()。
(2)下列图中,通过图A平移得到的是(),通过图A旋转得到的是()。
7.在括号里填“旋转”或“平移”。
8.找出图形的变化规律,并把每组的最后--幅图补充完整。
9.算一算35 ÷7 = 3 ÷ 3 = 3 ÷ 3 = 42 ÷7 = 6 ÷ 1 = 45 ÷ 5 = 45 ÷9 = 30 ÷ 5 =28 ÷ 4 = 36 ÷ 6 = 40 ÷ 5 = 18 ÷9 = 72 ÷9 = 6 ÷ 1 = 8 ÷ 4 = 42 ÷ 6 = 32 ÷ 4 = 64 ÷8 = 48 ÷8 = 49 ÷7 = 16 ÷8 = 15 ÷ 5 = 4 ÷ 4 = 16 ÷ 4 = 45 ÷ 5 = 45 ÷9 = 40 ÷8 = 35 ÷ 5 = 32 ÷8 = 8 ÷ 2 = 35 ÷ 5 = 27 ÷9 =18 ÷9 = 6 ÷ 1 = 2 ÷ 1 = 12 ÷ 3 = 36 ÷ 4 = 7 ÷7 = 18 ÷ 6 = 54 ÷ 6 =。
2022年五年级上册数学同步练习 图形的旋转 (含解析)
西师大版(含解析)一、选择题(共5题;共10分)1.下面的图形中,()是旋转而成的。
A. B. C.2.下图可以看作是由绕一个顶点经过()变换而得到的。
A. 平移B. 旋转C. 平移和旋转 D. 对折3.下面三幅图中,以点A为旋转中心的图形是()。
A. B. C.4.下列现象中,既有平移现象,又有旋转现象的是()。
A. 正在工作的风扇叶片B. 在笔直道路上行驶的汽车C. 运行中的观光电梯D. 传输带上的物品5.图①绕点O()变为图②。
A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°二、判断题(共3题;共6分)6.把一个图形旋转后,图形的大小不变,但形状会发生改变。
()7.是由右图通过平移得到的。
()8.钟表上的时针从3时走到6时,是顺时针旋转了90°。
三、填空题(共7题;共38分)9.把一个三角形按顺时针方向旋转,旋转后的图形与原图形相比,________和________不会改变。
10.看图,回答问题①指针从“11”绕点O顺时针旋转________°到“1”。
②指针从“2”绕点O顺时针旋转30°到“________”。
③指针从“3”绕点O顺时针旋转到“9”旋转了________°。
11.①图形1绕点O顺时针旋转90°到图形________所在的位置。
②图形2绕点O顺时针旋转180°到图形________所在的位置。
③图形3绕点O顺时针旋转________到图形1所在的位置。
④图形1绕点O________旋转________到图形4所在的位置。
12.观察图形,填空。
①号图形是绕A点按________时针方向旋转了________°;②号图形是绕________点按顺时针方向旋转了________°;③号图形是绕________点按________时针方向旋转了90°;④号图形是绕________点按________时针方向旋转了________°。
《图形的旋转》练习题
《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。
()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。
()3、图形的旋转改变了图形的形状和大小。
()4、图形的旋转不改变图形的形状和大小。
()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。
()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。
()7、旋转对称图形是旋转对称的。
()8、旋转对称的图形是旋转对称的。
()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。
()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。
()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。
2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。
在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。
小学五年级下册数学旋转练习题
B A
O
O’
第一页,共十一页。
画出图形(túxíng)OABC绕点O顺时针旋转90°
第二页,共十一页。
第三页,共十一页。
第四页,共十一页。
(1)将下图绕点0顺时针旋转 180° (xuánzhuǎn)
O
A
B’
A’
O
B
第九页,共十一页。
四、画出图1绕点0逆时针旋转(xuánzhuǎn)90° 图2绕点0顺时针旋转90°
图1
O
第十页,共十一页。
图2
O
第十一页,共十一页。
第五页,共十一页。
(2)将下图绕点A逆时针旋转(xuánzhuǎn)90°
A
第六页,共十一页。
