三极管原理全总结
三极管的工作原理
三极管的工作原理引言概述:三极管是一种重要的电子元件,广泛应用于各种电子设备中。
它的工作原理是基于PN结的导电性能和控制电流的特性。
本文将详细介绍三极管的工作原理,匡助读者更好地理解这一电子元件的运作机制。
一、PN结的形成1.1 PN结的概念:PN结是由P型半导体和N型半导体直接接触形成的结构。
1.2 PN结的电性:PN结的两侧形成电场,使得P区和N区的电子和空穴在结附近被吸引,形成电势垒。
1.3 PN结的导电性:当PN结处于正向偏置时,电子从N区向P区挪移,空穴从P区向N区挪移,导致PN结导通。
二、三极管的结构2.1 三极管的构造:三极管由三个掺杂不同的半导体层组成,分别是发射极、基极和集电极。
2.2 三极管的符号表示:三极管的符号表示为一个箭头指向基极,箭头指向基极的一侧是发射极,另一侧是集电极。
2.3 三极管的工作方式:三极管通过控制基极电流来控制集电极和发射极之间的电流。
三、三极管的工作原理3.1 放大作用:当基极电流增加时,集电极和发射极之间的电流也增加,实现信号的放大。
3.2 开关作用:三极管可以被用作开关,当基极电流为零时,三极管处于截止状态,不导通;当基极电流增加时,三极管处于饱和状态,导通。
3.3 稳压作用:三极管可以用作稳压器,通过控制基极电流来实现对电路中电压的稳定。
四、三极管的应用领域4.1 放大器:三极管广泛应用于放大电路中,如音频放大器、射频放大器等。
4.2 开关:三极管可用作开关,控制电路的通断,如数字电路、计算机内部电路等。
4.3 稳压器:三极管可以用作稳压器,保护电路中的其他元件不受过高电压的影响。
五、三极管的发展趋势5.1 集成化:随着技术的不断进步,三极管正向着微型化、集成化的方向发展,以适应电子设备的小型化趋势。
5.2 高频化:三极管的工作频率不断提高,适合于更高频率的应用领域,如通信领域。
5.3 多功能化:未来的三极管可能会具有更多的功能,不仅可以实现放大、开关、稳压等功能,还可能具有更多的应用场景。
三级管电路工作原理及详解
三级管电路工作原理及详解一、引言三极管是一种常用的半导体器件,广泛应用于各种电路中。
它具有放大信号、开关控制和稳压等特性,是现代电子设备中不可或缺的元件之一。
本文将深入探讨三极管电路的工作原理和详解,以帮助读者更好地理解和应用三极管。
二、三极管基本概述三极管是由三个不同掺杂的半导体材料组成,常用的有NPN型和PNP型两种。
其中,NPN型三极管中央是N型半导体,两侧是P型半导体;PNP型三极管中央是P型半导体,两侧是N型半导体。
三极管的结构决定了它具有双向导通的特点。
三、三极管的工作原理3.1 NPN型三极管工作原理1.充电过程:–基极与发射极之间施加正向电压。
–发射极和基极之间形成正向偏压。
–发射极注入少量电子到基区。
2.放电过程:–基极电压接近零。
–发射区的少数载流子都陷于基区。
–收集区电流几乎是零。
3.放大过程:–基极电压逆向偏置。
–发射极和基极之间形成反向偏压。
–基极电流引起发射极电流的增加,形成放大效应。
3.2 PNP型三极管工作原理1.充电过程:–基极与发射极之间施加负向电压。
–发射极和基极之间形成负向偏压。
–发射极抽取少量电子从基区。
2.放电过程:–基极电压接近零。
–发射区的少数载流子都陷于基区。
–收集区电流几乎是零。
3.放大过程:–基极电压逆向偏置。
–发射极与基极之间形成反向偏压。
–基极电流引起发射极电流的减小,形成放大效应。
四、三极管的应用三极管由于其特性,在电子电路中有广泛的应用。
以下是几个常见的应用场景: 1. 放大器:使用三极管可以放大微弱的信号,使之变得可用于其他电路。
2. 开关控制:三极管可以作为开关,控制电路的通断。
3. 稳压器:利用三极管的特性,可以设计稳压电路,保持输出电压的稳定性。
4. 正弦波发生器:三极管可以用于正弦波发生器的设计,产生各种频率的信号。
五、三极管的优缺点5.1 优点•体积小、重量轻,便于集成和组装。
•功耗低,效率高。
•放大范围宽,稳定性好。
三极管工作原理及详解
三极管工作原理及详解三极管是一种半导体器件,也被称为双极型晶体管。
它是由三个不同掺杂的半导体材料(P型、N型和P型)构成的。
三极管主要有三个区域,分别是发射区(Emitter)、基极区(Base)和集电区(Collector)。
三极管的工作原理是基于PN结和两个PN结之间的正偏压。
在三极管中,发射区被正向偏置,基极区与发射区之间的PN结是正向偏置的,而基极区与集电区之间的PN结是反向偏置的。
在正向偏置下,发射区和基极之间形成强烈的电子流。
三极管的工作原理可以通过以下过程来解释:1.关闭状态:当没有外部电压时,三极管处于关闭状态。
这时,发射区和基极之间的PN结是反向偏置的,导致电子无法通过这个结。
同时,基极区和集电区之间的PN结也是反向偏置的,阻止电流通过结。
2.开通状态:当在发射区和基极之间施加一定的正偏压时,发射区与基极之间的PN结将变得导电。
这时,电子从N区进入P区,然后重新组合成空穴进入基极区。
由于基极区非常薄,电子容易通过这个区域,这导致电子流从发射区进入基极区。
3.放大状态:在开通状态下,当电子进入基极区时,它们在基极区中会重新复合成空穴。
