电子技术基础第4章 集成运算放大器及其应用
《模拟电子技术基础》目录
模拟电子技术根底主编:黄瑞祥副主编:周选昌、查丽斌、郑利君杨慧梅、肖铎、赵胜颖目录绪论第1章集成运算放大器1.1 抱负运算放大器的功能与特性抱负运算放大器的电路符号与端口抱负运算放大器的功能与特性1.2 运算放大器的反相输入阐发闭环增益输入、输出阻抗有限开环增益的影响加权加法器运算放大器的同相输入阐发闭环增益输入、输出阻抗有限开环增益的影响电压跟随器1.4 运算放大器的差分输入阐发1.5 仪表放大器1.6 积分器与微分器1.6.1 具有通用阻抗的反相输入方式1.6.2 反相积分器1.6.3 反相微分器1.7 运算放大器的电源供电1.7.1 运算放大器的双电源供电1.7.2 运算放大器的单电源供电本章小结习题第2章半导体二极管及其底子电路2.1 半导体根底常识2 本征半导体2 杂质半导体2 两种导电机理——扩散和漂移2.2 PN结的形成和特性2.2.1 PN结的形成2.2.2 PN结的单向导电性2.2.3 PN结的反向击穿2.2.4 PN结的电容特性2.3 半导体二极管的布局及指标参数2 半导体二极管的布局2 二极管的主要参数2 半导体器件型号定名方法2.4 二极管电路的阐发方法与应用2.4.1 二极管电路模型2.4.2 二极管电路的阐发方法2 二极管应用电路2.5 特殊二极管2.5.1 肖特基二极管2.5.2 光电子器件本章小结习题第3章三极管放大电路根底3.1 三极管的物理布局与工作模式3 物理布局与电路符号3 三极管的工作模式3.2 三极管放大模式的工作道理3.2.1 三极管内部载流子的传递3.2.2 三极管的各极电流3.3 三极管的实际布局与等效电路模型3.3.1 三极管的实际布局3.3.2 三极管的等效电路模型3.4 三极管的饱和与截止模式3.4.1 三极管的饱和模式3.4.2 三极管的截止模式3.5 三极管特性的图形暗示3.5.1 输入特性曲线3.5.2 输出特性曲线3.5.3 转移特性曲线3.6 三极管电路的直流阐发3.6.1 三极管直流电路的阐发方法3.6.2 三极管直流电路阐发实例3.7 三极管放大器的主要参数3.7.1 三极管放大器电路3.7.2 集电极电流与跨导3.7.3 基极电流与基极的输入电阻发射极电流与发射极的输入电阻电压放大倍数3.8 三极管的交流小信号等效模型3.8.1 混合∏型模型3.8.2 T型模型3.8.3 交流小信号等效模型应用3.9 放大器电路的图解阐发3.10 三极管放大器的直流偏置3.10.1 单电源供电的直流偏置3.10.2 双电源供电的偏置电路集电极与基极接电阻的偏置电路恒流源偏置电路3.11 三极管放大器电路3.11.1 放大器的性能指标3.11.2 三极管放大器的底子组态共发射极放大器发射极接有电阻的共发射极放大器共基极放大器共集电极放大器本章小结习题第4章场效应管及其放大电路4.1 MOS场效应管及其特性4 增强型MOSFET〔EMOSFET〕4 耗尽型MOSFET〔DMOSFET〕4 四种MOSFET的比较4 小信号等效电路模型4.2 结型场效应管及其特性4 工作道理4 伏安特性4 JFET的小信号模型4.3 场效应管放大电路中的偏置4 直流状态下的场效应管电路4 分立元件场效应管放大器的偏置4 集成电路中场效应管放大器的偏置4.4 场效应管放大电路阐发4 FET放大电路的三种底子组态4 共源放大电路4 共栅放大电路4 共漏放大电路4 有源电阻本章小结习题第5章差分放大器与多级放大器5.1 电流源5 镜像电流源5 微电流源比例电流源5.2 差分放大器差分放大器模型差分放大器电路差分放大器的主要指标差分放大器的传输特性5.2.5 FET差分放大器5.2.6 差分放大器的零点漂移5.3 多级放大器5 多级放大器的一般布局5 多级放大器级间耦合方式5 多级放大器的阐发计算5.4 模拟集成电路读图操练5.4.1 模拟集成电路内部布局框图5.4.2 简单集成运放电路道理通用型模拟集成电路读图操练集成运算放大器的主要技术指标集成运算放大器的分类正确选择集成运算放大器集成运算放大器的使用要点本章小结习题第6章滤波电路及放大电路的频率响应6.1 有源滤波电路6 滤波电路的底子概念与分类6 低通滤波器高通滤波器带通滤波器带阻滤波器6.2 放大电路的频率响应6 三极管的高频等效模型6 单管共射极放大电路的频率特性阐发多级放大电路的频率特性本章小结习题第7章反响放大电路7.1 反响的底子概念与判断方法7 反响的底子概念7 负反响放大电路的四种底子组态反响的判断方法7.2 负反响放大电路的方框图及一般表达式7.2.1 负反响放大电路的方框图7.2.2 负反响放大电路的一般表达式7.3 负反响对放大电路性能的影响7.3.1 提高增益的不变性7.3.2 改变输入电阻和输出电阻7.3.3 减小非线性掉真和扩展频带7.4 深度负反响放大电路的阐发深度负反响条件下增益的近似计算虚短路和虚断路7.5 负反响放大电路的不变性问题负反响放大电路自激振荡及不变工作的条件负反响放大电路不变性的阐发负反响放大电路自激振荡的消除方法本章小结习题第8章功率放大电路8.1 概述8 功率放大电路的主要特点8 功率放大电路的工作状态与效率的关系8.2 互补对称功率放大电路8.2.1 