有理数单元测试题2(初一数学第一章)
人教版七年级上册数学 第1章 有理数 单元测试卷(含答案)
人教版七年级上册数学第1章有理数单元测试卷一.选择题1.在﹣,π,0.03,0.25,12这五个数中,分数的个数为()A.4个B.3个C.2个D.1个2.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.如果收入200元记作+200元,那么支出150元记作()A.+150元B.﹣150元C.+50元D.﹣50元3.在﹣2,﹣1.5,0,这四个数中,最小的数是()A.﹣2 B.﹣1.5 C.0 D.4.将1,﹣2,﹣3,2这四个数分别用点表示在数轴上,其中与﹣1所表示的点最近的数是()A.1 B.﹣2 C.﹣3 D.25.在(﹣2)3、﹣(﹣3)、|﹣6|中,负数有()A.0个B.1个C.2个D.3个6.2+(﹣1)=()A.1 B.﹣1 C.3 D.﹣37.若m+n<0,mn<0,则必有()A.m>0,n>0 B.m<0,n<0 C.m,n异号且负数绝对值较大 D.m,n异号且正数绝对值较大8.把算式(﹣8)﹣(+4)+(﹣6)﹣(﹣4)写成省略加号的形式()A.﹣8+4﹣6﹣4 B.8+4﹣6﹣4 C.﹣8﹣4﹣6+4 D.8﹣4﹣6+49.2020的相反数是()A.2020 B.﹣2020 C.D.﹣10.若ab>0,则的值为()A.1 B.2或﹣1 C.1或﹣3 D.0二.填空题11.数轴上表示2的点和表示﹣3的点的距离是.12.下列各数中:,﹣3.1416,0,﹣,10%,17,﹣3.,﹣89;分数有个;非负整数有个.13.用“=,<,>”填空:0.1 ﹣100;﹣﹣.14.若a,b互为相反数,则(a+b﹣1)2016=.15.直播购物逐渐成为人们一种主流的购物方式,10月21日“双十一”正式开始预售,据官方数据显示,某直播间累计观看人数达到了16750000人.请把数16750000用科学记数法表示为.16.我国哈尔滨市某一天的最低气温和最高气温如图所示,这一天的温差为℃.17.已知|x|=5,y2=1,且xy<0,则x+y的值是.18.已知2y+8的绝对值3,则y的值为.19.有依次排列的3个数:3,9,8.对任相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,﹣1,8,这称为第一次操作;做第二次同样的操作后也可产生一个新数串:3,3,6,3,9,﹣10,﹣1,9,8,继续依次操作下去,问:从数串3,9,8开始操作第2020次以后所产生的那个新数串的所有数之和是. 20.如表列出了国外两个城市与北京的时差,如果现在是北京时间是上午10:00,那么现在的巴黎时间是.城市时差/h巴黎﹣7东京+1三.解答题21.已知一个最简分数的分子小于分母,且分子和分母的乘积是260,求满足条件的所有分数.22.求下列各组数的最小公倍数.(1)40和72;(2)24、36和60.23.将﹣1.5,﹣(﹣2),0,,﹣|﹣1|,+(﹣2.5)在数轴上表示出来,并用“<”把它们连接起来.24.2013年12月14日21时11分,嫦娥三号成功登陆月球.北京飞控中心通过无线电波控制,将“嫦娥三号”着陆器与巡视器成功分离的画面传回到大屏幕上.已知无线电波传播速度为3×105km/s,无线电波到月球并返回地面用2.57s,求此时月球与地球之间的距离(精确到1000km).25.计算:(1)3﹣(﹣4)+(﹣5);(2).26.计算:(1)31+(﹣28)+28+69;(2)(﹣32)﹣(﹣27)﹣(﹣72)﹣87;(3);(4).27.某食堂购进30袋大米,每袋以50千克为标准,超过的记为正,不足的记为负,称重记录如下:与标准的偏差(单位:千克)﹣2 ﹣1 0 +1 +2 +3袋数 5 10 3 1 5 6(1)求这30袋大米一共多少千克?(2)这30袋大米总计超过标准多少千克或不足多少千克?答案一.选择题1.B.2.B.3.A.4.B.5.B.6.A.7.C.8.C.9.B. 10. C.二.填空题11.5. 12.5,2. 13.>;>. 14.1. 15.1.675×107. 16.6.17.±4. 18.﹣或﹣. 19.10120. 20.凌晨3:00.三.解答题21.解:260的因数有:1,2,4,5,13,20,52,65,130,260.∵不是最简分数,∴满足条件的所有分数有:,,,.22.解:(1)利用短除法可求40和72的最小公倍数,所以40和72的最小公倍数为2×2×2×5×9=360;(2)利用短除法可求24、36和60的最小公倍数,所以24、36和60的最小公倍数为2×2×3×2×3×5=360.23.解:如图所示:从左到右用“<”连接为:.24.解:=3.855×105≈3.86×105.答:此时月球与地球之间的距离为3.86×105km.25.解:(1)3﹣(﹣4)+(﹣5)=3+4+(﹣5)=2;(2)﹣18×()=﹣18×﹣18×+18×=﹣9+(﹣12)+15=﹣6.26.解:(1)31+(﹣28)+28+69;=(31+69)+(﹣28+28)=100+0=100;(2)(﹣32)﹣(﹣27)﹣(﹣72)﹣87=(﹣32﹣87)+(27+72)=﹣119+99=﹣20;(3)=﹣5++7﹣=(﹣5+7)+﹣=2+﹣=;(4)=(﹣12﹣8)+(﹣)=﹣20+0.5=﹣19.5.27.解:(1)(﹣2)×5+(﹣1)×10+1×1+2×5+3×6=9(千克),30×50+9=1509(千克),答:这30袋大米一共1509千克;(2)(﹣2)×5+(﹣1)×10+1×1+2×5+3×6=9(千克),∵9>0,∴这30袋大米总计超过标准9千克》。
人教版七年级数学第一章《有理数》单元测试带答案解析
人教版七年级数学第一章《有理数》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2021年5月15日,我国“天问一号”探测器在火星成功着陆.火星具有和地球相近的环境,与地球最近时候的距离约55000000km .将数字55000000用科学记数法表示为( )A .80.5510⨯B .75.510⨯C .65.510⨯D .65510⨯2.2021年3月5 日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )A .4557510⨯B .555.7510⨯C .75.57510⨯D .80.557510⨯3.实数a ,b 在数轴上对应点位置如图所示,则下列不等式正确的是( )A .0a b <B .0a b ->C .0ab >D .0a b +>4.据国家统计局公布,我国第七次全国人口普查结果约为14.12亿人,14.12亿用科学记数法表示为( )A .914.1210⨯B .100.141210⨯C .91.41210⨯D .81.41210⨯ 5.如图,将数轴上6-与6两点间的线段六等分,这五个等分点所对应数依次为12345,,,,a a a a a .则与1a 相等的数是( )A .2aB .3aC .4aD .5a6.2022的相反数的倒数是( )A .2022B .12022-C .12022D .2022- 7.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3-8.若10x N =,则称x 是以10为底N 的对数.记作:lg x N =.例如:210100=,则2lg100=;0101=,则0lg1=.对数运算满足:当0M >,0N >时,()lg lg lg M N MN +=,例如:lg3lg5lg15+=,则()2lg5lg5lg 2lg 2+⨯+的值为( )A .5B .2C .1D .0 9.数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-10.实数a ,b ,c 在数轴上的对应点的位置如图所示,如果0a c +=,那么下列结论正确的是( )A .0b <B .a b <-C .0ab >D .0b c -> 11.如图,在探究“幻方”、“幻圆”的活动课上,学生们感悟到我国传统数学文化的魅力.一个小组尝试将数字5,4,3,2,1,0,1,2,3,4,5,6-----这12 个数填入“六角幻星”图中,使6条边上四个数之和都相等.部分数字已填入圆圈中,则a 的值为( )A .4-B .3-C .3D .412.一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是( )A .0B .100C .50D .﹣50二、填空题13.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.14.2022年2月4日,第24届冬奥会在北京开幕,据统计中国地区观看开幕式的人数约为316000000人,请将数字316000000用科学记数法表示出来_________.15.目前,我国基本医疗保险覆盖已超过13.5亿人,数据13.5亿用科学记数法表示为____________.16.已知数轴上的点A ,B 表示的数分别为2-,4,P 为数轴上任意一点,表示的数为x ,若点P 到点A ,B 的距离之和为7,则x 的值为 _____.三、解答题17.计算题:(1)()()()915128-+--+-(2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)2020311|24|(2)3----⨯+- (4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭18.()()113132⎛⎫---+-- ⎪⎝⎭. 19.“十一”黄金周期间,北京故宫游园人数大幅度增加,在7天假期中每天旅游的人数较之前一天的变化情况如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):(1)若9月30日故宫的游园人数为2.1万人,请你计算“十一”黄金周期间游客人数最多的是___________(填写日期),最少的是___________(填写日期),它们相差___________万人;(2)故宫门票是60元一张,请计算出“十·一”黄金周期间,北京故宫的门票总收入(万元).20.计算:()44881999⎛⎫-⨯-÷- ⎪.(1)解法1是从第______步开始出现错误的;解法2是从第______步开始出现错误的;(填写序号即可)(2)请给出正确解答.21.阅读下列材料:计算:1111()243412÷-+ 解法一:原式111111111113412243244241224242424=÷-÷+÷=⨯-⨯+⨯= 解法二:原式14311211()6241212122412244=÷-+=÷=⨯= 解法三:原式的倒数 1111111111()()24242424434122434123412=-+÷=-+⨯=⨯-⨯+⨯=, 所以,原式= 14(1)上述得到的结果不同,你认为解法___________是错误的;(2)请你选择合适的解法计算;12112()()3031065-÷-+- 22.(1)()()20171811-+----(2)()()3.75 5.18 2.25 5.18+---+(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭23.计算:(1)20(14)(18)13-+---- (2)()125366312⎛⎫-+⨯- ⎪⎝⎭(3)1599416⎛⎫-⨯ ⎪⎝⎭ (4)()221833235⎡⎤⎛⎫-+-⨯--÷ ⎪⎢⎥⎝⎭⎣⎦24.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数4-,点B 表示数5,点M 是点A ,B 的“联盟点”,点M 在A 、B 之间,且表示一个负数,则点M 表示的数为____________;(2)若点A 表示数2-,点B 表示数2,下列各数23-,0,4,6所对应的点分别为1C ,2C ,3C ,4C ,其中是点A ,B 的“联盟点”的是____________;(3)点A 表示数15-,点B 表示数25,P 为数轴上一点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,此时点P 表示的数是____________; ②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数____________.25.