然而,由于基极区非常薄,复合的速度非常慢。
因此,大部分电子通过基极区,进入集电区而没有复合。
这样,发射区的电子流被放大,从而实现电流的放大功能。
总结起来,三极管的工作原理可以归结为以下三个步骤:1)施加正向偏压,使发射区和基极之间的PN结导电;2)电子从发射区进入基极区;3)电子在基极区中重新组合成空穴,并通过集电区。
除了电流放大功能之外,三极管还有其他重要的应用。
例如,它可以用于开关电路、放大电路和振荡电路。
在开关电路中,三极管可以用来控制开关的打开和关闭。
在放大电路中,三极管可以利用小信号输入来放大电流或电压。
在振荡电路中,三极管可以通过反馈来产生振荡信号。
总而言之,三极管是一种基本的半导体器件,其工作原理基于PN结和正向偏压的使用。
通过电子的流动和复合,三极管可以实现电流的放大和控制,从而为电子器件带来许多应用。
三极管工作原理及详解
e UC>UE≥UB
e
UC<UE≤UB
三极管状态判断小结
工作状态 发射结电压 集电结电压
放大 截止
正向 反向
反向 反向
饱和 倒置
NPN型 c b
正向 反向
PNP型 c b e UC≥UB<UE
正向 正向
判断饱和状态时的引脚
UBE正向导通: 硅管约0.7V, 锗管大约0.2V
饱和时三极管的管压被称作为
三极管状态判断小结
工作状态 发射结电压 集电结电压
放大 截止
正向 反向
反向 反向
判断截止状态时的引脚
饱和 倒置
NPN型 c b
正向 反向
PNP型 c b
正向 正向
对一般的NPN管电路: UC=+UCC,UE=0V,UB≤0V UCE=+UCC 对一般的PNP管电路: UC= -UCC,UE=0V,UB≥0V UCE= -UCC
I BS U CC 5 25μA βRC 100 2k
+Ucc
Rb c b e
Rc
因为IB>IBS,所以三极管处在饱和状态
• 例2. NPN型接法如下。UBE=0.7V,分析电路 中三极管处于何种工作状态
(c)Rb=30kΩ, Rc=2.5kΩ, β=35, Ucc=5V,Ui=0V或3V
倒置
三极管状态判断小结
1.以电压判断三极管工作状态
工作状态 发射结电压 集电结电压
放大 截止 饱和 倒置 NPN型 c
正向 反向 正向 反向
反向 反向 正向 正向 PNP型 c b e UC<UB<UE
判断放大状态时的引脚
UBE正向导通,压降: 硅管大约0.7V 锗管大约0.2V
三极管原理全总结
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
截止区:Ub<=Uce且Uce>Ube
放大区:Ube>Uon且UCE>=Ube,即Uc>Ub>Ue。
饱和区:Ube>Uon且Uce<Ube
NPN型三极管导通时(饱和状态)ce间电压约为0.3V,PNP型三极管饱和导通条件Ve>Vb,Vc>Vb,ec间电压也约等于0.3V。NPN型三极管截止时只需发射极反偏即可,PNP型三极管与NPN型三极管截止条件相同。
(3)截止区:发射结反偏,集电结反偏。由于两个PN结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce却很大。这时的三极管c、e极相当于开路。可以看成是一个开关的断开。
3、三极管三种工作区的电压测量
如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
共射极电路的电流放大系数为β,共基极电路的电流放大倍数为α。α的值小于1但接近于1,而β的值则远大于1(通常在几十到几百的范围内),所以Ic>>Ib。由于这个缘故,共射极电路不但能得到电压放大,还可得到电流放大,致使共射极电路是目前应用最广泛的一种组态。
4、三极管用于开关电路的原理
三极管原理全总结
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
三极管原理通俗
三极管原理通俗
三极管原理通俗易谨的说法是,它像一个水坝,有两个阀门。
小阀门受大阀门控制。
当小阀门开启一点点水流
就缓缓流下:如果小阀门开大一点,水流就变得汹涌;:如果小阀门关上了,水就不会流动了。
三极管放大电路的基本构成:
1,发射区向基区注入电子:当基极电压大于发射极电压时,基极电源将电子从发射区吸引到基区,当基极电流增大时,基区的电子数量增多,电子从发射区向基区的注入量也增大。
2.电子在基区扩散和复合:进入基区的电子在靠近基极的区域会扩散开来,并有可能与集电极附近的空六复合。
3.集电极收集电子:随若基极电流的增大,进入基区的电子数量增多,但只有很少一部分电子能够到达集电极。
当基极电流增大到一定程度时,集电极的电压增大到足以将扩散到集电区的电子吸引到集电极。
4.输出信号:当集电极收集到电子后,集电极的电位降低,产生输出信号。
输出信号的大小取决于基极电流的大小和比例常数。
5.反馈作用:当三极管放大电路的输出信号对输入信号产生影响时,就称为反馈作用。
反馈作用可以使电路的增益减小或使电路的输出波形失真。
总之。
三极管是一种电流控制元件,可以通过控制其电流大小来实现对电路的控制和调节作用。
制表: 审核: 批准:。
三极管npn的工作原理
三极管npn的工作原理