双电源互补对称电路〔OCL电路〕8.2.2 单电源互补对称功率放大器〔OTL〕8.2.3 甲乙类互补对称功率放大器8.2.4 复合管互补对称功率放大器8.2.5 实际功率放大电路举例8.3 集成功率放大器8.3.1 集成功率放大器概述8.3.2 集成功放应用简介8.4 功率放大器实际应用电路OCL功率放大器实际应用电路OTL功率放大器实际应用电路集成功率放大器实际应用电路功率放大器应用中的几个问题本章小结习题第9章信号发生电路9.1 正弦波发生电路9.1.1 正弦波发生电路的工作道理和条件9.1.2 RC正弦波振荡电路9.1.3 LC正弦波振荡电路9.1.4 石英晶体正弦波振荡电路9.2 电压比较器单门限电压比较器迟滞比较器窗口比较器集成电压比较器9.3 非正弦波发生电路9.3.1 方波发生电路9.3.2 三角波发生电路9.3.3 锯齿波发生电路集成函数发生器简介本章小结习题第10章直流稳压电源10.1 引言10.2 整流电路10.2.1 单相半波整流电路单相全波整流电路10.2.3 单相桥式整流电路10.3 滤波电路10.3.1 电容滤波电路10.3.2 电感滤波电路10.3.3 LC滤波电路Π型滤波电路10.4 线性稳压电路10.4.1 直流稳压电源的主要性能指标10.4.2 串联型三极管稳压电路10.4.3 提高稳压性能的办法和庇护电路10.4.4 三端集成稳压器10.5 开关式稳压电路10.5.1 开关电源的控制方式10.5.2 开关式稳压电路的工作道理及应用电路10.5.3 脉宽调制式开关电源的应用电路本章小结习题。
电子技术基础(恩施职业技术学院第4章 集成运算放大器的应用
- ui +
∞
+ uo
电压跟随器
Δ
,这时输出电压跟随输入电
压作相同的变化,称为电压跟随器。
例 在图示电路中,已知R1=100kΩ, Rf=200kΩ ,ui=1V,求输 出电压uo,并说明输入级的作用。
Rf - ui +
∞
+ R1 uo1 R2 - +
解 输入级为电压跟随器,由于是电压串联负反馈,因 而具有极高的输入电阻,起到减轻信号源负担的作用。且 u o1 u i 1 V ,作为第二级的输入。 第二级为反相输入比例运算电路,因而其输出电压为: Rf 200 uo u o1 1 2 (V) R1 100
学习要点
第4章 集成运算放大器的应用
模拟运算电路 4.2 信号处理电路 4.3 波形发生电路 4.4 使用运算放大器 应注意的几个问题
4.1
4.1 模拟运算电路
4.1.1 比例运算电路
1、反相输入比例运算电路
根据运放工作在线性区的两条 分析依据可知:i1 i f ,u u 0 而
4.1.2 加法和减法运算电路
1、加法运算电路
根据运放工作在线性区的两条分析依据可知:
i f i1 i 2
i1
u i1 ui2 uo i i ,2 ,f R1 R2 RF RF RF u o ( u i1 ui2 ) R1 R2
- +
∞
+ uo
输入电阻为:
u i R1i1 ri R1 100 k i1 i1
平衡电阻为:
R 2 R1 // R f1 R f2 // R f3 100 //200 50 // 1 66.8 k
电子技术基础马磊主编 课后练习填空题整理
示为(������������������������������������������������������������������������)������������������������������������������,用余 3 码可表示为(������������������������������������������������������������������������)余������码。
������������
反 向 电 压 ������������������ =50 ������ V , 若 采 用 桥 式 整 流 电 路 , 二 极 管 承 受 的 最 大 反 向 电 压 ������������������ =50 ������V, 若采用半波整流电容滤波电路, 二极管承受的最大反向电压������������������ =100V, 若采用桥式整流电容滤波电路,二极管承受的最大反向电压������������������ =50 ������V。 (4) 已知负载上的直流电 流 ������������ =100mA ,若采用半波 整流电路,通过二极管 的电流 (5) (6) (7) (8) (9) (10) 第六章 (1) (2) ������������ =100mA,若采用桥式整流电路,通过二极管的电流������������ =50mA。 电容滤波电路中的电容与负载相并联,适用于负载电阻比较大的场合,交 电时间常数越大,输出波形脉动越小。 电感滤波电路中的电感与负载相串联,适用于负载电阻较小的场合。 对二极管产生较大冲击电流的是电容滤波电路,对二极管产生较小冲击电 流的是电感滤波电路。 如果通过稳压管的反射电流小于������������min ,则稳压管工作在截止状态,这时稳 压管不起稳压作用。 串联型稳压电路由采样环节、基准环节、放大环节、调整环节四个环节构成。 三端集成稳压器 W7809 输出正电压 9V,W7909 输出负电压-9V。 数字电路基础 输入有 0 得 1,全 1 为 0 是与非门;输入相同为 0,相异为 1 是异或门。 三极管具有放大、饱和、截止三种状态,在模拟电路中,三极管工作在放大状态, 在数字电路中,三极管工作在截止和饱和状态。