信息1:点A 、B 在数轴上表示有理数a ,b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =a b -;信息2:数轴是一个非常重要的数学工具,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合上面的信息回答下列问题:已知数轴上点A 、B 两点对应的有理数a ,b ,且a ,b 满足340a b -++=(1)填空:a =, b =,A ,B 之间的距离为;(2)数轴上的动点C 对应的有理数为c .①式子a c b c -+-最小值是,此时c 的取值范围是;②当9a c b c -+-=时,则c =;③式子a c b c d c -+-+-有最小值为9,则有理数d =;④式子12399c c c c 的最小值为.参考答案:1.B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将55000000用科学记数法表示为5.5×107.故选:B.【点睛】此题考查科学记数法的表示方法.熟练掌握科学记数法的表示形式并正确确定a 及n的值是解题的关键.2.C【分析】根据科学记数法的定义“把一个大于10的数表示成10na⨯的形式(其中a是整数位只有一位的数,即a大于或等于1且小于10,n是正整数),这样的记数方法叫做科学记数法”进行解答即可得.【详解】解:755750000 5.57510=⨯,故选C.【点睛】本题考查了科学记数法,解题的关键是熟记科学记数法的定义.3.C【分析】由题意可知a<b<0,故a、b同号,且|a|>|b|.根据有理数加减法乘除法法则可推断出各式的符号.【详解】解:由题意可知a<b<0,故a、b同号,且|a|>|b|.∴ab>0,a-b=a+|b|<0,ab>0,a+b<0;∴选项A、B、D错误,选项C正确,故选:C.【点睛】此题主要考查了不等式的基本性质和实数和数轴的基本知识点,比较简单.4.C【分析】根据把一个大于10的数记成a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:14.12亿91412000000 1.41210==⨯.故选:C.【点睛】本题主要考查了科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,解题的关键是确定a与n的值.5.D【分析】求出数轴上6-与6两点间的线段六等分的每一等分的长度,接着求出1a 的值,再求出1a 的绝对值,得到对应的数是5a .【详解】∵()6662--÷=⎡⎤⎣⎦,∴1624a -+=-=, ∴144a =-=,∵56254a =-+⨯=, ∴15a a =.故选D .【点睛】本题主要考查了数轴和绝对值,熟练掌握数轴的定义和表示数的方法,绝对值的几何意义和计算方法,是解决此类问题的关键.6.B【分析】根据和为零的两个数互为相反数,利用乘积为1的两个数互为倒数计算.【详解】∵2022的相反数是-2022,∴-2022的倒数是12022-, 故选B .【点睛】本题考查了相反数即只有符号不同的两个数,倒数即乘积为1的两个数,熟练掌握定义,灵活计算是解题的关键.7.C【分析】结合图1和图2求出1个单位长度=0.6cm ,再求出求出AB 之间在数轴上的距离,即可求解;【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∵AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C【点睛】本题考查了数轴,利用数形结合思想解决问题是本题的关键.8.C【分析】通过阅读自定义运算规则:()lg lg lg M N MN +=,再得到lg101, 再通过提取公因式后逐步进行运算即可得到答案. 【详解】解:()lg lg lg M N MN +=,∴()2lg5lg5lg 2lg 2+⨯+lg5lg5lg2lg2lg5lg10lg 2lg5lg 2=+lg10= 1.=故选C【点睛】本题考查的是自定义运算,理解题意,弄懂自定义的运算法则是解本题的关键.9.D【分析】由数轴上表示数m 和2m +的点到原点的距离相等且2m m +>,可得m 和2m +互为相反数,由此即可求得m 的值.【详解】∵数轴上表示数m 和2m +的点到原点的距离相等,2m m +>,∴m 和2m +互为相反数,∴m +2m +=0,解得m =-1.故选D .【点睛】本题考查了数轴上的点到原点的距离,根据题意确定出m 和2m +互为相反数是解决问题的关键.10.B【分析】由图可知,a b c <<,由0a c +=,可得a c =-,0a b c <<<,则0b >,0ab <,0b c -<,进而可判断A ,C ,D 的对错;由0a b a c +<+=,可得a b <-,进而可判断B 的正误.【详解】解:由图可知,a b c <<,∵0a c +=,∴a c =-,∴0a b c <<<,∴0b >,0ab <,0b c -<,∴A ,C ,D 错误;故不符合题意;∵0a b a c +<+=,∴a b <-,∴B 正确,故符合题意;故选:B .【点睛】本题考查了根据点在数轴的位置判断式子的正负.解题的关键在于从数轴上得出0a b c <<<.11.B【分析】共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,然后利用这个原理将剩余的数填入圆圈中,即可得到结果.【详解】解:因为共有12个数,每一条边上4个数的和都相等,共有六条边,所以每个数都加了两遍,这12个数共加了两遍后和为12,所以每条边的和为2,所以5,1,5--这一行最后一个圆圈数字应填3,则a 所在的横着的一行最后一个圈为3,2,1,1--这一行第二个圆圈数字应填4,目前数字就剩下4,3,0,6--,1,5这一行剩下的两个圆圈数字和应为4-,则取4,3,0,6--中的4,0-,2,2-这一行剩下的两个圆圈数字和应为2,则取4,3,0,6--中的4,6-,这两行交汇处是最下面那个圆圈,应填4-,所以1,5这一行第三个圆圈数字应为0,则a 所在的横行,剩余3个圆圈里分别为2,0,3,要使和为2,则a 为3-故选:B【点睛】本题主要考查了幻方的应用,找到每一行的规律并正确进行填数是解题的关键.12.D【分析】根据题意写出数字并总结出变化规律,然后计算即可得到答案.【详解】解:根据题意可知:10210320(1)(2)(1)(2)(3)(1)(2)(3)k k k k k k k k =+-=++=+-++=+-=+-+++-……0(1)(2)(3)...(1)n n k k n =+-+++-++-当n =100时,1000000(1)(2)(3) (100)(12)(34)...(9910015050k k k k k =+-+++-+++=+-++-+++-+=+⨯=+=)∴050k =-故选D .【点睛】本题考查了有理数的加法,掌握相关知识,找到数字的变化规律,同时注意解题中需注意的相关事项是本题的解题关键.13.5-【分析】根据用正负数表示两种具有相反意义的量,如果向东走了5米,记作+5米,那么向西走5米,可记作5-米.【详解】解:∵向东走了5米,记作+5米,∴向西走5米,可记作5-米,故答案为:5-.【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的. 14.83.1610⨯【分析】先确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,写成10n a ⨯的形式即可.【详解】∵316000000=83.1610⨯,故答案为:83.1610⨯.【点睛】本题考查了绝对值大于1的数的科学记数法,确定表示数的整数位数,减去1得到n ;将小数点点在左边第一个非零数字后面,确定a 值,确定这两个关键要素是解题的关键. 15.91.3510⨯【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.【详解】∵13.5亿=91.3510⨯,故答案为:91.3510⨯.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.16. 2.5-或4.5【分析】根据数轴上两点间的距离公式列出方程,求出方程的解即可得到x 的值.【详解】解:根据题意得:|x +2|+|x -4|=7,当x <-2时,化简得:-x -2-x +4=7,解得:x =-2.5;当-2≤x <4时,化简得:x +2-x +4=7,无解;当x ≥4时,化简得:x +2+x -4=7,解得:x =4.5,综上,x 的值为-2.5或4.5.故答案为:-2.5或4.5.【点睛】此题考查了数轴,弄清数轴上两点间的距离公式是解本题的关键.17.(1)10;(2)12-;(3)11-;(4)5648【分析】有理数的混合运算法则:先算乘方及乘除,再算加减;同级运算,按从左到右的顺序进行计算;如果有括号,先算括号里面的.【详解】解:(1)()()()915128-+--+-(9)1512(8)612(8)18(8)10=-+++-=++-=+-= (2)1131323142⎛⎫⎛⎫⎛⎫-⨯-⨯÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 713()()(2)231412=-⨯-⨯⨯-=-(3)2020311|24|(2)3----⨯+- 1(1)6(8)3(1)2(8)(1)(2)(8)11=--⨯+-=--+-=-+-+-=-(4)111136693⎛⎫⎛⎫-⨯-- ⎪ ⎪⎝⎭⎝⎭ 1326()361818181536185648⎛⎫=-⨯-- ⎪⎝⎭⎛⎫⎛⎫=-⨯- ⎪ ⎪⎝⎭⎝⎭= 【点睛】本题主要考查了有理数的混合运算,熟记运算法则是解题的关键.18.146- 【分析】根据有理数的加减运算法则求解即可. 【详解】解:原式11=3132-+-- 1=46-. 【点睛】本题主要考查了有理数的加减运算,熟知相关计算法则是解题的关键. 19.(1)10月4日,10月7日,3.5(2)2346万元【分析】(1)根据每一天的人数比前一天的变化情况,求出各天的游客人数;(2)求出这7天的总游客人数,即可求出门票总收入.(1)10月1日 2.1 3.2 5.3+=(万人),10月2日 5.30.6 5.9+=(万人),10月3日 5.90.3 6.2+=(万人),10月4日 6.20.7 6.9+=(万人),10月5日 6.9 1.3 5.6-=(万人),10月6日 5.60.2 5.8+=(万人),10月7日 5.82.4 3.4=﹣(万人),游园人数最多的是10月4日,最少的是10月7日;6.9 3.4=3.5-(万人)故答案为:10月4日,10月7日,3.5(2)解:()60 5.3 5.9 6.2 6.9 5.6 5.8 3.4=2346⨯++++++(万元),答:北京故宫的门票总收入2346万元.【点睛】本题考查了正负数的意义,有理数的加减的应用,掌握正负数的意义是解题的关键.20.(1)①;③(2)解答过程见详解【分析】(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.【详解】(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,11363622-+≠-,步骤③不符合有理数加法法则,故步骤③错误. 故答案为:①;③.(2)解:原式()44981998⎛⎫=-⨯-⨯- ⎪⎝⎭ 1236=-+ 1235=- 【点睛】本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.21.(1)一和三 (2)110-【分析】(1)观察三种解法解答过程可得答案;(2)先求出倒数,再求原式的值.