NPN三极管是一种常用的双极型晶体管,在电子器件中应用广泛。
它由三个掺杂不同类型的半导体材料构成,分别是N 区(负电荷载流子区)、P区(正电荷载流子区)和N区(负电荷载流子区)。
NPN三极管的工作原理如下:
1. 开关状态:当无外加电压时,NPN三极管处于关闭状态,没有电流流过。
此时,基区没有电流通过,无法使集电极和发射极之间产生足够的电压来放大输入信号。
2. 放大状态:当在基极和发射极之间施加一个电压时,基区会形成电流,这个电流也称为基电流。
当基电流足够大时,它会将NPN三极管推至工作状态,这时集电极和发射极之间存在较大的电压差,从而形成放大效应。
通过调节基电流的大小,可以调整NPN三极管的放大倍数。
具体工作过程如下:
1. 输入:将输入信号(例如电压或电流)加到基极,通过控制基电流的大小来控制NPN三极管的放大倍数。
2. 放大:当正向偏置电压(例如外加电压)施加到集电极和发射极之间时,电子从发射极流向基极,同时由于浓度差异,少数载流子空穴从基极进入集电极,形成电流放大效应。
3. 输出:输出信号从集电极取出。
总之,NPN三极管的工作原理是基于控制基电流从而控制集电极和发射极之间的电压差,以实现信号放大的效果。
三极管的工作原理,详细、通俗易懂、图文并茂
三极管的工作原理,详细、通俗易懂、图文并茂一、很多初学者都会认为三极管是两个PN 结的简单凑合(如图1)。
这种想法是错误的,两个二极管的组合不能形成一个三极管。
我们以NPN 型三极管为例(见图2 ),两个PN 结共用了一个P 区——基区,基区做得极薄,只有几微米到几十微米,正是靠着它把两个PN 结有机地结合成一个不可分割的整体,它们之间存在着相互联系和相互影响,使三极管完全不同于两个单独的PN 结的特性。
三极管在外加电压的作用下,形成基极电流、集电极电流和发射极电流,成为电流放大器件。
二、三极管的电流放大作用与其物理结构有关,三极管内部进行的物理过程是十分复杂的,初学者暂时不必去深入探讨。
从应用的角度来讲,可以把三极管看作是一个电流分配器。
一个三极管制成后,它的三个电流之间的比例关系就大体上确定了(见图 3 ),用式子来表示就是β 和α 称为三极管的电流分配系数,其中β 值大家比较熟悉,都管它叫电流放大系数。
三个电流中,有一个电流发生变化,另外两个电流也会随着按比例地变化。
例如,基极电流的变化量ΔI b =10 μA ,β =50 ,根据ΔI c =βΔI b 的关系式,集电极电流的变化量ΔI c =50×10 =500μA ,实现了电流放大。
三、三极管自身并不能把小电流变成大电流,它仅仅起着一种控制作用,控制着电路里的电源,按确定的比例向三极管提供I b 、I c 和I e 这三个电流。
为了容易理解,我们还是用水流比喻电流(见图 4 )。
这是粗、细两根水管,粗的管子内装有闸门,这个闸门是由细的管子中的水量控制着它的开启程度。
如果细管子中没有水流,粗管子中的闸门就会关闭。
注入细管子中的水量越大,闸门就开得越大,相应地流过粗管子的水就越多,这就体现出“以小控制大,以弱控制强”的道理。
由图可见,细管子的水与粗管子的水在下端汇合在一根管子中。
三极管的基极 b 、集电极 c 和发射极e 就对应着图4 中的细管、粗管和粗细交汇的管子。
三极管工作原理详解
03
电流放大作用是三极管最基本 的特性,也是其在电子电路中 广泛应用的原因之一。
载流子的传
1
在三极管中,载流子主要包括空穴和电子。
2
当基极电压发生变化时,基极中的载流子会受到 电场力的作用而发生运动,形成基极电流。
3
集电极电流的形成是由于基极电流在集电结上产 生电场,使得集电极中的载流子发生运动而形成 的。
三极管工作原理详解
目录
• 三极管简介 • 三极管的工作原理 • 三极管的特性曲线 • 三极管的应用 • 三极管的常见问题与解决方案
01
三极管简介
定义与类型
定义
三极管是一种半导体器件,具有 电流放大和开关控制的功能。
类型
根据结构和工作原理的不同,三 极管可分为NPN型和PNP型。
三极管的结构
组成
在振荡电路中的应用
振荡器
三极管可以作为振荡电路中的核心元 件,通过正反馈和选频网络实现高频 或低频振荡,用于产生特定频率的信 号。
波形发生器
调频/调相
在无线通信系统中,利用三极管的振 荡功能可以实现信号的调频和调相, 用于实现无线信号的调制和解调。
利用三极管的振荡特性,可以产生三 角波、矩形波等波形,用于信号处理、 测试测量等领域。
在开关电路中的应用
逻辑门电路
三极管可以作为逻辑门电 路中的开关元件,实现高 低电平的转换,用于构建 逻辑运算和电路控制。
继电器驱动
在自动化控制系统中,三 极管可以用于驱动继电器 或其他开关元件,实现电 路的通断控制。
电机驱动
在电机驱动电路中,三极 管可以用于控制电机的启 动、停止和转向,实现自 动化控制。
三极管由三个区(发射区、基区和集 电区)和两个结(集电极与基极之间 的集电结和发射极与基极之间的发射 结)组成。
关于三极管工作的原理总结(汇总11篇)
1、电流放大三极管的作用之一就是电流放大,这也是其最基本的作用。
以共发射极接法为例,一旦由基极输入一个微小的电流,在集电极输出的电流大小便是输入电流的β倍,β被叫做三极管的电流放大系数。