电工电子学_集成运算放大器
24
9.3 集成运放在信号运算方面的应用
由于开环电压放大倍数Auo很高,集成运放开环工作时线性区很 窄。因此,为了保证运放处于线性工作区,通常都要引入深度负反馈。 集成运放引入适当的负反馈,可以使输出和输入之间满足某种特定的 函数关系,实现特定的模拟运算。当反馈电路为线性电路时,可以实 现比例、加法、减法、积分、微分等运算。
图9.2.1 反馈放大电路框图
电路中的反馈是指将电路的输出信号(电压或电流)的一部分或全部 通过一定的电路(反馈电路)送回到输入回路,与输入信号一同控制 电路的输出。可用图9.2.1所示的方框图来表示。
16
2. 反馈的分类
(1)正反馈和负反馈 根据反馈极性的不同,可以分为正反馈和负反馈。 (2)直流反馈和交流反馈 根据反馈信号的交直流性质,可以将反馈分为直流反馈和交流反馈。 (3)电压反馈和电流反馈 根据输出端反馈采样信息的不同,可以将反馈分为电压反馈和电流反 馈。 (4)串联反馈和并联反馈 根据反馈信号与输入信号在放大电路输入端联结方式的不同,可以将 反馈分为串联反馈和并联反馈。
9
3. 输入和输出方式
差放电路有双端输入和单端输入两种输入方式。同样也有双端 输出和单端输出两种输出方式。因此,差动放大电路共有四种输入输 出方式。 (1)双端输入双端输出 (2)双端输入单端输出 (3)单端输入双端输出 (4)单端输入单端输出
10
4. 共模抑制比
差动放大电路对差模信号和共模信号都有放大作用,但对差动 放大电路来说,差模信号是有用信号,共模信号则是需要抑制的。因 此要求差放电路的差模放大倍数尽可能大,而共模放大倍数尽可能小。 为了衡量差放电路放大差模信号和抑制共模干扰的能力,引入共模抑 制比作为技术指标,用KCMR表示。其定义为差模电压放大倍数与共 模电压放大倍数之比,即 A (9.1.11) K ud
电子技术基础-第4章
整理得 uO1R Rf 13uI1uI2
图4-18 同相加法运算电路
28
【例4-1】 电路如图4-19所示。设A为理想集成运放, R1=10kΩ,Rf=100kΩ。试求:输出电压uO与输入电压uI之 间的关系,并说明该电路实现了什么运算功能。
解 根据理想集成运放的两条结论,利用“虚短”和“虚断” 的概念,有:uN=up=uI, iI=0
( a)
( b)
( c)
非线性集成电路
3
( d)
( e)
(a)为圆壳式
(b)为双列直插式 (c)为扁平式 (d)为单列直插式 (e)为菱形式
( a)
( b)
( c)
( d)
( e)
4
4.1 直接耦合放大电路
两级直接耦合放大电路如图4-1所示
图4 –1 两级直接耦合放大器电路
5
4.1.1 直接耦合放大器和组成及其零点漂移现 象
③输出级 输出级具有输出电压线性范围宽,输出电阻小(即带负载 能力强),非线性失真小等优点。多采用互补对称发射极输 出电路。
17
Байду номын сангаас
④偏置电路 偏置电路用于设置集成运放各级放大电路的静态工作点。与 分立元件不同,集成运放多采用电流源电路为各级提供合适 的集电极(或发射极、漏极)静态工作电流,从而确定了合 适的静态工作点。 集成运放的电路符号如图4-10所示。图(a)为国外常用符号, 图(b)为我国常用符号。
19
(2)直流参数 ①输入失调电压UIO及其温漂dUIO/dT 理想集成运放,当输入为零时,输出也为零。但实际集成运放的 差分输入级不易做到完全对称,在输入为零时,输出电压可能不 为零。为使其输出为零,人为的在输入端加一补偿电压,称此补 偿电压为输入失调电压,用UIO表示。 ②输入失调电流IIO及其温漂dIIO/dT 集成运放在常温下,当输出电压为零时,两输入端的静态电流之 差,称为输入失调电流,用IIO表示,
(完整版)电子技术基础教学大纲
电子技术基础教学大纲电子技术基础是入门性质的技术基础课,它既有自身的理论体系,又有很强的实践性。
本课程的任务是使学生获得电子技术方面的基本理论、基本知识和基本技能,培养分析问题和解决问题的能力,为今后进一步学习、研究、应用电子技术打下基础。
本课程是我院工科电类专业的必修课。
模拟部分教学大纲学时:55 学分:4适用专业:电子类、自控类、计算机类专业(高职高专)先修课程:《大学物理》、《电工技术基础》一、课程内容和基本要求第一章半导体器件1、正确理解PN结的形成及其单向导电作用,熟练掌握二极管、稳压管的外特性和主要参数。
2、正确理解半导体三极管的结构及工作原理,熟练掌握外特性和主要参数。
第二章基本放大电路1、正确理解放大的基本概念,放大电路的主要指标,掌握放大电路的组成特点。
2、掌握放大电路定性分析方法及静态工作点的估算方法。
3、熟练掌握放大电路的等效电路法,会计算静态工作点,能用微变等效电路计算放大电路的电压放大倍数、输入和输出电阻。
4、正确理解放大器失真产生的原因及解决的办法,放大电路频率特性的概念及其频率特性。