【详解】(1)解:由已知可得,解法一和三是错误的,故答案为:一和三;(2)原式的倒数为21121()()3106530-+-÷- 2112()(30)31065=-+-⨯- 2112(30)(30)(30)(30)31065=⨯--⨯-+⨯--⨯- 203512=-+-+10=-,∴原式1(10)=÷-110=-. 【点睛】本题考查有理数的混合运算,解题的关键是掌握有理数相关的运算法则和运算律. 22.(1)30-;(2)6;(3)10;(4)5960- 【分析】(1)根据有理数的加减法进行计算即可求解;(2)根据有理数的加减法进行计算即可求解;(3)根据有理数的加减法进行计算即可求解;(4)根据有理数的加减法进行计算即可求解.【详解】解:(1)()()20171811-+----20171811=--+-()20171118=-+++4818=-+30=-:(2)()()3.75 5.18 2.25 5.18+---+3.75 5.18 2.25 5.18=-++3.75 2.25 5.18 5.18=+-+=6;(3)1443512365757⎛⎫⎛⎫⎛⎫⎛⎫----+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1443512365757=-+-+ 1443531265577⎛⎫=--++ ⎪⎝⎭919=-+=10;(4)()1124 5.2522265⎛⎫⎛⎫---+-+-+ ⎪ ⎪⎝⎭⎝⎭ 111245222645=+--+ 111245222645=--+++-- 30101524160+--=-+ 1=160-+ 5960=-. 【点睛】本题考查了有理数的加减混合运算,正确的计算是解题的关键.23.(1)29-(2)3 (3)33994- (4)285-【分析】(1)减法转化为加法,再进一步计算即可;(2)利用乘法分配律展开,再进一步计算即可;(3)原式变形为1(100)416=-⨯,再利用乘法分配律展开,再进一步计算即可; (4)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:原式20141813=--+-29=-;(2)解:原式125(36)36366312=⨯-+⨯-⨯ 62415=-+-3=;(3)解:原式1(100)416=-⨯ 14100416=⨯-⨯ 14004=-33994=-; (4)解:原式819(1)54=-+-⨯ 29(1)5=-+- 395=-+ 285=-. 【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.24.(1)-1;(2)C 1或C 4;(3)①5355533--,,;②65;45;105.【分析】(1)先求出AB =9,再根据联盟点的定义求出M 表示的数是2与 -1,最后根据点M 表示一个负数,即可求解;(2)根据题意求得CA 与BC 的关系,得到答案;(3)①分点P 位于点A 左侧、点P 表示的数位于AB 之间,且靠近点A 、点P 表示的数位于AB 之间,且靠近点B 三种情况讨论,即可求解;②分当P 为A 、B 的联盟点、点B 为AP 联盟点且AB =2BP 、点B 为AP 联盟点且PB =2AB 三种情况讨论,即可求解.(1)解:由题意得()=54=9AB --,因为点M 是点A ,B 的“联盟点”,点M 在A 、B 之间, ∴AM =2BM ,或BM =2AM ,所以AM = 229633AB ⨯=⨯=或AM = 119333AB ⨯=⨯=, 所以点M 表示的数是-4+6=2或-4+3=-1,因为点M 表示一个负数,所以点M 表示的数为-1.故答案为:-1;(2)解:由题意得 C 1A =43,C 1B =83,C 1B =2C 1A ,故C 1符合题意; C 2A =C 2B =2,故C 2不符合题意;C 3A =6,C 3B =2,故C 3不符合题意;C 4A =8,C 4B =4,C 4A =2C 4B ,故C 4符合题意.故答案为:C 1或C 4;(3)解;由题意得AB =40.①当点P 位于点A 左侧时,PB =2P A ,所以P A =AB =40,所以点P 表示的数为-15-40=-55;当点P 表示的数位于AB 之间,且靠近点A 时,PB =2P A ,所以P A =14040=33⨯,所以点P 表示的数为40515=33-+-; 当点P 表示的数位于AB 之间,且靠近点B 时,P A =2PB ,所以P A =28040=33⨯,所以点P 表示的数为803515=33-+; 故答案为:5355533--,,; ②当P 为A 、B 的联盟点时,则P A =2PB ,所以AB =PB =40,所以点P 表示的数为25+40=65;当点B 为AP 联盟点且AB =2BP 时,BP =140=202⨯,所以点P 表示的数为2520=45+; 当点B 为AP 联盟点且PB =2AB 时,BP =240=80⨯,所以点P 表示的数为2580=105+; 故答案为:65;45;105.【点睛】本题为新定义问题,难度较大.考查了在数轴上表示有理数,有理数的加减运算等知识,理解“联盟点”的意义,根据题意结合数轴分类讨论是解题关键.25.(1)3;4-;7(2)①7;43c -≤<;②5-或4;③-6或5;④2450【分析】(1)根据绝对值的非负性,求出a 、b 的值,然后根据数轴上两点之间的距离公式,求出A ,B 之间的距离即可;(2)①根据动点C 在A 、B 之间时AC BC +最小,即可确定c 的取值范围;②分两种情况:当4c -<或3c >,分别求出c 的值即可;③根据43d -≤≤时,a c b c d c -+-+-的最小值为7,得出4d -<或3d >,然后分两种情况求出d 的值即可;④根据c 取中间的数50时,12399c c c c 有最小值,求出最小值即可.(1)解:340a b -++=∵,30a ∴-=,40b +=, 3a ∴=,4b =-, ()347AB =--=.故答案为:3;4-;7.(2) 解:①∵点C 在A 、B 之间时AC BC +最小,即a c b c -+-最小,∴43c -≤<时,a c b c -+-的值最小, ∵3a =,4b =-,∴34c c -+--()34c c =-+---⎡⎤⎣⎦ 34c c =-++7=即a c b c -+-的最小值为7.故答案为:7;43c -≤<.②∵当43c -≤<时,7a c b c -+-=,∴4c -<或3c >, 当4c -<时,34349a c b c c c c c -+-=-+--=---=, 解得:5c =-;当3c >时,34349a c b c c c c c -+-=-+--=-++=,解得:4c =;故答案为:5-或4. ③∵当43d -≤≤时,a c b c d c -+-+-的最小值为7,∴4d -<或3d >,当4d -<,4c =-时,a c b c d c -+-+-的值最小, 此时,()()()344449a c b c d c d -+-+-=--+---+--=,即()749d -+=,解得:6d =-;当3d >,3c =时,a c b c d c -+-+-的值最小, 此时,334339a c b c d c d -+-+-=-+--+-=,即739d +-=,解得:5d =;故答案为:-6或5.④∵c 取中间的数50时,12399c c c c 有最小值, ∴12399c c c c 的最小值为: 5015025035099 49484710123474849=+++⋅⋅⋅+++++⋅⋅⋅+++()212349=+++⋅⋅⋅+()1494922+⨯=⨯ 2450=故答案为:2450.【点睛】本题主要考查了数轴上两点间的距离,绝对值的意义,有理数的混合运算,熟练掌握绝对值的意义,是解题的关键.。
七年级数学第一单元有理数测试题
七年级数学第一单元有理数测试题一、选择题(每题3分,共15分)1. 下列各数中,是正数的是()A. -(-5)B. - - 5C. -(+5)D. -5.解析:- 选项A:-(-5) = 5,5是正数。
- 选项B:- - 5=-5,-5是负数。
- 选项C:-(+5)=-5,-5是负数。
- 选项D:-5是负数。
答案:A。
2. 在 - 2,0,1,3这四个数中,比0小的数是()A. -2B. 0C. 1D. 3.解析:负数小于0,在 - 2,0,1,3中,-2是负数。
答案:A。
3. 数轴上表示 - 3的点与表示7的点之间的距离是()A. 3B. 10C. 7D. 4.解析:数轴上两点间的距离等于这两点所表示的数的差的绝对值。
所以表示 - 3的点与表示7的点之间的距离为 - 3 - 7 = - 10 = 10。
答案:B。
4. 下列计算正确的是()A. ( - 2)+( - 3)= - 1B. ( - 2) - ( - 3)= - 1.C. ( - 2)×( - 3)=6D. ( - 2)÷( - 3)=-(2)/(3)解析:- 选项A:( - 2)+( - 3)=-(2 + 3)=-5,A错误。
- 选项B:( - 2) - ( - 3)=-2+3 = 1,B错误。
- 选项C:( - 2)×( - 3)=2×3 = 6,C正确。
- 选项D:( - 2)÷( - 3)=(2)/(3),D错误。
答案:C。
5. 绝对值等于本身的数有()A. 0个B. 1个C. 2个D. 无数个。
解析:正数和0的绝对值等于本身,所以有无数个。
答案:D。
二、填空题(每题3分,共15分)6. 如果温度上升3℃记作+3℃,那么下降5℃记作______。
解析:用正负数来表示具有相反意义的量,上升记为正,那么下降就记为负,所以下降5℃记作 - 5℃。
答案: - 5℃。
7. 比较大小: - 4______ - 3(填“>”或“<”)。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)
人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
【3套】人教版初中数学七年级上册 第1章 《有理数》单元测试题(2)
人教版七年级数学上册第一章有理数单元训练试题含解析一.选择题(共6小题)1.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个2.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b3.a﹣|a|的值是()A.0B.2a C.2a或0D.不能确定4.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣95.下列说法正确的是()A.准确数18精确到个位B.5.649精确到0.1是5.7C.近似数18.0的有效数字的个数与近似数18相同D.由四舍五入将3.995精确到百分位是4.006.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4二.填空题(共5小题)7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.如果|x|=﹣x,那么x=.9.若|a|=3,|b|=5,且a、b异号,则a•b=.10.大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是.11.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.三.解答题(共10小题)12.将下列各数分别填入相应的大括号里:3.14,﹣(+2),+43,﹣0.,﹣10%,,0,|﹣23|,﹣(﹣1)2整数集合:{…}负分数集合:{…}非负整数集合:{…}.13.(﹣)++|﹣0.75|+(﹣)+.14.简便计算:(﹣5)×(﹣3)+(﹣7)×+(﹣12)×.15.已知a与﹣3互为相反数,b与﹣互为倒数,求a﹣b的值.16.若x2=4,|y|=2,且x<y,求x+y和(x﹣y)2的值.17.定义新运算.a⊗b=a2﹣|b|,如3⊗(﹣2)=32﹣|﹣2|=9﹣2=7,计算下列各式.