将输入的微弱信号扩大β倍后输出,这便是三极管的电流放大作用。
2、用作开关三极管的作用之二就是用作开关。
三极管在饱和导通时,其CE极间电压很小,低于PN 结导通电压,CE极间相当于短路,“开关”呈现开的状态;三极管在截止状态时,其CE 极间电流很小,相当于断路,“开关”呈现关的状态。
因此可完成开关的功能,且其开关速度极快,控制灵敏,且不产生电火花。
3、扩流三极管的作用之三就是扩流作用,在某些情况下,可扩大电流限值或电容容量等。
比如:将小功率可控硅与大功率三级管相结合,可以得到大功率可控硅,扩大了最大输出电流值;在长延时电路中,三极管可完成扩大电容容量的作用。
4、代换三极管的作用之四就是代换作用,在一定情况下与某些电子元器件相结合可代换其它器件,完成相应功能。
比如:两只三极管串联可代换调光台灯中的双向触发二极管;在某些电路中,三极管可以代换8V的稳压管,代换30V的稳压管等等。
关于三极管工作的原理总结第2篇三极管由两个PN结构成,e–b间的PN结叫发射结,c–b间的PN结叫集电结,b是两个PN结的公共电极。
三极管导电方向由发射结的方向来决定。
三极管有从发射极流入和从发射极流出两种导电形式。
为了区别这两种形式,规定箭头从e极指向b极的三极管表示PNP型。
三极管图形符号如图所示,它有三个引脚电极,用三根短线表示,分别叫发射极e、基极b、集电极c。
发射结上并联有一个电阻。
这表示生产三极管时,也同时制造了一个电阻器,故称为带阻三极管。
上图d所示的图形符号,表示在生产三极管时,也同时制造了一个反方向的二极管,常称为带阻尼三极管。
三极管的输入特性,具体描述了三极管输入电流Ib随输入电压Ube变化的关系。
既可通过测量认识,也可通过分析特性曲线了解。
三极管 工作原理
三极管工作原理
三极管是一种用于放大和开关电信号的电子器件,其基本工作原理为控制输入信号在输出端的放大和控制。
三极管由三个电极组成:发射极(Emitter)、基极(Base)和集电极(Collector)。
基极负责控制电流的流动,发射极负责放大电流,集电极负责收集电流。
工作原理如下:
1. 开关状态:当基极电压低于发射极电压时,三极管处于关闭状态。
集电极和发射极之间没有电流流动。
2. 放大状态:当基极电压高于发射极电压时,三极管进入放大状态。
这时,集电极和发射极之间开始有电流流动,该电流被放大并从集电极输出。
在放大状态下,控制输入信号通常加在基极上,而输出信号则从集电极获取。
由于三极管为放大器,它可以将较小的输入信号放大成较大的输出信号,从而实现放大功能。
三极管还可以用作开关。
当基极电压足够高时,三极管进入饱和区,此时集电极和发射极之间的电流达到最大值。
当基极电压较低时,三极管进入截止区,此时集电极和发射极之间没有电流流动。
这种开关特性使得三极管可以在电路中实现开关功能。
总之,三极管通过控制基极电压来调节集电极和发射极之间的电流,可实现信号的放大和开关功能。
三极管原理全总结
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取,对锗管取。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
三极管工作原理(详解)
三极管工作原理(详解)三极管,也叫晶体三极管,简称晶体管,是一种能够放大电路中微小信号的电子元器件。
它的原理是通过控制一个区域的电子流,来改变另一个区域的电流。
晶体管最早由贝尔实验室的威廉·肖克利发明,是现代电子技术的基础之一。
本文将详细讲解三极管的工作原理。
一、晶体管的结构晶体管由三个掺杂不同材料的半导体层构成,分别为发射极(EB)、基极(CB)和集电极(CE)。
发射极(E):它是一个P型半导体,它的厚度很少,通常在0.01毫米以上,但是面积很大,通常在平方数分米。
基极(B):它是一个N型半导体,尽管它的尺寸比发射极大,但它的浓度很低,它是晶体管的控制电极。
集电极(C):它是一个N型半导体,通常比基极大几倍,是晶体管的输出电极。
为了保护晶体管的内部结构,晶体管需要封装成小型的金属或塑料外壳。
封装的芯片会被裸露出来,然后通过银色的金属脚连接电路板。
二、晶体管的工作原理晶体管是一种由硅和其他半导体材料构成的小型电子元件。
它的最重要的特性是可以放大信号。
晶体管的三个引脚在应用中被分别用作发射极、基极和集电极。
晶体管通过控制基极的电压,就能够放大电路中的微小信号。
晶体管具有三个工作区,它们分别是截止区、放大区和饱和区。
1. 截止区当基极电压低于截止电压时,晶体管处于截止状态,整个晶体管的结构中没有电流流动。
2. 放大区当基极电压高于截止电压时,晶体管处于放大状态。
此时,基极电压对晶体管的集电极电流产生控制作用。
如果基极电压升高,晶体管中的电流流向集电极方向就会升高,从而放大晶体管输入的电信号。
3. 饱和区当基极电压继续升高,晶体管中的电流达到最大值时,晶体管就会进入饱和状态。
在饱和区,晶体管可以用作开关,输出高电平或低电平。
三、晶体管的偏置要正确使用晶体管,需要对其进行偏置操作。
晶体管的偏置,是指将晶体管连接到电路中,并用一个外部电源提供所需要的电力。
基极电压在适当的电压下,即可使晶体管处于放大状态。
三极管工作原理及详解