5、了解级间耦合放大电路的工作原理及指标的估算,选频放大电路。
第三章场效应管放大电路1、正确理解结型场效应管和绝缘栅场效应管的结构、工作原理,掌握特性曲线和主要参数。
2、确理解场效应管放大电路结构,工作原理。
第四章集成运算放大电器1、熟练掌握集成运算放大器的组成、性能特点和基本单元电路。
2、正确理解差动放大器的组成、工作原理及应用,了解通用型集成运算放大器的主要性能指标。
3、了解集成运放的应用及两种基本电路。
第五章负反馈放大电路1、练掌握反馈的基本概念和分类,会判断反馈放大电路的类型和极性。
2、熟练掌握负反馈的四种组态及其对放大电路性能的影响。
第六章集成运算放大器的应用1、练掌握由集成运放组成线性电路和非线性应用电路的方法和应用知识。
2、练掌握由集成运算放大器组成的比例、加减法和积分运算电路、信号处理电路等的结构及分析方法。
电子技术基础
图1-1二极管的伏安特性曲线①OA段:死区。
死区电压:硅管为05V,锗管为02V
②AB段:正向导通区。
导通电压:锗管为07V,硅管为03V。
(2)反向特性:
①OC段:反向截止区。
反向截止区的特点:
随反向电压增加,反向电流基本不变,电流值比较小。只有当温度升高时,反向电流才会增加。
(2)求交流放大系数时,取△IB=20μA,△IC=1 mA,则交流放大系数β=△IC/△IB=50。
(3)当基极IB=0时,对应集电极电流即为ICEO的值,根据三极管的输出特性,IB=0的曲线对应的集电极电流IC约为02 mA。
第一章半导体器件的基础知识
第二章二极管应用电路
第三章三极管基本放大电路
第四章负反馈放大器
第五章正弦波振荡器
第六章集成运算放大器
第七章功率放大器
第八章直流稳压电源
第九章晶闸管及应用电路
第十章逻辑门电路
第十一章数字逻辑基础
第十二章组合逻辑电路
第十三章集成触发器
第十四章时序逻辑电路
6 PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界处就会出现一个特殊的接触面,称为PN结。
7 PN结内电场的方向:由N区指向P区。内电场将阻碍多数载流子的继续扩散,又称为阻档层或耗尽层。
8 PN结的反向击穿是指PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的反向击穿。
半导体器件是各种电子线路的核心,晶体二极管和晶体三极管及场效应管是应用广泛的半导体器件之一,熟悉并掌握这些半导体器件的结构、特性及主要参数是本章的重点。
第4章 集成电路运算放大电路
④动态时ΔiO约为多少?
4.3 集成运放电路简介
•电压放大倍数高 集成运放的特点: •输入电阻大 •输出电阻小 已知电路图,分析其原理和功能、性能。 (1)了解用途:了解要分析的电路的应用场合、用途和技术 指标。 (2)化整为零:将整个电路图分为各自具有一定功能的基本 电路。 (3)分析功能:定性分析每一部分电路的基本功能和性能。 (4)统观整体:电路相互连接关系以及连接后电路实现的功 能和性能。 (5)定量计算:必要时可估算或利用计算机计算电路的主要 参数。
4.2.1 基本电流源电路
一、镜像电流源
T0 和 T1 特性完全相同。
U BE0 = U BE1 U BE I B0 = I B1 I B I C0 = I C1 I C
I R IC 2I B IC 2 IC IC
2
I R 即I C1
当β>>2时, I C1
学习指导 4.1 集成运算放大电路概述 4.2 集成运放中的电流源 4.3 集成运放电路的简介 4.4 集成运放的性能指标及低频等效电路
4.5 集成运放的种类及选择(自学) 4.6 集成运放的使用(自学) 小结
作 业
• 4.3
学习指导
在半导体制造工艺的基础上,将整个电路中的元 器件制作在一块硅基片上,构成特定功能的电子电路, 称为集成电路。 其体积小,而性能却很好。 集成电路按其功能分,有模拟集成电路和数字集 成电路。模拟集成电路的种类繁多,其中集成运算放 大器(简称集成运放)是应用极为广泛的一种。 主要内容:(1)集成运放中的电流源;(2)集成运放 电路的分析;(3)集成运放及主要性能指标。 基本要求:(1)熟悉运放的组成及各部分的作用, 理解主要性能指标及其使用注意事项;(2)了解镜 像电流源、微电流源的工作原理、特点和主要用途; (3)了解运放F007的基本组成和工作原理。(4)熟悉 LM324集成运放的引脚分布及其应用。
电子技术基础第四章 习题答案
4.3 在分析反相加法、差分式减法、反相积分和微分电路中,所根 据的基本概念是什么?KCL是否得到应用?如何导出它们输入-输出的 关系?
答:所根据的基本概念是虚短、虚断。KCL在分析反馈电流与比较 电流的关系时得到应用。根据反馈电流与比较电流的关系导出输出-输 入的关系。
第4章 习 题
4.1 在反相求和电路中,集成运放的反相输入端是如何形成虚地 的?该电路属于何种反馈类型?
答:在反相求和电路中,集成运放的反相输入端是等于同相输入端 的电压,而同相端接地,所以在反相形成虚地。该电路属于电压并联负 反馈
4.2 说明在差分式减法电路中,运放的两输入端存在共模电压,为 提高运算精度,应选用何种运放?
输出波形如图(b)。传输特性如图(c).