二、(1)画出绕点0顺时针旋转(xuánzhuǎn)90°
O
第七页,共十一页。
(2)画出绕点A逆时针旋转(xuánzhuǎn)90°
A
第八页,共十一页。
三、画出三角形AOB绕点0逆时针旋转(xuánzhuǎn)90°
六年级图形旋转练习题
六年级图形旋转练习题图形旋转是数学中的一个重要内容,它是指把一个图形绕一个点旋转一定角度后得到的新图形。
通过图形旋转的练习,学生能够加深对图形性质的理解并提高空间想象力。
本文将为六年级学生提供一些图形旋转的练习题,希望能够给大家的数学学习带来帮助。
1. 矩形旋转给定一个矩形ABCDEF,其中AB=12cm,BC=8cm,以点A为中心逆时针旋转60度,求旋转后的矩形的周长和面积。
解析:首先,我们可以绘制出矩形ABCDEF,并找到旋转的中心点A。
然后,根据题意,将矩形逆时针旋转60度,得到矩形A'B'C'D'E'F'。
接下来,我们计算旋转后的矩形的周长和面积。
旋转后的矩形A'B'C'D'E'F',其周长即为A'B'+B'C'+C'D'+D'E'+E'F'+F'A',可以通过计算得出。
另外,旋转后的矩形的面积可以通过计算A'B'和A'C'的长度,并相乘得到。
2. 三角形旋转给定一个等边三角形ABC,边长为10cm,以点B为中心逆时针旋转120度,求旋转后的三角形的周长和面积。
解析:我们先绘制等边三角形ABC,并找到旋转的中心点B。
根据题意,将三角形逆时针旋转120度,得到三角形A'B'C'。
接下来,我们计算旋转后的三角形的周长和面积。
旋转后的三角形A'B'C',其周长即为A'B'+B'C'+C'A',可以通过计算得出。
另外,旋转后的三角形的面积可以通过计算A'B'和A'C'之间的距离并乘以原来三角形的高度,再除以2得到。
3. 圆形旋转给定一个半径为5cm的圆O,以点O为中心顺时针旋转45度,求旋转后的圆的周长和面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
图形的旋转练习题
一、选择题:
1.下列图形中,既是..轴对称图形又是..
中心对称图形的是( ) 2.如右上 ( ) A .30° B .60° C .72° D .90°
3.某校计划修建一座花坛,要求既是轴对称图形又是中心对称图形,在学生中征集到的设计方案有多种,以下四种图案中你认为首先落选的是( )
A 、 等边三角形 ;
B 、 正方形 ;
C 、长方形 ;
D 、 正六边形 。
4.如图,四边形ABCD 是正方形,ΔADE 绕着点A 旋转900
后到达ΔABF 的位置,连接EF ,则ΔAEF 的形
状是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形
5.已知点P (-b,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( ) A .-1,3 B .1,-3 C .-1,-3 D . 1,3 6.如图,将正方形图案绕中心O 旋转180°后得到的图案是( )
7.下列命题中的真命题是 ( )
①.全等的两个图形是中心对称图形. ②关于中心对称的两个图形全等. ③.中心对称图形都是轴对称图形. ④轴对称图形都是中心对称图形. A .②④; B .①④; C .②③; D .①③. 二、填空题
8.如图将矩形ABCD 绕点A 顺时针旋转90゜后,得矩形AB ′C ′D ′,如果CD=2DA=2,CC ′=_______. 9.正六边形可以看成一个正三角形绕着它的一个顶点旋转得到的,则正三角形旋转 次,每次分
别旋转了__________.
10.如图,矩形ABCD 的长和宽分别为2和1,以D 为圆心,AD 为半径作AE 弧,再以AB 的中点F
为圆心,FB 长为半径作BE 弧,则阴影部分的面积为 ;
11.如图,ΔABC 按顺时针方向旋转一个角后成为ΔADE .已知∠B
=93°,∠AED =48°,则旋转角等于 °。
12.如图,P 是正方形内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP ′重合,若BP=3,则PP ′=________.
13.如图,△COD 是△AOB 绕点O 顺时针方向旋转40° 后所得的图形,点C 恰好在AB 上,∠AOD =90°,
则∠D 的度数是 .
14.如图,四边形ABCD 中,∠BAD=∠C=90º,AB=AD ,
AE ⊥BC 于E ,若线段AE=4,则S 四边形ABCD = 。
三、解答题
15.如图,△ABC 、△ADE 为等边三角形,D 是△ABC 内一点,且AD=4,BD=3,CD=5。
(1)求证:△ABD ≌△ACE (2)求∠ADB 的度数。
16.已知两个全等的含30°角的直角三角形放置,如图,B 、C 、D 三点在同一条直线上,点M 是AE 的中点,确定BM 与DM 的关系.若BM 与AC 交于点G ,DM 与EC 交于点H ,若AC=2,求四边形MGCH 的面积。
B '
D '
C '
D
C
B
F E
D
C B
A 8题图 9题图 10题图。