(1)(﹣2)⊗3;(2)5⊗(﹣4);(3)(﹣3)⊗(0⊗(﹣1))18.小聪学习了有理数后,对知识进行归纳总结.【知识呈现】根据所学知识,完成下列填空:(1)|﹣2|=2,|2|=2;(2)(﹣3)2=9,32=9;(3)若|x|=5,则x=;(4)若x2=4,则x=.【知识归纳】根据上述知识,你能发现的结论是:【知识运用】运用上述结论解答:已知|x+1|=4,(y+2)2=4,求x+y的值.19.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?20.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=.21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案一.选择题(共6小题)1.解:①在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正整数与负整数的分界等,故①错误;②整数包括正整数、负整数和0,故②错误;③整数和分数统称为有理数,故③错误;④整数包括正整数和负整数、0,因此0不是最小的整数,故错误;⑤所有的分数都是有理数,因此正确;综上,⑤正确,故选:A.2.解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.3.解:当a≥0时,a﹣|a|=a﹣a=0;当a<0时,a﹣|a|=a+a=2a;故a﹣|a|的值是2a或0.故选:C.4.解:0.000000005=5×10﹣9.故选:D.5.解:A、准确数不存在精确问题,故本选项错误;B、5.649精确到0.1是5.6,故本选项错误;C、近似数18.0精确到十分位,18精确到个位,故本选项错误;D、由四舍五入将3.995精确到百分位是4.00,故本选项正确;故选:D.6.解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.二.填空题(共5小题)7.解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.解:∵|x|=﹣x,∴x=非正数.故答案为:非正数.9.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.10.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.11.解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.三.解答题(共10小题)12.解:整数集合:{﹣(+2),+43,0,|﹣23|,﹣(﹣1)2}负分数集合:{﹣0.,﹣10%}非负整数集合:{+43,0,|﹣23|}.故答案为:﹣(+2),+43,0,|﹣23|,﹣(﹣1)2;﹣0.,﹣10%;+43,0,|﹣23|.13.解:原式=﹣0.75+3+0.75﹣5.5+2=6﹣5.5=0.5.14.解:(﹣5)×(﹣3)+(﹣7)×(﹣3)+(﹣12)×3,=5×3+7×3﹣12×3=3×(5+7﹣12)=3×0=0.15.解:∵a与﹣3互为相反数,b与﹣互为倒数,∴a=3,b=﹣2.∴a﹣b=3﹣(﹣2)=3+2=5.16.解:∵x2=4,|y|=2,且x<y,∴x=﹣2,y=2.∴x+y=﹣2+2=0,(x﹣y)2=(﹣2﹣2)2=(﹣4)2=16.17.解:(1)(﹣2)⊗3=(﹣2)2﹣|3|=4﹣3=1;(2)5⊗(﹣4))=52﹣|﹣4|=25﹣4=21;(3)根据题中的新定义得:0⊗(﹣1)=0﹣1=﹣1,则(﹣3)⊗(0⊗(﹣1))=(﹣3)⊗(﹣1)=9﹣1=8.18.解:【知识呈现】(3)若|x|=5,则x=±5;(4)若x2=4,则x=±2.【知识归纳】根据上述知识,你能发现的结论是:绝对值等于一个正数的数有两个,平方等于一个正数的数有两个;【知识运用】根据题意得:x+1=4或﹣4,y+2=2或﹣2,解得:x=3或﹣5,y=0或﹣4,当x=3,y=0时,x+y=3;当x=3,y=﹣4时,x+y=﹣1;当x=﹣5,y=0时,x+y=﹣5;当x=﹣5,y=﹣4时,x+y=﹣9.综上所述,x+y的值是3,﹣1,﹣5,﹣9..故答案为:±5;±2;绝对值等于一个正数的数有两个,平方等于一个正数的数有两个.19.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)20.解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3;数轴上表示数x和3的两点之间的距离=|x﹣3|;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|;(2)①当﹣2≤x≤3时,|x+2|+|x﹣3|=x+2+3﹣x=5;②当x>3时,x﹣3+x+2=7,解得:x=4,当x<﹣2时,3﹣x﹣x﹣2=7.解得x=﹣3.∴x=﹣3或x=4.故答案为:(1)3;|x﹣3|;x;﹣2;(2)5;﹣3或4.21.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.人教版初中数学七年级上册第1章《有理数》单元测试题(一、单选题1.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A. 0.387×109B. 3.87×108C. 38.7×107D. 387×1062.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A. 9.3×105万元B. 9.3×106万元C. 0.93×106万元D. 9.3×104万元3.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克4.下列结论错误的是()A. 若a,b异号,则a b<0,<0B. 若a,b同号,则a b>0,>0C. D.5.如果x<0,y>0,x+y<0,那么下列关系式中,正确的是( )A. x>y>-y>-xB. -x>y>-y>xC. y>-x>-y>xD. -x>y>x>-y6.28 cm接近于( )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度7.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1088.下列各式:-(-5)、-|-5|、-52、(-5)2、,计算结果为负数的有( )A. 4个B. 3个C. 2个D. 1个9.把(﹣5)﹣(+7)+(﹣3)+(﹣11)写成省略加号的代数和的形式,正确的是()A. ﹣5+7﹣3﹣11B. (﹣5)(+7)(﹣3)(﹣11)C. ﹣5﹣7﹣3﹣11D. ﹣5﹣7+﹣3+11二、填空题10.一个数的平方与这个数的立方相等,那么这个数是________.11.按要求取近似数:0.02049≈________(精确到0.01).12.绝对值小于的整数有________.13.填空:(1)-40÷(-5)=__________;【答案】8(1)(-36)÷6=________;(2)8÷(-0.125)=________;(3)________÷32=0.14.①若,则a与0的大小关系是a ________0.②若,则a与0的大小关系是a ________0.15.比较大小:- ________- .三、计算题16.计算:.17.18.(1)-17+3;(2)-32+ ÷(-3).四、解答题19.已知有理数a在数轴上的位置如图所示:试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.20.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?21.某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?答案一、单选题1.【答案】B【解析】【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将930000用科学记数法表示为9.3×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不符合题意;,24.7<24.8,∴B不符合题意;∵25.2<25.51,∴C不符合题意;∵25.2>24.82>24.8,∴D符合题意。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)
七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
人教版七年级数学上册 第一章 有理数 单元测试 【含答案】
人教版七年级数学上册 第一章 有理数 单元测试一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( )A. B.C.D.2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( )A . -B . 012C . -1 D . 14. 据统计,近十年中国累积节能万吨标准煤,这个数用科学记数法表示为( )A . 0.157×107B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( )A . 4 ℃ B . 6 ℃C . 8 ℃ D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):星期一二三四五盈亏+220-30+215-25+225则这个周共盈利( )A .715元 B .630元C .635元 D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,B .2,1213C .5, D .-2,-23139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0 D.eq <010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( )A .七位数B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.eq 的倒数是________.12. 如果+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知=5,=3,则(a +b )(a -b )=________.17. 有一组数据:,,,,,….请你根据此规律,写出第n 个数是________.254781116193235三、解答题(一)(每题6分,共18分)18.计算:(1)-14-××[2-(-3)2];13(2)(--+)÷.345671212419. 把下列各数先在数轴上表示出来,再按照从小到大的顺序用“<”号连接起来:-(+6),0,-(-4),+(-),-.5220. 某地发生特大山洪泥石流灾害,消防总队迅速出动支援灾区.在抢险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+4,-9,+8,-7,+13,-6,+10,-5.(1)B 地在A 地的何处?(2)救灾过程中,最远处离出发点A 有多远?(3)若冲锋舟每千米耗0.5升,油箱里原有油20升,求途中还需补充多少升油.四、解答题(每题8分,共24分)21. 某洗衣粉厂上月生产了30 000袋洗衣粉,每袋标准重量450克,质量检测部门从中抽出了20袋进行检测,超过或不足标准重量的部分分别记为“+”和“-”,记录如下:超过或不足(克)-6-3-20+1+4+5袋数1116524(1)通过计算估计本厂上月生产的洗衣粉平均每袋多少克?(2)厂家规定超过或不足的部分大于5克时,不能出厂销售,若每袋洗衣粉的定价为2.30元,试估计本厂上月生产的洗衣粉销售的总金额为多少元?22. 