答: 4.10求图所示电路的输出电压uo,设运放是理想的
; ; ; ; 将电路中的电阻参数代入上式得
; ;;
整理后: 代入 中 =2.31u3+1.16u4-2u2-1.25u1 4.11 画出实现下述运算的电路:
uo=2ui1-6ui2+3ui3-0.8ui4
4.12 图为积分求和运算电路,设运放是理想的,试推导输出电压与 各输入电压的关系式。
解:根据虚断:i1+i2+i3=if 4.13 实用积分电路如图所示,设运放和电容均为理想的。 (1)试求证:;
(2)说明运放A1、A2各起什么作用?
解:
;; ∵ Rf=R2 R1=R3 ∴ ∵ ①;将 代入①后u01得:
对等式两边积分得: - 4.14 求图所示比较器的阀值,画出传输特性。又若输入电压uI波形 如图所示时,画出uo波形(在时间上必须与uI对应)。 解:uo=6V时 uo=-6V时
《电工电子技术基础》教学大纲
《电工电子技术基础》教学大纲课程类别:必修课适用专业:计算机应用技术、计算机网络技术、信息安全技术授课学时:32课程学分:2一、课程性质、任务《电工电子技术基础》(内容包括电路、模拟电子技术基础、数字电路技术基础)是计算机类大学专科学生重要的技术基础课之一。
是从事计算机软、硬件开发和应用的人员必备的专业基础。
这门课是计算机网络技术专业、信息安全技术专业的主干课,也是计算机应用技术专业的重要课程。
理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力,为以后学习计算机组成原理、微机原理、等后续课程的学习以及从事数字电子技术领域的工作打下扎实的基础。
二、课程培养目标:知识目标1.电工与电子技术中的基本概念和基本原理;2.常用电子设备和电子器件的特性及应用范围、途径;3.电的基本规律和电路的分析方法;4.一般电气设备的使用、维护和安全用电知识;5.半导体器件基础和模拟、数字电子技术知识;6.电工电子实验技能和方法所需理论基础技能目标1.能阅读简单的电路原理图及设备的电路方框图;2.具有查阅手册等工具书和设备铭牌、产品说明书、产品目录等资料的能力;3.能理论分析判断电路及电子元件的简单故障;4.具有收集整理实验数据,绘制特性曲线,完整地写出规范实验报告的能力素质目标本课程的教学目标是:使学生具备高素质劳动者和中初级专门人才所必需的电工与电子技术的基本知识和基本技能,初步形成解决实际问题的能力,为学习专业知识和职业技能打下基础,并注意渗透思想教育,逐步培养学生的辨证思维,加强学生的职业道德观念,与行业认证《中级电工》、《高级电工》接轨。
以培养应用型工程技术人才为目标。
三、选用教材与参考资料教材版本信息《电工电子技术基础》,主编:李中发,中国水利水电出版社,2006,ISBN 7-5084-1608-2 教材使用评价本教材内容精练,基本概念清楚;系统性强,使学生建立完整有序的概念;知识结构合理,为进一步学习有关后续课程和实际应用打下良好的基础;理念教学与实践教学紧密结合,注重学生的智力开发和能力培养;力图反映新技术、新动向,以适应电工电子技术发展和变化的需要。
第四章集成运算放大电路
( R L // rce 2 // rce 4 )
rbe
若RL<<(rce1∥rce2), 则
Au
RL
rbe
返回
4.3 集成运放电路简介
图4.3.1 F007电路原理图
图4.3.2 F007电路中的放大电路部分
1. 输入级 在输入级中,T1 、T3 和T2 、T4 组成共集-共基差分放大电 路, T5~T7和电阻R1~R3构成改进型电流源电路,作为差放的有
号变化速度的适应能力,是衡量运放在大幅值信号作用时工作
速度的参数,单位为V/μs。在实际工作中,输入信号的变化律
一定不要大于集成运放的SR。信号幅值越大、频率越高,要求 集成运放的SR就越大。
理想运算放大器
理想运放的技术指标
在分析集成运放的各种应用电路时,常常将集成运放看成 是理想运算放大器。所谓理想运放, 就是将集成运放的各项技术
图4.2.2 比例电流源
图4.2.3 微电流源
二、 改进型的镜像电流源(获得稳定输出的电流)
1. 加射极输出器的电流源
2. 威尔逊电流源
三、 多路电流源电路
IR IE0 I C1 I E1 IC 2 IE2 IC3 IE3 Re0 R e1 Re0 Re2 Re0 Re3 IR
IR I c1 V CC U R
BE
2
IR IR
2. 比例电流源
IR V cc U
BE 0
3. 微电流源
Re0 R e1 IR
I C1 I E1 U BE 0 U BE 1 Re
IC1 UT Re 1n IR IC1
R Re0
, I c1
集成运算放大器及应用—集成运放的非线性应用(电子技术课件)
(a)反相输入
(b)同相输入
图3.3.9 输入保护电路
(3)输出保护 利用稳压管V1和V2接成反向串联电路。若输出端出现过高电压,集成运放输
出端电压将受到稳压管稳压值的限制,从而避免了损坏。
由于大部分集成运放内部电路的改进,已不需要外加补偿网络。
3.保护电路 (1)电源极性的保护 利用二极管的单向导电特性防止由于电源极性接反而造成的损坏。当
电源极性错接成上负下正时,两二极管均不导通,等于电源断路,从而起 到保护作用。
图3.3.8 电源极性保护电路
(2)输入保护 利用二极管的限幅作用对输入信号幅度加以限制,以免输入信号超过额定值损坏
由图可见,他们之间存在差值称为回差电 压或迟滞宽度u,用 表示,即:
图3.3.7 滞回电压比较器的传输特性