三极管工作原理及详解三极管是一种电子元器件,也被称为晶体管,是现代电子技术中广泛应用的一种重要器件。
它是由半导体材料制成的,通常由一个n-型材料和两个p-型材料组成,形成了一个n-p-n结构。
三极管的基本结构由一个基极(B,用于控制电流流动)、一个发射极(E,用于输入电流)和一个集电极(C,用于输出电流)组成。
其工作原理可分为以下几个方面进行详解:1.PN结反偏扩散:当三极管的发射结(BE结)处于反偏状态时,即使输入电压很小,也会有导电电子和空穴被扩散进入发射结。
这会导致发射结区域的电荷强度减小,使其变得非常薄。
基极结(BC结)也被反偏,因此极少有电子和空穴从基极端扩散进入。
2.动态增益:由于发射结非常薄,即使很小的输入电流(基电流)也能穿过发射结流入发射区。
这些电流在发射结区域中的散射使得电流进一步扩大,从而形成了由基电流控制的大电流放大器。
3.输出由输入控制:三极管的工作特点是,当输入信号施加在基极上时,这将导致在发射结和基结之间发生器件动作,如三极管的增益。
因此,输入电流的小变化就会导致输出电流的相应变化。
4.级联放大:三极管的输出可以直接连接到下一个三极管的输入,以实现级联放大,从而进一步增大信号的幅度。
这是因为三极管具有很高的放大倍数,通常在100以上。
5.工作模式:三极管的工作可以分为三种模式:放大模式、截止模式和饱和模式。
放大模式是三极管最常见的工作模式,此时三极管的输入电压足够大以驱动输出电流。
截止模式是指输入电压不足以驱动输出电流,此时三极管处于关闭状态。
饱和模式是指输入电压非常高,以至于电流饱和,此时三极管处于完全开启状态。
6.用途广泛:三极管作为一种重要的电子元件,在电子电路中应用广泛。
它可以用作放大器、开关、振荡器等。
例如,在放大器电路中,通过适当地设置电路参数,可以使输入信号的微小变化引起输出电流的大幅度变化,从而实现信号放大功能。
在开关电路中,三极管可以通过控制输入电流的开关行为,打开或关闭电路。
三极管原理全总结
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否那么就是反偏。
即当P区〔阳极〕电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,那么为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流〔IB〕控制C—E的电流〔IC〕,E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流〔IB〕控制E—C的电流〔IC〕,E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止〔1〕放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
〔2〕饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
〔3〕截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
三极管npn工作原理
三极管npn工作原理
三极管(NPN型)是一种常见的电子器件,其工作原理如下:
1. 构造:NPN型三极管由两个P型半导体和一个N型半导体
构成,中间的N型半导体称为基极(B),两侧的P型半导体
分别称为发射极(E)和集电极(C)。
发射极和集电极之间
的区域称为发射结,而基极和发射结之间的区域称为基结。
2. 基本原理:当在基极-发射结之间施加正向电压(正极连接
在发射极,负极连接在基极)时,发射结处于导通状态,电流可以流动。
而当基极-发射结之间施加反向电压时,发射结处
于截止状态,电流不流动。
3. 放大功能:三极管的一大特点是可以对输入信号进行放大,即小信号输入可以得到较大的输出信号。
具体来说,当Vbe (基极-发射极间电压)大于某一临界电压时,三极管开始工作,此时B极电流增大,将影响B极与C极之间的电流流动,进而导致C极电流增大。
这种作用可实现信号的放大。
4. 开关作用:当三极管处于工作状态时,可用作开关。
当Vbe 小于截止电压时,三极管处于截止状态,导通电流极小;而当Vbe大于临界电压时,三极管处于饱和状态,导通电流较大。
因此,可以利用三极管的开关作用来控制其它电路的通断。
需要注意的是,以上是简单的描述,而实际的三极管工作涉及更复杂的电流流动和电场效应。
不同的三极管具有不同的参数
和性能,所以在实际应用中,需要根据具体的工作要求进行选择。
三极管原理全总结
三极管原理全总结三极管是一种深具影响力的半导体电子器件,广泛应用于电子电路中的放大、开关和稳压等功能。
下面是对三极管原理的全面总结:一、三极管的基本结构三极管由三个掺杂不同材料的半导体层片组成,分别是发射区、基区和集电区。
发射区和集电区分别是n型和p型半导体,基区是p型半导体。
发射区和集电区之间通过基区相互连接。
二、三极管的工作原理1.放大作用:当输入信号施加在三极管的基极上时,如果正相输入,即基极向正偏压施加,会使得基区内的少数载流子浓度增加,这样会缩小基区的电阻,使得大量的电子从发射极注入到基区中,即电流通过三极管的基极。