小明有5张写着不同数的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上的数的乘积最大;(2)从中取出2张卡片,使这2张卡片上的数相除的商最小;(3)从中取出2张卡片,使这2张卡片上的数通过有理数的运算后得到的结果最大;(4)从中取出4张卡片,使这4张卡片通过有理数的运算后得到的结果为24(写出一种即可).23. 有规律的一列数:2,4,6,8,10,12,…,它的每一项可用2n(n为正整数)来表示.现在解决另外有规律排列的一列数:1,-2,3,-4,5,-6,7,-8,….(1)它的第100个数是多少?(2)请用n(n为正整数)表示它的第n个数;(3)计算前2 022个数的和.五、解答题(每题10分,共20分)24. 随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了来的销售模式,实行了网上销售.刚大学华业的夏明把自家的冬枣产品放到网上销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超出的量记为正数,不足的量记为负数.单位:斤,1斤=500克)星期一二三四五六日与计划量的差值+4-3-5+14-8+21-6(1)根据记录的数据可知,前三天卖出________斤;(2)根据记录的数据可知,销售量最多的一天比销售量最少的一天多销售________斤;(3)本周实际销售总量达到了计划销售量吗?(4)若冬枣每斤按8元出售,每斤冬枣的运费平均为3元,那么夏明这一周一共收入多少元?25. 在数轴上依次有A ,B ,C 三点,其中点A ,C 表示的数分别为-2,5,且BC =6AB .(1)在数轴上表示出A ,B ,C 三点;(2)若甲、乙、丙三个动点分别从A 、B 、C 三点同时出发,沿数轴负方向运动,它们的速度分别是,14,2(单位长度/秒),当丙追上甲时,甲乙相距多少个单位长度?12(3)在数轴上是否存在点P ,使P 到A 、B 、C 的距离和等于10?若存在,结合数轴,写出点P 对应的数;若不存在,请说明理由.答案1.D2.A2.A 3.C 4.B 5.C 6.D 7.D 8.D 9.D 10.C11. 12.-1 13.29 14.-512 02215.25 16.16 17.2n3+2n18.解:(1)原式=-1-0.5××[2-9]13=-1-0.5××(-7)13=-1-×(-7)16=-1+76=16(2)原式=(--+)×243456712=-×24-×24+×243456712=-18-20+14=-2419.解:在数轴上表示各数如下:-(+6)<+<-<0<-(-4)20.解:(1)∵4-9+8-7+13-6+10-5=8,∴B 地在A 地的东边8千米(2)∵路程记录中各点离出发点的距离分别为:4千米=5千米;=3千米;=4千米;=9千米;=3千米;=13千米;=8千米.∴最远处离出发点13千米;(3)这一天走的总程为:4++8++13++10+=62(千米),应耗油62×0.5=31(升),故途中还需补充的油量为:31-20=11(升).21.解:(1)450+(-6×1-3×1-2×1+0×6+1×5+4×2+5×4)÷20=450+1.1=451.1(克)答:上月生产的洗衣粉平均每袋451.1克.(2)2.30×=2.30×28 500=65 550(元).答:本厂上月生产的洗衣粉销售的总金额为65 550元.22.解:(1)(-3)×(-5)=15;(2)-5÷3=-;53(3)(-5)4=625;(4)[(-3)-(-5)]×(3×4)=2×12=2423.解:(1)它的第100个数是:-100(2)它的第n 个数是:(-1)n +1n(3)(1-2)+(3-4)+…+(2 021-2 022)=(-1)×2 022÷2=-1 01124.解:(1)4-3-5+300=296(斤)故答案为296.(2)21+8=29(斤)故答案为29.(3)+4-3-5+14-8+21-6=17>0故本周实际销售总量达到了计划销售量.(4)(17+100×7)×(8-3)=717×5=3 585(元)答:小明本周一共收入3 585元.25.解:(1)设B 点表示的数为x ,∵点A ,C 表示的数分别为-2,5,且BC =6AB ,∴5-x =6[x -(-2)],解得:x =-1所以点B 表示的数为-1,(2)7÷=4(秒)4×-1=0答:丙追上甲时,甲乙相距0个单位长度.(3)设P 点表示的数x ,依题意得++=10,结合数轴得x =-,2,83∴P 点表示的数为-或2.83。
人教版七年级上册数学 第一章 有理数 单元测试卷(Word版,含答案)
人教版七年级上册数学 第一章 有理数 单元测试卷(满分 120分)一、选择题(每题3分,共30分)1. 如图,表示正确的数轴的是( ) A. B.C. D. 2. -1的相反数是( )A . 1B . -1C . 0D . -123. 下列四个数中,最小的数是( ) A . -12 B . 0C . -1D . 14. 据统计,近十年中国累积节能1 570 000万吨标准煤,1 570 000这个数用科学记数法表示为( ) A . 0.157×107 B . 1.57×106C . 1.57×107D . 1.57×1085. 下列说法不正确的是( )A . 最大的负整数为-1B . 最小的正整数为1C . 最小的整数是0D . 相反数等于它本身的数是06. 某旅游景点11月5日的最低气温为-2 ℃,最高气温为8 ℃,那么该景点这天的温差是( ) A . 4 ℃ B . 6 ℃C . 8 ℃D . 10 ℃7. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损):则这个周共盈利( )A .715元B .630元C .635元D .605元8. 如果一对有理数a ,b 使等式a -b =a ·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b ).根据上述定义,下列四对有理数中不是“共生有理数对”的是( )A .3,12B .2,13C .5,23D .-2,-139. 有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A .m +n <0B .m -n >0C .mn >0D .m n<010. 细胞分裂按照一分为二,二分为四,四分为八……如此规律进行.例如:1个细胞分裂10次可以得到细胞的个数为210=1 024个,估计1个细胞分裂40次所得细胞的个数为( ) A .七位数 B .十二位数C .十三位数D .十四位数二、填空题(每题4分,共28分)11.||-2 022的倒数是________.12. 如果||a -1+(b +2)2=0,那么(a +b )2 021的值是________.13. 放学静校,值周班的小明同学负责一条东西走向楼道巡视工作.记向东为正,小明巡视过程如下:+5,-3,-1,+7,-9,+4(单位:米),则小明这次巡视共走了________米.14. 如图是一个计算程序,若输入a 的值为-1,则输出的结果应为________.15. 某高山上的温度从山脚处开始每升高100米,就降低0.6 ℃.若山脚处温度是28 ℃,则山上500米处的温度是______℃.16. 已知||a =5,||b =3,则(a +b )(a -b )=________.17. 有一组数据:25,47,811,1619,3235,….请你根据此规律,写出第n 个数是________.。
人教版数学七年级上册第一章有理数《单元测试》附答案
人教版数学七年级上学期第一章有理数测试时限:100分钟满分:120分一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定5.下列各组数中,数值相等是()A. 32和23B. ﹣23和(﹣2)3C. ﹣32和(﹣3)2D. ﹣3×22 和(﹣3×2)26.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和07.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<08.计算16×(-6)÷(-16)×6值为( )A. 1B. 36C. -1D. +69.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.710.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-2212.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.14.绝对值小于6的所有数的积是_____________.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到的最大乘积是_.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.18.数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 319.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]20.按要求解答下列各题(1)已知a、b 互为相反数,c、d 互为倒数,x=(-2)2.试求x2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值.(2)已知有理数a、b、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a36×b7×c6)的值.21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?答案与解析一.选择题(本大题共12个小题,每小题3分,共36分内)1.下列说法不正确的是( )A. 0是最小的数B. 0的相反数是0C. 0没有倒数D. 0是绝对值最小的数【答案】A【解析】【分析】根据有理数0的意义进行分析.【详解】0不是最小的数,比0小的数是负数;0的相反数是0;0没有倒数;0是绝对值最小的数.故选A【点睛】本题考核知识点:0的意义. 解题关键点:理解有理数0的意义.2.下列各对数中,互为相反数的是( )A. +(-3)与-3B. +(+3)与-3C. -(-3)与3D. 3 与+(+3)【答案】B【解析】【分析】根据:只有符号不同的两个数互为相反数.逐个化简分析即可.【详解】A .+(-3)=-3与-3, 不是互为相反数;B.+(+3)=3与-3 , 是互为相反数;C.-(-3)=3与3, 不是互为相反数;D.3 与+(+3)=3, 不是互为相反数.故选B【点睛】本题考核知识点:相反数. 解题关键点:理解相反数的定义.3.若两个有理数的和是正数,那么一定有结论( )A. 两个加数都是正数B. 两个加数有一个是正数C. 一个加数正数,另一个加数为零D. 两个加数不能同为负数【答案】D【解析】试题分析:若两个有理数的和为正数,两个加数可能都为正数,也可能一个为正数,也可能一个加数为正数,另一个加数为0,不可能两加数为负数.故选D.考点:有理数的加法.4.两个非零有理数的和是0,则它们的商为:( )A. 0B. -1C. +1D. 不能确定【答案】B【解析】【分析】根据“互为相反数的两个数的和是0”判断出这两个数是互为相反数,互为相反数的两个数的商为-1.【详解】∵两个非零有理数的和是0∴这两个数互为相反数∴互为相反数的两个非零数的商为-1故选B【点睛】本题考查“互为相反数的两数相加得0”以及有理数除法法则,熟练掌握相关知识点是解题关键5.下列各组数中,数值相等的是()A 32和23 B. ﹣23和(﹣2)3 C. ﹣32和(﹣3)2 D. ﹣3×22 和(﹣3×2)2【答案】B【解析】【分析】原式各项利用乘方的意义计算得到结果,即可做出判断.