u Uth1 Uth2
三、集成运放使用常识 1.零点调整 方法:将输入端短路接地,调整调零电位器,使输出电压为零。 2.消除自激振荡 方法:加阻容补偿网络。具体参数和接法可查阅使用说明书。目前,
滞回比较器具有两个不同的阈值,且相差较大(通常称我电压 滞回特性),即惯性,因而也就具有一定的抗干扰能力。
(1)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相
输入端的电位为:
u
R1 R1 R2
F
Uth1
(2)滞回电压比较器中的阈值电压
图3.3.6 滞回电压比较器
当 uo U om 时,集成运放同相输入端
的电位为:
u
23124-第4单元-集成运算放大器
• 由于运算放大器的输入级是差分放大电路, 而它的中间级和末级只是把差分放大电路 输出的信号进行放大,故它的输入、输出 电压的关系和差分放大电路相同,即 uo=K(u2−u1)
• 式中,u2——运算放大器同相信号输入端 电压。 • u1——运算放大器反相信号输入端电压。
• 由此可见,输出电压uo和同相输入端电压 u2及反相输入端电压u1之差成正比。 • K为比例系数,就是电压放大倍数。
② 通用Ⅱ型中增益运放。
• dIos约为5~20nA/℃。
③ 低漂移运放。
• dIos约为100pA/℃。
6.输入失调电压温漂dUos
• 在规定的工作温度范围内,Uos随温度的 平均变化率,即dUos=Uos/T,一般为1~ 50V/℃,高质量的低于0.5V /℃。
• 由于该指标不像Uos可以通过调零进行补 偿,因此更为重要。
图4-3 集成运算放大器的典型电路
1.输入级
• 集成运算放大器的输入级,一般采用恒流 源的差分放大电路,有2个输入端。
(1)同相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相同的同相信号。
(2)反相输入端
• 信号若从这一端输入,在输出端可得到与 输入端极性相反的反相信号。
• 信号可根据需要从某一端输入,也可同时 从2个端子作差分输入。
• 再根据使用特点确定运算放大器的指标 (差模电压放大倍数、输入电阻,共模抑 制比、失调电压温漂、失调电流温漂、最 大共模电压及最大差模电压等),根据主 要指标,从IC手册中选取相应的型号。
4.2 集成运算放大器的主要参数
4.2.1 开环特性参数
• 集成运算放大器的开环特性参数主要有以 下几个方面。
7.输入偏置电流IB
运算放大器原理及应用
集成运算放大器将电路的元器件和连线制作在同一硅片上,制成了集成电路。
随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。
按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。
运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。
集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。
一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。
图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。
中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。
输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。
偏置电路向各级提供静态工作点,一般采用电流源电路组成。
2. 特点:142○1 硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。
○2 运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。
○3 电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个 ○4 用有源元件代替大阻值的电阻 ○5 常用符合复合晶体管代替单个晶体管,以使运放性能最好 3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P 和v N 和一个输出端v O ,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。
模拟电子技术基础第4章
图4.2.2 同相输入放大电路
放大电路的输入电阻Ri→∞ 放大电路的输出电阻Ro=0 图4.2.3 电压跟随器
4.2.3 差动输入(Differential input)放大电路
图 4.2.5 所示为差动输入放大电路,它的两个输入端都有 信号输入。 ui1通过R1接至运放的反相输入端,ui2通过R2、R3分压后接 至同相输入端,而uo通过Rf、R1反馈到反相输入端。
三、开方运算
平方根运算电路如图4.3.5 所示,与图4.3.2所示的除法电路比 较可知,它是上述除法电路的一个特例,如将除法电路中乘法 器的两个输入端都接到运放的输出端,就组成了平方根运算电 路。
图4.3.5 平方根运算电路
4.4
有源滤波器
滤波器的功能及其分类
4.4.1