2.输出作用:当三极管的发射极和集电极之间施加正向电压时,集电极上会有较大的电压和电流输出,且集电电流与发射电流间存在放大比例。
三、三极管的工作模式1.放大模式:当发射极到基极的电压为正时,三极管处于放大工作模式。
此时,基极电压和基极电流间的关系为非线性关系,输出电流的变化可配合输入信号进行放大。
2.饱和模式:当发射极到基极的电压为负且发射电流很小时,三极管处于饱和工作模式。
此时,输出电流取决于输入电流,而与输出电压无关。
3.截止模式:当发射极到基极的电压为负且发射电流为零时,三极管处于截止工作模式。
此时,输出电流和输出电压均为零。
四、三极管动态特性1.转输特性:描述了三极管的输入电流和输出电流之间的关系,即输出电流与输入电流之间的比例。
2.频率特性:三极管的频率响应以及对不同频率信号的放大程度。
三极管的频率特性随着频率的增大而降低,一般需要根据需要选择合适的三极管型号。
3.非线性失真:三极管在放大信号时,存在一定程度上的非线性失真。
当输入信号的幅度过大时,输出信号的波形可能会失真。
4.温度特性:三极管的性能受温度的影响较大。
一般情况下,温度越高,三极管的放大能力越差。
五、三极管的应用1.放大器:三极管的放大功能使其广泛应用于各种放大器电路中,如音频放大器、功率放大器等。
2.开关:通过控制输入信号的使能,利用三极管的饱和和截止特性,实现信号转换和开关操作。
三极管通电原理
三极管通电原理三极管是一种半导体器件,是现代电子技术中极为重要的元件之一。
它广泛应用于各种电子设备和电路中,起到放大、开关和调节信号的作用。
三极管的通电原理涉及到PN结的电子注入和扩散、电场调控、电流流动等多个方面。
一、PN结的电子注入与扩散三极管是由两个PN结(即正负电荷分布的半导体材料)组成的,其中一个是发射极(Emitter)与基极(Base)之间的PN结,另一个是基极与集电极(Collector)之间的PN结。
当三极管通电时,外加电压使得发射极-基极之间的PN结正向偏置,而基极-集电极之间的PN结反向偏置。
在发射极-基极之间的PN结中,电子从N区(发射极)注入到P区(基极),同时空穴(P区的正电荷缺陷)也从P区注入到N区。
这个过程被称为电子注入与扩散。
由于发射极区域的电子浓度高于基极区域,因此电子在这个过程中占据主导地位。
二、电场调控与电子扩散在发射极注入电子的过程中,由于正向偏置的PN结,形成了发射结区域的电场。
这个电场会阻止电子进一步向基极区域扩散。
同时,发射极-基极之间形成的电流也是由电子构成的。
这个电流被称为发射极电流(IE)。
在基极-集电极之间的PN结反向偏置下,电子从基极区域流向集电极区域。
这个电流被称为集电极电流(IC)。
因为反向偏置的PN结会加速电子的流动,集电极电流的密度比发射极电流大得多。
三、电流放大与控制基极电流(IB)是发射极电流(IE)和集电极电流(IC)的总和,即IB = IE + IC。
由于集电极电流远大于发射极电流,可以近似地认为IB ≈ IC。
由于IC与IB之间的关系是非线性的,三极管在这个阶段表现为电流放大器。
小的基极电流变化会导致大的集电极电流变化,这就是三极管放大作用的基本原理。
此外,通过调整发射极-基极之间的电压,可以控制基极电流,从而控制集电极电流。
这种电流控制特性使得三极管可以作为开关使用。
当基极电流足够大时,三极管处于饱和状态,导通;当基极电流较小时,三极管处于截止状态,截断。
三极管的工作原理
三极管的工作原理引言概述:三极管是一种重要的半导体器件,广泛应用于电子电路中。
它是由三个掺杂不同的半导体材料构成的,具有放大、开关等功能。
本文将详细介绍三极管的工作原理。
一、三极管的结构1.1 发射极:发射极是三极管的输入端,负责输入控制信号。
1.2 基极:基极是三极管的控制端,控制电流的流动。
1.3 集电极:集电极是三极管的输出端,负责输出放大后的信号。
二、三极管的工作原理2.1 漏极电压:当基极与发射极之间的电压大于一定阈值时,三极管处于导通状态。
2.2 饱和区和截止区:三极管在饱和区时,电流最大;在截止区时,电流几乎为零。
2.3 放大作用:三极管能够将输入信号放大,并输出到集电极,实现信号放大的功能。
三、三极管的类型3.1 NPN三极管:发射极和集电极之间是N型材料,基极是P型材料。
3.2 PNP三极管:发射极和集电极之间是P型材料,基极是N型材料。
3.3 不同类型的三极管在电路中的应用略有不同,需要根据具体情况选择合适的类型。
四、三极管的应用4.1 放大器:三极管可以作为放大器,将输入信号放大后输出。
4.2 开关:三极管还可以作为开关,控制电路的通断。
4.3 振荡器:三极管还可以组成振荡器,产生高频信号。
五、三极管的特点5.1 小体积:三极管具有小体积、轻量化的特点,适合在各种电子设备中应用。
5.2 高可靠性:三极管具有高可靠性,使用寿命长。
5.3 稳定性好:三极管在一定工作条件下,稳定性较好,能够满足电路的要求。
总结:通过本文的介绍,我们可以了解到三极管的结构、工作原理、类型、应用和特点。
三极管作为一种重要的半导体器件,在电子领域有着广泛的应用,对于我们理解电子电路原理和设计具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、三极管的正偏与反偏:给PN结加的电压和PN结的允许电流方向一致的叫正偏,否则就是反偏。