【详解】A、32=9,23=8,数值不相等;B、﹣23=(﹣2)3=﹣8,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣3×22=﹣12,(﹣3×2)2=36,数值不相等,故选B6.绝对值相等的两个数在数轴上对应两点的距离为10,则这两个数为( )A. 10和-10B. 0和10C. 5和-5D. 5和0【答案】C【解析】【分析】绝对值相等的两个不同的数互为相反数,因为他们的距离是10,所以他们的绝对值是5.【详解】依题意可得,这两个数的绝对值是5,所以这两个数是5和-5.故选C【点睛】本题考核知识点:绝对值. 解题关键点:理解绝对值的意义.7.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是( )A. b<0B. a+c<0C. a﹣b>0D. b﹣c<0【答案】C【解析】试题分析:根据数轴上点的特点,可知a<b<0<c,且︱a︱>︱c︱>︱b︱,因此a+b<0,故A正确;a+c<0,故B正确;a-b<0,故C错误;b-c<0,故D正确.故选C考点:数轴8.计算16×(-6)÷(-16)×6的值为( )A. 1B. 36C. -1D. +6 【答案】B【解析】【分析】先把除法运算化为乘法运算,再根据有理数乘法法则进行计算.【详解】16×(-6)÷(-16)×6=16×(-6)×(-6)×6=36故选B【点睛】本题考核知识点:有理数乘除法. 解题关键点:把除法转化为乘法.9.下列交换加数的位置的变形中,正确的是A. 1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C. 1-2+3-4=2-1+4-3D. 45-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【解析】【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确.故选D.10.学校、家、书店依次坐落在一条东西走向的大街上,学校在家的东边200米,书店在家西边1000米,某同学从家里出发,向西走了500米,接着又向西走了-700米,此时该同学的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方【答案】B【解析】【分析】某同学从家里出发,向西走了500米,接着又向西走了-700米,相当于向东走700米,最后离家向东200米. 【详解】依题意分析可得,向西走了-700米,相当于向东走700米,所以,该同学最后离家向东200米.即在学校.故选B【点睛】本题考核知识点:负数的意义,数轴. 解题关键点:理解负数的意义.11.比较大小:-22,(12-)2,(13-)3,正确的是( )A. -22>(12-)2>(13-)3 B. (13-)3>-22>(12-)2C. (12-)2>-22>(13-)3 D. (12-)2>(13-)3>-22【答案】D 【解析】解:∵﹣22=﹣4,(﹣12)2=14,(﹣13)3=﹣127,∴(﹣12)2>(﹣13)3>﹣22;故选D.点睛:本题考查了有理数大小的比较,不是最简的化到最简,然后根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小得出答案.12.若(-1)2=4,那么的值为()A. 27B. 3或-1C. 25或-1D. -1或27【答案】D【解析】由题意得:-1=2解得:x=3或x=-1那么=27或-1故选D二、填空题(本大题共4个小题,每小题3分,共12分)13.月球距地球约为38万千米,用科学计数法表示为____________千米.【答案】3.8×105【解析】【分析】把一个大于10(或者小于1)的整数记为a×10n的形式(其中1 ≤| a| <10 )的记数法.【详解】38万=3.8×105.故答案为3.8×105【点睛】本题考核知识点:科学记数法. 解题关键点:理解科学计数法的意义.14.绝对值小于6的所有数的积是_____________.【答案】0【解析】【分析】先求出绝对值小于6的所有数,再求他们的积.要注意,其中有一个是0.【详解】绝对值小于6的所有数有无数个,但其中一个是0,所以,他们的积是0.故答案为0【点睛】本题考核知识点:有理数乘法. 解题关键点:记住0与任何数相乘等于0.15.如果数轴上的点A对应的数为-5,那么与A点相距3个单位长度的点所对应的有理数为__________.【答案】-8或-2【解析】【分析】与A点相距3个单位长度的点可能在A的左侧或在A的右侧.【详解】与A点相距3个单位长度的点可能在A的左侧或在A的右侧,所以,对应的数是:-5-3=-8,或-5+3=-2. 故答案为-8或-2【点睛】本题考核知识点:数轴上两点距离、有理数加减. 解题关键点:运用有理数加减法求两点的距离.16.在﹣3,﹣2,﹣1,4,5中取出三个数,把三个数相乘,所得到最大乘积是_.【答案】30 ;【解析】根据正数大于一切负数,同号得正,异号得负,找出乘积是正数绝对值最大的三个数相乘即可.解:最大乘积是:(-3)×(-2)×5=3×2×5=30.故答案为30.“点睛”本题考查了有理数的乘法,以及有理数的大小比较,比较简单,熟记运算法则是解题的关键.三、解答题(本大题共6个题,共72分)17.(1)将下列各数填入相应的圈内:212,5 , 0 ,1.5 ,+2 ,-3 .(2 )说出这两个圈的重叠部分表示的是什么数的集合:.【答案】(1)见解析;(2)正整数的集合【解析】【分析】根据有理数的分类解答即可.【详解】(1)如图,(2)∵5,+2是正整数,∴两个圈的重叠部分表示的是正整数的集合.【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.18.在数轴上表示下列各数,并用“<”号把它们连起来:1.5, 3, -2.5, 0 , -1 1 3【答案】见解析【解析】【分析】先按要求画好数轴,在数轴上表示各数,根据数轴上右边的数大于左边的数进行连接. 【详解】解:如图:-2.5<-1.3<0<1.5<3.【点睛】本题考核知识点:利用数轴表示数的大小. 解题关键点:画好数轴,表示各数.19.计算下列各题(1)15+(-14)-15-(-025) (2)(-81)÷94×49÷(-32)(3)292324×(-12) (4)25×34-(-25)×12+25×(-14)(5)-24-(-4)2 ×(-1)+(-3)3(6)3.25-[(-12)-(-52)+(-54)+243]【答案】(1)0 (2)12(3)-35912(4) 25(5)-27 (6)-136【解析】【分析】根据有理数的运算法则,逐个计算.【详解】解:(1)15+(-14)-15-(-0.25)=15-15- 14+0.25=0(2)(-81)÷94×49÷(-32)=81×49×49×132= 1 2(3)292324×(-12)= (30- 124) ×(-12)= 30×(-12) -1 24× (-12)=-35912(4)25×3 4-(-25)×12+25×(-14) =25×(34+1 2-1 4) =25×1=25 (5)-24-(-4)2 ×(-1)+(-3)3 = -16+16-27= -27(6)3.25-[(-12)-(-52)+(-5 4)+243] =31 4+1 2 -5 2+5 4-243 1515234442231242423122423136=++--=--=-=- 【点睛】本题考核知识点:有理数混合运算. 解题关键点:掌握有理数运算法则.20.按要求解答下列各题(1)已知a 、b 互为相反数,c 、d 互为倒数,x=(-2)2.试求x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016的值. (2)已知有理数a 、b 、c 满足|a-1|+|b-3|+|3c-1|=0,求(a×b×c)178 ÷(a 36×b 7×c 6)的值.【答案】(1)13 (2)13【解析】【分析】(1)由已知可得a+b=0,cd=1,x=4,再代入原式可得;(2)由非负数性质得a-1=0,b-3=0,3c-1=0.求出a,b,c,再代入求值.【详解】解:(1)因为a 、b 互为相反数,c 、d 互为倒数,x=(-2)2所以,a+b=0,cd=1,x=4,所以,x 2 -(a + b + c×d) x +(a + b)2015 +(-c×d)2016=42-(0+1)×4+02015+(-1)2016=16-4+0+1=13.(2)因为|a-1|+|b-3|+|3c-1|=0,所以,根据非负数性质得:a-1=0,b-3=0,3c-1=0.所以,a=1,b=3,c=13, 所以,(a×b×c)178 ÷(a 36×b 7×c 6) =(1×3×13)178 ÷[136×37×(13)6] =1÷3 =13. 【点睛】本题考核知识点:非负数、倒数、相反数的应用. 解题关键点:理解非负数、倒数、相反数的性质. 21.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?【答案】(1)这批样品的质量比标准质量多,多24克;(2)9024克【解析】【分析】(1)根据表格列出算式,计算得到结果,即可做出判断;(2)根据每袋标准质量为450克列出算式,计算即可得到结果.【详解】(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克), 则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.【点睛】此题考查了正数与负数,弄清题意是解本题的关键.22.陈老师在上周五买进某公司股票1000股,每股28元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)星期三收盘时,每股是多少?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知陈老师买进股票时付了1.5%的手续费,卖出时需付成交手续费和交易税共2.5%,如果陈老师在星期五收盘时将全部股票卖出,他的收益情况如何?【答案】(1)34.5元 (2)36.5元、30元(3)盈利830元.【解析】【分析】(1)根据题意得:28+4+4.5−2=34.5(元);(2)算出每天股价,再作比较;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),可得收益.【详解】解:(1)根据题意得:28+4+4.5−2=34.5(元),则星期三收盘时,每股34.5元;(2)本周的股价分别为28+4=32(元);32+4.5=36.5(元);36.5−2=34.5(元);34.5+1.5=36(元);36−6=30(元),则本周内最高价是每股36.5元,最低价是每股30元;(3)根据题意得:1000×(30−28)−1000×28×1.5%−30×1000×2.5%=830(元),则张先生在星期五收盘时将全部股票卖出,他的收益情况为830元.【点睛】本题考核知识点:有理数运算的应用.解题关键点:理解题意,根据实际列出算式并正确运算.。
新人教版七年级上册数学第1章单元测试卷(有理数)