滤波器是从输入信号中选出有用频率信号并使其顺利通过, 而将无用的或干扰的频率信号加以抑制的电路。 只用无源器件R、L、C 组成的滤波器称为无源滤波器,采用 有源器件和R、C元件组成的滤波器称为有源滤波器。 同无源滤波器相比,有源滤波器具有一定的信号放大和带 负载能力可很方便的改变其特性参数等优点; 此外,因其不使用电感和大电容元件,故体积小,重量轻。 但是由于集成运放的带宽有限,因此有源滤波器的工作频率较 低,一般在几千赫兹以下,而在频率较高的场所,采用LC无源 滤波器或固态滤波器效果较好。
通常用分贝数dB表示,则为
一般情况希望Aod越大越好, Aod越大,构成的电路性能 越稳定,运算精度越高。 Aod一般可达100dB,最高可达140dB 以上。 2、输入失调电压UIO及其温漂 dUIO/dT 如果集成运放差动输入级非常对称,当输入电压为零时,
输出电压也应为零(不加调零装置)。但实际上它的差动输入
模拟电子技术(西电第三版)第4章 差动放大电路与集成运算放大器
4
实图4.1 LM741的管脚排列及序号 (a) 外引脚排列顺序;(b) 符号
5
2. 负反馈的引入 由第3章可知,放大器引入负反馈后,可以改善很多性 能。集成运放若不接负反馈或接正反馈,只要有一定的输入 信号(即使是微小的输入信号),输出端就会达到最大输出值 (即饱和值),运放的这种工作状态称为非线性工作状态。非 线性工作状态常用在电压比较器和波形发生器等电路中,这 里暂不考虑。集成运放引入负反馈后,就可工作于线性状态。 线性状态时,输出电压Uo与输入电压Ui之间的运算关系仅取 决于外接反馈网络与输入端的外接阻抗,而与运算放大器本 身参数无关。这一点大家在实训中要充分体会。
6
3. 反相比例运算电路 依外接元件连接的不同,集成运放可以构成比例放大、 加减法、微分、积分等多种数学运算电路。本实训只进行其 中一种运算——反相比例运算的练习。 反相比例运算电路如实图4.2所示。输入信号Ui从反相 输入端输入,同相输入端经电阻接地。这个电路的输出与输 入之间有如下关系:
7
即输出电压与输入电压成比例,比例系数仅与外接电阻Rf、 R1有关,与运放本身的参数无关。同相端所接R2、R3称为平 衡电阻,其作用是避免由于电路的不平衡而产生误差。
43
图 4.1.9 加调零电位器的差动放大器 (a) 射极调零;(b) 集电极调零
44
例4.1.2 图4.1.10(a)为带恒流源及调零电位器的差动 放大器,二极管VD的作用是温度补偿,它使恒流源IC3基本 不受温度变化的影响。设UCC=UEE=12 V,Rc=100 kΩ, RP=200 Ω,R1=6.8 kΩ,R2=2.2 kΩ,R3=33 kΩ,Rb= 10 kΩ,UBE3=UVD=0.7 V,各管的β值均为72,求静态时的 UC1,差模电压放大倍数及输入、输出电阻。
集成运算放大器及其应用
集成运算放⼤器及其应⽤第5章集成运算放⼤器及其应⽤在半导体制造⼯艺的基础上,把整个电路中的元器件制作在⼀块硅基⽚上,构成具有特定功能的电⼦电路,称为集成电路。
集成电路具有体积⼩,重量轻,引出线和焊接点少,寿命长,可靠性⾼,性能好等优点,同时成本低,便于⼤规模⽣产,因此其发展速度极为惊⼈。
⽬前集成电路的应⽤⼏乎遍及所有产业的各种产品中。
在军事设备、⼯业设备、通信设备、计算机和家⽤电器等中都采⽤了集成电路。
集成电路按其功能来分,有数字集成电路和模拟集成电路。
模拟集成电路种类繁多,有运算放⼤器、宽频带放⼤器、功率放⼤器、模拟乘法器、模拟锁相环、模/数和数/模转换器、稳压电源和⾳像设备中常⽤的其他模拟集成电路等。
在模拟集成电路中,集成运算放⼤器(简称集成运放)是应⽤极为⼴泛的⼀种,也是其他各类模拟集成电路应⽤的基础,因此这⾥⾸先给予介绍。
5.1 集成电路与运算放⼤器简介5.1.1 集成运算放⼤器概述集成运放是模拟集成电路中应⽤最为⼴泛的⼀种,它实际上是⼀种⾼增益、⾼输⼊电阻和低输出电阻的多级直接耦合放⼤器。
之所以被称为运算放⼤器,是因为该器件最初主要⽤于模拟计算机中实现数值运算的缘故。
实际上,⽬前集成运放的应⽤早已远远超出了模拟运算的范围,但仍沿⽤了运算放⼤器(简称运放)的名称。
集成运放的发展⼗分迅速。
通⽤型产品经历了四代更替,各项技术指标不断改进。
同时,发展了适应特殊需要的各种专⽤型集成运放。
第⼀代集成运放以µA709(我国的FC3)为代表,特点是采⽤了微电流的恒流源、共模负反馈等电路,它的性能指标⽐⼀般的分⽴元件要提⾼。
主要缺点是内部缺乏过电流保护,输出短路容易损坏。
第⼆代集成运放以⼆⼗世纪六⼗年代的µA741型⾼增益运放为代表,它的特点是普遍采⽤了有源负载,因⽽在不增加放⼤级的情况下可获得很⾼的开环增益。
电路中还有过流保护措施。
但是输⼊失调参数和共模抑制⽐指标不理想。
第三代集成运放代以⼆⼗世纪七⼗年代的AD508为代表,其特点使输⼊级采⽤了“超β管”,且⼯作电流很低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.5串联型稳压电路
4.5.3 稳压电路 4.具有放大环节的串联型稳压电路 (1)电路组成
4.5串联型稳压电路
4.5.3 稳压电路 4.具有放大环节的串联型稳压电路 (2)稳压过程
若反馈回来的信号只有直流成分,称为直流反馈;若 只有交流成分,称为交流反馈;若交直流成分都有,称 为交直流反馈。
判断方法:分析引入输入端的反馈量是什么信号。
4.2 放大电路中的负反馈
4.2.1 反馈的基本概念、类型及判断方法 2.反馈的类型及判断方法
(2)正反馈和和负反馈 反馈使放大器的净输入信号得到增强的是正反馈;反