即当P区(阳极)电位高于N区电位时就是正偏,反之就是反偏。
例如NPN型三极管,位于放大区时,Uc>Ub集电极反偏,Ub>Ue发射极正偏。
总之,当p型半导体一边接正极、n型半导体一边接负极时,则为正偏,反之为反偏。
NPN和PNP主要是电流方向和电压正负不同。
NPN是用B—E的电流(IB)控制C—E的电流(IC),E极电位最低,且正常放大时通常C极电位最高,即VC>VB>VE。
PNP是用E—B的电流(IB)控制E—C的电流(IC),E极电位最高,且正常放大时通常C极电位最低,即VC<VB<VE。
2、三极管的三种工作状态:放大、饱和、截止(1)放大区:发射结正偏,集电结反偏。
对于NPN管来说,发射极正偏即基极电压Ub>发射极电压Ue,集电结反偏就是集电极电压Uc>基极电压Ub。
放大条件:NPN管:Uc>Ub>Ue;PNP管:Ue>Ub>Uc。
(2)饱和区:发射结正偏、集电结正偏--BE、CE两PN结均正偏。
即饱和导通条件:NPN管:Ub>Ue,Ub>Uc,PNP型管:Ue>Ub,Uc>Ub。
饱合状态的特征是:三极管的电流Ib、Ic 都很大,但管压降Uce 却很小,Uce≈0。
这时三极管的c、e 极相当于短路,可看成是一个开关的闭合。
饱和压降,一般在估算小功率管时,对硅管可取0.3V,对锗管取0.1V。
此时的,iC几乎仅决定于Ib,而与Uce无关,表现出Ib对Ic的控制作用。
(3)截止区:发射结反偏,集电结反偏。
由于两个PN 结都反偏,使三极管的电流很小,Ib≈0,Ic≈0,而管压降Uce 却很大。
这时的三极管c、e 极相当于开路。
可以看成是一个开关的断开。
3、三极管三种工作区的电压测量如何判断电路中的一个NPN硅晶体管处于饱和,放大,截止状态?用电压表测基极与射极间的电压Ube。
饱和状态 eb有正偏压约0.65V左右,ce电压接近0V.放大状态 eb有正偏压约0.6V,ce电压大于0.6V小于电源电压.截止状态 eb电压低于0.6V,ce电压等于或接近电源.在实际工作中,可用测量BJT各极间电压来判断它的工作状态。
NPN型硅管的典型数据是:饱和状态Ube=0.7V,Uce=0.3V;放大区Ube=0.7V;截止区Ube=0V。
这是对可靠截止而言,实际上当Ube<0.5V时,即已进入截止状态。
对于PNP管,其电压符号应当相反。
截止区:就是三极管在工作时,集电极电流始终为0。
此时,集电极与发射极间电压接近电源电压。
对于NPN型硅三极管来说,当Ube在0~0.5V 之间时,Ib很小,无论Ib怎样变化,Ic都为0。
此时,三极管的内阻(Rce)很大,三极管截止。
当在维修过程中,测得Ube低于0.5V或Uce接近电源电压时,就可知道三极管处在截止状态。
放大区:当Ube在0.5~0.7V 之间时,Ube的微小变化就能引起Ib的较大变化,Ib随Ube基本呈线性变化,从而引起Ic的较大变化(Ic=βIb)。
这时三极管处于放大状态,集电极与发射极间电阻(Rce)随Ube可变。
当在维修过程中,测得Ube在0.5~0.7V之间时,就可知道三极管处在放大状态。
饱和区:当三极管的基极电流(Ib)达到某一值后,三极管的基极电流无论怎样变化,集电极电流都不再增大,一直处于最大值,这时三极管就处于饱和状态。
三极管的饱和状态是以三极管集电极电流来表示的,但测量三极管的电流很不方便,可以通过测量三极管的电压Ube及Uce来判断三极管是否进入饱和状态。
当Ube略大于0.7V后,无论Ube怎样变化,三极管的Ic将不能再增大。
此时三极管内阻(Rce)很小,Uce低于0.1V,这种状态称为饱和。
三极管在饱和时的Uce 称为饱和压降。
当在维修过程中测量到Ube在0.7V 左右、而Uce低于0.1V 时,就可知道三极管处在饱和状态。
截止区:Ub<=Uce且Uce>Ube放大区:Ube>Uon且UCE>=Ube,即Uc>Ub>Ue。
饱和区:Ube>Uon且Uce<UbeNPN型三极管导通时(饱和状态)ce间电压约为0.3V,PNP型三极管饱和导通条件Ve>Vb,Vc>Vb,ec间电压也约等于0.3V。
NPN型三极管截止时只需发射极反偏即可,PNP型三极管与NPN型三极管截止条件相同。
4、三极管用于开关电路的原理两个PN结都导通,三极管导通,这时三极管处于饱和状态,即开关电路的“开”状态,这时CE极间电压小于BE极间电压。
两个PN结均反偏,即为开关电路的“关”状态,三极管截止。
5.三极管构成放大器有三种电路连接方式共射极放大器,发射极为公共端,基极为输入端,集电极为输出端。
共集极放大器,集电极为公共端,基极为输入端,发射极为输出端。
共基极放大器,基极为公共端,发射极为输入端,集电极为输出端。
6、PNP管和NPN管的用法a.如果输入一个高电平,而输出需要一个低电平时,首选择NPN。
b.如果输入一个低电平,而输出需要一个低电平时,首选择PNP。
c.如果输入一个低电平,而输出需要一个高电平时,首选择NPN。
d.如果输入一个高电平,而输出需要一个高电平时,首选择PNP。
NPN基极高电压,极电极与发射极短路(导通).低电压,极电极与发射极开路.也就是不工作。