新人教版七年级上册数学第1章单元测试卷一、选择题(每题3分,共30分) 1.12的相反数是( ) A.12B .-12C .2D .-22.化简:|-15|等于( )A .15B .-15C .±15D.1153.在0,2,-1,-2这四个数中,最小的数是( )A .0B .2C .-1D .-24.计算(-3)+5的结果等于( )A .2B .-2C .8D .-85.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4 000 000 000美元,将4 000 000 000用科学记数法表示为( ) A .0.4×109B .0.4×1010C .4×109D .4×10106.下列每对数中,不相等的一对是( )A .(-2)3和-23B .(-2)2和22C .(-2)2 018和-22 018D .|-2|3和|2|37.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab的值是( )(第7题)A .负数B .正数C .0D .正数或08.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高为161 cm”中的数是准确数9.已知|m|=4,|n|=6,且|m +n|=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和为(1+3)+(2+6)=(1+2)×(1+3)=12; 12=22×3,则12的所有正约数之和为(1+3)+(2+6)+(4+12)=(1+2+22) ×(1+3)=28;36=22×32,则36的所有正约数之和为(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为( ) A .420B .434C .450D .465二、填空题(每题3分,共24分)11.某蓄水池的标准水位记为0 m ,如果用正数表示水面高于标准水位的高度,那么-0.2 m 表示____________________________.12.有理数-15的倒数为________,相反数为________,绝对值为________.13.将数60 340精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-1,以点A 为圆心、12个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是______________.(第15题)(第17题)16.如果|a -1|+(b +2)2=0,那么3a -b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.18.按一定规律排列的一列数依次为:12,-16,112,-120,130,…按此规律排列下去,这列数中的第7个数为________,第n 个数为____________(n 为正整数).三、解答题(19,23题每题8分,20题18分,21,22题每题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36; (4)-42÷(-2)3+(-1)2 018-49÷23.21.现规定一种新运算“*”:a*b =a b-2,例如:2*3=23-2=6,试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.每年的春节晚会都是由中央电视台直播的,现有两地的观众,一是与舞台相距25 m 远的演播大厅里的观众,二是距北京2 900 km 正围在电视机前观看晚会的边防战士,这两地的观众谁先听到晚会节目的声音(声速是340 m /s ,电波的速度是3×108 m /s )?23.某景区一电瓶车接到任务从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该电瓶车能否在一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P对应的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P对应的数;(3)如果点P,Q在点A,B之间相向运动,当PQ=8时,求点P对应的数.(第24题)25.观察下面三行数:2,-4,8,-16,32,-64,…;4,-2,10,-14,34,-62,…;1,-2,4,-8,16,-32,….(1)第1行的第8个数为________,第2行的第8个数为________,第3行的第8个数为________.(2)第3行中是否存在连续的三个数,使得这三个数的和为768?若存在,求出这三个数;若不存在,说明理由.(3)是否存在这样的一列,使得其中的三个数的和为1 282?若存在,求出这三个数;若不存在,说明理由.答案一、1.B 2.A 3.D 4.A 5.C 6.C7.B 8.C 9.C 10.D 二、11.水面低于标准水位0.2 m12.-5;15;15 13.6.0×104 14.<15.-32,-12 16.5 17.118.156;(-1)n +11n (n +1)三、19.解:(1)整数:{(-1)2,-|-2|,-22,0,…};分数:{-(-2.5),-12,…};正有理数:{-(-2.5),(-1)2,…}; 负有理数:{-|-2|,-22,-12,…}.(2)图略.-22<-|-2|<-12<0<(-1)2<-(-2.5).20.解:(1)原式=-6+10-3+9=(-6-3+9)+10=10;(2)原式=-4+11-1-5=⎝ ⎛⎭⎪⎫-49-59+⎝ ⎛⎭⎪⎫118-18=-1+1=0;(3)原式=79×36-1112×36+16×36=28-33+6=1;(4)原式=-16÷(-8)+1-49×32=2+1-23=73.21.解:⎝ ⎛⎭⎪⎫-32*2*2=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-32-2*2=14*2=⎝ ⎛⎭⎪⎫142-2=-3116.22.解:25÷340≈0.074(s );2 900 km =2 900 000 m ,2 900 000÷(3×108)≈0.0097(s ).因为0.074>0.0097,所以是边防战士先听到晚会节目的声音.23.解:(1)如图所示.(第23题)(2)电瓶车一共走的路程为|+2|+|+2.5|+|-8.5|+|+4|=17(km ).因为17>15,所以该电瓶车不能在一开始充好电而途中不充电的情况下完成此次任务. 24.解:(1)-83(2)易得t =16-(-12)4-2=282=14.此时-12-2×14=-40, 即点P 对应的数是-40.(3)当PQ =8时,有以下两种情况: ①P ,Q 相遇前,t =28-82+4=103,此时点P 对应的数是-12+2t =-163;②P ,Q 相遇后,t =28+82+4=6,此时点P 对应的数是-12+2t =0. 综上所述,点P 对应的数是-163或0.25.解:(1)-256;-254;-128(2)存在.设中间数为m ,根据题意,有m÷(-2)+m +m×(-2)=768. 解得m =-512,符合第3行数的规律. 此时m÷(-2)=256,m×(-2)=1 024. 所以这三个数分别为256,-512,1 024. (3)存在.因为同一列的数符号相同, 所以这三个数都是正数.设这一列的第一个数为2n (n 为正整数). 根据题意,有2n +(2n +2)+12×2n =1 282,即2n =512=29. 所以n =9.此时2n+2=514,12×2n=256.所以这三个数分别为512,514,256.。
初中数学七年级上册第一章:有理数测试题(含答案)
《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。
初一数学第一章《有理数》单元测试题
第一章 有理数单元测试题一、精心选一选:(每题2分、计16分)1、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了-70米,此时张明的位置在( )A. 在家B. 在学校C. 在书店D. 不在上述地方2、下列交换加数的位置的变形中,正确的是( )A 、14541445-+-=-+-B 、1311131134644436-+--=+-- C.12342143-+-=-+- D 、4.5 1.7 2.5 1.8 4.5 2.5 1.8 1.7--+=-+- 3、下列各对数中,互为相反数的是 ( )A .()2.5-+与2.5-; B.()2.5++与2.5- ; C.()2.5--与2.5; D.2.5与()2.5++4、a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( ) (A)a+b<0 (B)a+c<0(C)a -b>0 (D)b -c<0 a b 0 c5、若两个有理数的和是正数,那么一定有结论( )(A )两个加数都是正数; (B )两个加数有一个是正数;(C )一个加数正数,另一个加数为零; (D )两个加数不能同为负数6、654321-+-+-+……+2005-2006的结果不可能是: ( )A 、奇数B 、偶数C 、负数D 、整数7、、两个非零有理数的和是0,则它们的商为: ( )A 、0B 、-1C 、+1D 、不能确定8、有1000个数排一行,其中任意相邻的三个数中,中间的数等于它前后两数的和,若第一个数和第二个数都是1,则第1000个数的和等于( )(A)1000 (B)1 (C)0 (D)-1二.填空题:(每题3分、计30分)9、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为 ;地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。
初一数学第一章有理数单元测试题及答案
七年级数学有理数单元测试题一、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)1、下列说法正确的是()A 整数就是正整数和负整数B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数2、下列各对数中,数值相等的是()A -27与(-2)7B -32与(-3)2C -3×23与-32×2D ―(―3)2与―(―2)33、在-5,-9,-,-,-2,-212各数中,最大的数是()A -12B -9C -D -54、如果一个数的平方与这个数的差等于0,那么这个数只能是()A 0B -1C 1D 0或15、绝对值大于或等于1,而小于4的所有的正整数的和是()A 8B 7C 6D 56、计算:(-2)100+(-2)101的是()A 2100B -1C -2D -21007、比-大,而比1小的整数的个数是()A 6B 7C 8D 98、2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,收入全部捐赠给卫生部门用以支持抗击“非典”斗争,其邮票发行为枚,用科学记数法表示正确的是( )A.×107 B.×108 C.×107 D.×1049、下列代数式中,值一定是正数的是( )A.x2 B.|-x+1| C.(-x)2+2 D.-x2+110、已知=,若x2=,则x的值等于()A 86. 2B 862C ±D ±862二、填空题(本题共有9个小题,每小题2分,共18分)11、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将2楼记为;地下第一层记作;数-2的实际意义为,数+9的实际意义为。
12、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为___________。
七年级上册数学第一章《有理数》测试题(含答案)