(3)复式滤波电路
4.5串联型稳压电路
4.5.3 稳压电路 1.晶体管串联型稳压电路原理框图
由调整元件、取样电路、基准电压和比较放大等部分 组成。由于调整元件与负载串联,所以称为串联型稳压 电路。
4.5串联型稳压电路
4.5.3 稳压电路 2.硅稳压管并联稳压电路
4.5串联型稳压电路
4.5.3 稳压电路 3.基本调整管稳压电路
4.5.2整流、滤波电路 1.整流电路
(2)工作原理
4.5串联型稳压电路
4.5.2整流、滤波电路 1.整流电路
(3)负载上的直流电压和直流电流
4.5串联型稳压电路
4.5.2整流、滤波电路 1.整流电路
(4)对整流二极管的选用要求
4.5串联型稳压电路
4.5.2整流、滤波电路 1.整流电路
(5)单相桥式整流电路的特点 1)整流效率高,变压器结构简单,输出脉动小。 2)整流二极管数量多,电路连接复杂,容易出错。为
4.1集成运算放大器概述
4.1.3集成运算放大器的传输特性
4.2 放大电路中的负反馈
4.2.1 反馈的基本概念、类型及判断方法 1.反馈的基本概念
反馈指将放大电路的输出量的一部分或全部,按一定 的方式,通过反馈网络反向送回输入回路,从而影响输 入量的过程。
4.2 放大电路中的负反馈
4.2.1 反馈的基本概念、类型及判断方法 2.反馈的类型及判断方法 (1)直流反馈和交流反馈
4.1集成运算放大器概述
4.1.1 集成运算放大器组成及符号 1.集成运算放大器的组成
集成运算放大器(简称集成运放)实质上是一个具有 高放大倍数的直接耦合多级放大电路,它通常由输入级、 中间级、输出级以及偏置电路组成。
4.1集成运算放大器概述
4.1.1 集成运算放大器组成及符号 2.集成运算放大器的符号
4.4.1单门限电压比较器 单门限电压比较器是指只有一个门限电平的电压比较
器,当输入电压大于此门限电平时,输出端的状态立即 发生跳变。
4.4 集成运算放大器的非线性应用
4.4.2滞回电压比较器
4.5串联型稳压电路
4.5.1 1
特性指标指表明稳压电源工作特征的参数,具体如下: (1)输入电压及其变化范围; (2)输出电压及输出电压调节范围; (3)额定输出电流(指电源正常工作时的最大输出电流) 以及过流保护电流值。 2
质量指标指衡量稳压电源稳定性能状况的参数,如电 压调整率SU、电流调整率SI、输出电阻及纹波电压等。 (1)电压调整率SU (2)电流调整率SI (3)输出电阻RO(或内阻) (4)纹波电压S
Hale Waihona Puke 4.5串联型稳压电路4.5.2整流、滤波电路 1.整流电路
以桥式整流电路为例进行分析。 (1)电路组成
4.5串联型稳压电路
1)工作原理
4.5串联型稳压电路
4.5.2整流、滤波电路 2.滤波电路
(1)电容滤波电路 2)滤波电容和整流二极管的选择 ①滤波电容的选择与输出电压的估算 ②整流二极管的选择
4.5串联型稳压电路
4.5.2整流、滤波电路 2.滤波电路
(2)电感滤波电路
4.5串联型稳压电路
4.5.2整流、滤波电路 2.滤波电路
解决这一问题,生产厂家常将整流二极管集成在一起构 成桥堆。
4.5串联型稳压电路
4.5.2整流、滤波电路 2.滤波电路 整流电路输出的直流电压脉动大,仅适用于对直流电
压要求不同的场合,如电镀、电解等设备。 (1)电容滤波电路
它是利用电容两端的电压不能突变的特性,与负载并 联,使负载得到较平滑的电压。
4.2 放大电路中的负反馈
4.2.2负反馈对放大器性能的影响 1.提高放大倍数的稳定性 2.减小非线性失真 3.展宽放大电路的通频带 4.改变放大电路的输入电阻和输出电阻
4.3集成运算放大器的线性应用
4.3.1比例运算电路 1.反相输入比例运算电路
4.3集成运算放大器的线性应用
4.3.1比例运算电路 2.同相输入比例运算电路
4.3集成运算放大器的线性应用
4.3.2加减运算电路 1.加法电路
4.3集成运算放大器的线性应用
4.3.2加减运算电路 2.减法电路
4.3集成运算放大器的线性应用
4.3.3微分、积分电路 1.积分电路
4.3集成运算放大器的线性应用
4.3.3微分、积分电路 2.微分电路
4.4 集成运算放大器的非线性应用
之,使净输入信号减弱的是负反馈。 判断电路的反馈极性时常采用“瞬时极性法”。
4.2 放大电路中的负反馈
4.2.1 反馈的基本概念、类型及判断方法 2.反馈的类型及判断方法
(3)电压反馈和电流反馈 如果反馈信号取自输出电压,即以放大电路的输出电
压作为反馈网络的输入信号,称为电压反馈;如果反馈 信号取自输出电流,称为电流反馈。 判断方法:将放大电路输出电压短路,如果反馈信号为 零,就是电压反馈;否则是电流反馈。
4.2 放大电路中的负反馈
4.2.1 反馈的基本概念、类型及判断方法 2.反馈的类型及判断方法
(4)串联反馈和并联反馈 如果反馈信号与输入信号在输入回路上串联,则为串
联反馈;如果反馈信号与输入信号在放大电路的输入端 并联,则为并联反馈。
判断方法:将反馈加入点对地短路,如果输入信号仍 能加入到输入回路的反馈是串联反馈,否则是并联反馈。
4.1集成运算放大器概述
4.1.2 理想集成运算放大器 所谓理想运放就是指将集成运放的各项技术指标都理
想化,其主要性能指标有: ①开环差模电压放大倍数Aod→∞; ②差模输入电阻Rid→∞; ③差模输出电阻Rod→0; ④共模抑制比KCMR→∞(KCMR即差模放倍数与共模放
大倍数之比的绝对值); ⑤开环通频带fBW→∞。