PNP基极高电压,极电极与发射极开路,也就是不工作。
如果基极加低电位,集电极与发射极短路(导通)。
7、晶体三极管是一种电流控制元件。
在实际使用中常常利用三极管的电流放大作用,通过电阻(在三极管的集电极与电源之间接一个电阻)转变为电压放大作用。
共射极电路的电流放大系数为β,共基极电路的电流放大倍数为α。
α的值小于1但接近于1,而β的值则远大于1(通常在几十到几百的范围内),所以Ic>>Ib。
由于这个缘故,共射极电路不但能得到电压放大,还可得到电流放大,致使共射极电路是目前应用最广泛的一种组态。
8、三极管在电路的应用由于单片机的输出电流很小,不能直接驱动LED,需要加装扩流电路,最简单的就是加装一个射极跟随器(共集电极电路)足以驱动LED了。
射极跟随器的发射极接负载,集电极接地,基极接单片机IO口。
共射极接法和共集电极接法的区别共集、共基、共射指的是电路,是三极管电路的连接状态而不是三极管。
所谓“共”,就是输入、输出回路共有的部分。
其判断是在交流等效电路下进行的。
在交流通路下,电源正极相当于接地。
哪一个极接地,就是共哪个极电路。
共集电极电路----三极管的集电极接地,集电极是输入与输出的公共极;共基极电路----三极管的基极接地,基极是输入与输出的公共极;共发射极电路----三极管的发射极接地,发射极是输入与输出的公共极。
8.1、NPN管在电路中的应用区别很大。
首先,你的图有些问题,在B极、E或C极回路上必须要有限流电阻,不然会烧元件或者拉低电压的。
Q1应该是共集电极电路吧,Q2算共射电路。
此处输入电压3V3代表3.3V。
一般情况不使用Q1电路,都使用Q2电路。
Q1电路中,随着Q1的导通,E极电压上升,升到E极电压上升到3V(锗管)或2.6V(硅管)时,Q1的BE结电压开始减小,使Q1欲退出饱和状态,如此Q1的电压就钳在3V或2.6V左右,Q1的输出电压相对较低,不可能超过3V(按锗管算,BE也得0.3V的压降)。
因为Ube=0.7V(硅管)/0.3V(锗管)。
Q1电路无法进入饱和状态?如果Q1进入饱和状态,电流Ic增大,集电极本来就有限流电阻R,Ic*R>Vcc-Ie*Rled? Rled为LED的电阻。
Q2电路简单,只要BE电压达到0.3V(锗管)或0.7V(硅管),Q2饱和导通,5V电压就加于负载。
负载电压不受B极驱动电压的影响。
综上所述:NPN管(高电平导通)采用共集电极接法时输出电压较低,采用共射极接法时输出电压相对较高。
8.2 PNP管在电路中的应用两种接法各有用途,不能说哪种更好左边是共发射极接法,右边是共集电极接法,由于发射极和基极间的电位只差0.7V,大致可看成Ve=Vb,因此又叫做射级跟随器。
当目的是要驱动一个数字量器件(如继电器/蜂鸣器)时,左边的共射电路是最标准的用法:T1要么截止要么饱和导通,导通时T1上的压降很小,电源电压几乎都落到负载B1上,T1相当于一个开关。
采用右图的射随接法继电器/蜂鸣器虽也能工作,但因三极管不会饱和,使得负载得不到接近电源的电压,反而要使三极管的功耗增大,是值得注意的。
左图:拉低T1的基极电平使其导通(限流电阻不可省),T1即饱和,Vce 仅约0.2V。
右图:拉低T2的基极电平(假设为0.3V),T2虽导通但无法完全饱和,因导通的条件是Vbe(实际应为Veb)上有0.7V,所以T2的Vce(实际应为Vec)=0.3+0.7=1V。
可见左右两种电路在三极管c-e上的压降不同,右图三极管的功耗要大于左图,负载上得到的电压则较低。
综上所述,PNP管(低电平导通)采用共集电极接法时无法进入饱和状态,采用共射极接法时饱和压降低。
所以在电路中不管是PNP管还是NPN管一般采用共射极接法,即集电极接负载;共集电极接法(又称射级跟随器)有电流放大而无电压放大。
如果把三极管当开关用,负载最好接在集电极(不管是NPN还是PNP管),这样接导通时饱和压降小一点。
接在集电极作负载的是电压放大,接在发射极做负载的是电流放大。
不管是NPN还是PNP三极管负载可以接在集电极也可以接在发射极,至于哪种接法要根据放大电路的要求来定,负载接在集电极的叫共射放大电路,具有电压放大作用,另一种负载接在发射极的称共集电极放大电路,具有电流放大作用,具有高输入阻抗,低输出阻抗的特点,同样是一种放大电路又称阻抗匹配电路。
8.3 一般典型用法是三极管基极接单片机IO口(P0-P3)。
三极管的集电极电流(Ic)小可以更容易进入饱和状态。
三极管的饱和电流由C极负载决定,这里说的是e极上无电阻的情况. 一般说负载大是指电流大,也就是电阻小。
怎么使三极管进入饱和状态?(此处NPN三极管基极接单片机IO口,发射极接地,集电极通过负载接5V电源)答案:增加基极电流,使基极电流乘以放大倍数大于集电流。
因为三极管放大倍数有离散性,所以计算时要用你所用一三极管中可能的最小放大倍数。
用最小放大倍数算,放大倍数较大的管子上去也能用,只是饱和深度深些,多少影响点响应速度。
用最大放大倍数算,放大倍数较小的管子上去就不能保证饱和。
如果单片机输出电流不够就要加放大级。
假如发射极直接接地而不串联电阻,如果三极管是NPN管,单片机IO口输出高电平,则加在三极管的电流会过大而烧毁三极管。