七年级数学(上) 【1 】第一章 有理数单元测试题(120分)一.选择题(3分×10=30分) 1.2008的绝对值是( )A.2008B.-2008C.±2008D.200812.下列盘算准确的是()A.-2+1=-3B.-5-2=-3C.-112-=D.1)1(2-=- 3.下列各对数互为相反数的是()A.-(-8)与+(+8)B.-(+8)与+︱-8︱C.-2222)与(- D.-︱-8︱与+(-8)4.盘算(-1)÷(-5)×51的成果是()A.-1B.1C.251D.-255.两个互为相反数的有理数的乘积为( )A.正数B.负数C.0D.负数或0 6.下列说法中,准确的是()A.有最小的有理数B.有最小的负数C.有绝对值最小的数D.有最小的正数7.小明同窗在一条南北走向的公路上晨练,跑步情形记载如下:(向北为正,单位:m ):500,-400,-700,800 小明同窗跑步的总旅程为()A.800 mB.200 mC.2400 mD.-200 m 8.已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A.5B.-1C.-5或-1D.±19.已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所暗示的数有( )A.1个B.2个C.3个D.4个10.有一张厚度是0.1mm 的纸,将它半数20次后,其厚度可暗示为( )×20)××220×202)mm 二.填空题(5分×3=15)11.妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能暗示什么_____ 12.一个正整数,加上-10,其和小于0,则这个正整数可能是(写出两个即可) 13.绝对值小于2008的所有整数的和是( )14.不雅察下列各数,按纪律在横线上填上恰当的数.2,5,10,17, , . 三.(4分×2=8分) 15.下面给出了五个有理数.-1.5 6 320 -4(1)将上面各数分离填入响应的聚集圈内. 正数负数2) 请盘算个中的整数的和与分数积的差. 16.下表是某一天我国部分城市的最低气温:北京 上海 广州 哈尔滨 杭州 宁波 -4℃-1℃6℃-10℃0℃2℃(1)请把表中各数在数轴上.(2)按该气象的最低气温,从低到高分列城市名. 四.(21分) 17.盘算:(1)-40-(-19)+(-24)(2))91()65(45-⨯-(3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(32)3(2(4)[]4)2(2)4()3(1324÷--+-⨯-+-18.已知p与q互为倒数,r与s互为相反数,∣t∣=1,求t2+ 2009pq +r+s2009的值.(5分)五.(6分×2=12分)19.小颖.小丽.小虎三位同窗的身高如下表所示.(1)以小丽身高为尺度,记作0㎝,用有理数暗示出小颖和小虎的身高.(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作若干㎝.℃,现测得山脚的温度是4℃.(1)求离山脚1200m高的地方的温度.(2)若山上某处气温为-5℃,求此处距山脚的高度.六.(6分)21.甲.乙两商场上半年经营情形如下(“+”暗示盈利,“-”暗示赔本,以百万为单位)(1)三月份乙商场比甲商场多吃亏若干元?(2)六月份甲商场比乙商场多盈利若干元?(3)甲.乙两商场上半年平均每月分离盈利或吃亏若干元?七(8分)22.如图所示,一个点从数轴上的原点开端,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点暗示是-3,已知A.B是数轴上的点,请参照下图并思虑,完成下列各题.(1)假如点A暗示的数-1,将点A向右移动4个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(2)假如点A暗示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B暗示的数是.A.B两点间的距离是 .(3)假如点A暗示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜测终点B暗示的数是.A.B两点间的距离是 .八.(10分)23.一辆货车从超市动身,向东走了3km,到达小彬家,持续走了1.5km到达小颖家,又向西走了9.5km到达小明家,然后回到超市.(1)以超市为原点,以向东的偏向为正偏向,用1个单位长度暗示1km,你能在数轴上暗示出小明家.小彬家和小颖家的地位吗?(2)小明家距小彬家多远?(3)货车一共行驶了若干km?九.盘算题(10分)∣x∣=2,y2=36,求x+y的值.(5分)∣m-5∣+(n+6)2=0,求(m+n)2008+m3的值.(5分)。
人教版七年级数学上册《第一章有理数》单元测试卷(带答案)
人教版七年级数学上册《第一章有理数》单元测试卷(带答案)一、选择题1.若10℃表示零上10℃,则17-℃表示( )A .零上17℃B .零上27℃C .零下17℃D .零下17-℃2.以下说法正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .正有理数和负有理数统称有理数D .有理数包括整数、零、分数3.如图所示,在数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .3.1D .2.34.下列各数中,互为相反数的是( )A .13-与3- B .0与0 C .5--和5-D .12和0.5 5.- 3的绝对值是( )A .13B .3C .-3D .-136.在﹣2,3,0,﹣3.14这四个数中,最小的数为( )A .﹣2B .3C .0D .﹣3.147.下列计算正确的是( )A .﹣3+9=6B .4﹣(﹣2)=2C .(﹣4)×(﹣9)=﹣36D .23÷32=18.下列各对数中,数值相等的是( )A .2233()44和B .|-10|=10和-(-10)C .2233--()和 D .3223和9.我国南水北调东线北延工程2022年度供水任务顺利完成,共向黄河以北调189000000立方米,数据189000000用科学记数法表示为( ) A .618910⨯B .718.910⨯C .81.8910⨯D .91.8910⨯10.下列由四舍五入法得到的近似数精确到千位的是( )A .44.110⨯B .0.0035C .7658D .2.24万二、填空题11.直播购物逐渐成为人们一种主流的购物方式,10月21日“双十一”正式开始预售,据官方数据显示,李佳琦直播间累计观看人数达到了16750000人.请把数16750000用科学记数法表示为 .12.比较大小:-|-2.7| -(-3.3)(填“<”““>”或“=”).13.如图.A 、B 两点在数轴上(A 在B 的右侧),点A 表示的数是2,A 、B 之间的距离为4则点B 表示的数是14.若一0.5的倒数与m+4互为相反数,则m=三、计算题15.(1)18×(13-)-8÷(-2).(2)(-2)3+[-9+(-3)2×13] (3)11182414289--⨯-()() (4) 22333[2()2]22-÷-⨯--四、解答题16.世界最高峰珠穆朗玛峰的海拔高度是8844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?17.将﹣2.5,12,2,﹣(﹣3)这四个数在数轴上表示出来,并用“<”把它们连接起来.18.质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“-”记录,记录如下:-6,-3,-2,0,+1,+4,+5,-1(1)通过计算,求出8袋洗衣粉的总重量(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元19.若23(2)0x y ++-=,求xyx y-的值. 五、综合题20.如图,点A,B,C为数轴上三点,点A表示-2,点B表示4,点C表示8.(1)A、C两点间的距离是.(2)当点P以每秒1个单位的速度从点C出发向CA方向运动时,是否存在某一时刻,使得PA=3PB?若存在,请求出运动时间;若不存在,请说明理由.21.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)若以小明家为原点,向东的方向为正方向,用1个单位长度表示1km,请在如图所示的数轴,,表示出小彬家,小红家和学校的位置;上,分别用点A B C(2)小彬家与学校之间的距离为;(3)如果小明跑步的速度是200m/min,那么小明跑步一共用了多长时间?22.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一km天中七次行驶纪录如下:(单位:)第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距A地多远?(2)若每km耗油0.3升,问一天共耗油多少升?答案解析部分1.【答案】C2.【答案】B【解析】【解答】解:A:正整数和负整数统称整数,说法错误,漏掉了0;B:整数和分数统称有理数,说法正确;C:正有理数和负有理数统称有理数,说法错误,漏掉了0;D:有理数包括整数、零、分数,说法错误,整数里面已经包括了零。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数单元测试题
一、选择题
1.5不是( )
(A) 有理数. (B) 整数. (C) 自然数. (D) 负有理数.
2.-2的相反数是( )
(A) 2. (B) -2. (C) 21. (D) -2
1. 3.一个数等于它的倒数的4倍,这个数是( )
(A) 4. (B) 2. (C) ±4. (D) ±2.
4.()2
3--的运算结果是( ) (A) 6. (B) -6. (C) 9. (D) -9.
5.下列说法不正确的事( )
(A)a 的相反数是-a . (B) 任何有理数的平方都是正数.
(C) 在有理数中绝对值最小的数是零. (D) 在有理数中没有最大的数.
6.如果a >0, b <0,那么|a |+| b |等于( )
(A) a+ b .. (B)a - b . (C) b -a . (D) -a - b .
7.若|a |=4
3,则a 是( ) (A)43. (B) 34. (C) -43或43. (D) -34或3
4. 8.(-0.125)2005×82005+(-1)2004+(-1)2003的值是( )
(A) -2. (B) -1. (C) 0. (D)1.
9.若a 的相反数是3,则a 的倒数是( )
(A) -31. (B) -3. (C) 3
1. (D)3. 10.已知|x |=-x ,那么x 一定( )
(A) 大于零. (B)小于零. (C)等于零. (D)小于或等于零.
二、填空题
11. -4的倒数是_____________.
12. 2的绝对值是________,-|1.5|=_______,0的绝对值是_________.
13. 某网站的点击人数是306100人,用科学记数法表示得___________.
14. 2003.50是一个近似数,它精确到_______位,有________个有效数字.
15. 一个数的绝对值与它的倒数和等于零,那么这个数是_____________.
16 把-22,()2
2-,-|-2|,-2
1按从大到小的顺序排列是____________. 17. |x |≤2,且 x 为整数,那么x 为___________. 18. 数轴上点A 表示-3,那么到点A 的距离是5个单位长的点表示的数是__________.
三、计算题
19. -24 20.( -
3
1)3
21.|-5|-(-7) 22.-
43×(-3
4-0.8+16)
23.-62÷(-6)2+7×(-4) 24.-0.252+241⎪⎭⎫ ⎝⎛--|-42-16|+2311⎪⎭⎫ ⎝⎛÷27
4
四、解答题
25.作一条数轴,
(1)并在数轴上描出下列各点:
A(+2) B(-3) C(0) D(-1.5) E(-
4
1) F(+0.5) G(-4.5) (2)列式并计算点A 与点G 间的距离.
26.在数轴上表示a 、 b 、 c 三个数的点的位置如图所示,化简式子:|a - b |+|a - c |-| c - b |.
c 0 a b
27.某地海拔高度为68米,如果以此地为标准,测得A 地的高度为151米,B 地的高度为- 27米,C 地的高度为-12米,试求A 、B 、C 三地的海拔高度.
28.已知a与b互为相反数,c与d互为倒数,且2x+1=0,试求x3+(a+b)2004-(-cd)2005的值.
29.某工厂有一种秘密的记帐方式.当他们收入300元时,记为-240元;当他们用去300元时,记为360元.猜一猜当他们用去100元时,可能记为多少元?当他们收入100元时,可能记为多少元?说说你的理由.
30.甲、乙、丙三人进行100米赛跑,假设每人保持速度不变,当甲到达终点时,乙差2米到达终点,而丙还有3米到达终点,请问当乙到达终点时,丙离终点还有多远?。